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A new hierarchical layout vs. schematic (LVS) comparison system for layout verification
has been developed. The schematic hierarchy is restructured to remove ambiguities for
consistent hierarchical matching. Then the circuit hierarchy is reconstructed from the
layout netlist by using a modified SubGemini algorithm recursively in bottom-up fash-
ion. For efficiency, simple gates are found by using a fast rule-based pattern matching
algorithm during preprocessing. Experimental results show that our hierarchical netlist
comparison technique is effective and efficient in CPU time and in memory usage,
especially when the circuit is large and hierarchically structured.
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1. INTRODUCTION

Recently, most designs are specified at the behav-
ioral level. They are transformed to the register
transfer level (RTL), to the gate level, and then fi-
nally to the layout description. The transformation
procedure is automatic and/or interactive. The
final design should be completely validated before
manufacturing.
One major task of chip-level verification is

consistency proof between the original schematic
netlist and the one extracted from the layout. This
verification problem can be modeled as a graph
isomorphism problem. However, no efficient
(polynomial time) algorithm has been found so

far. Therefore, the isomorphism test can be ex-
ecuted by an exponential number of comparison
operations, but this is not acceptable for circuits
with thousands or more number of elements.
Hence the main goal of any heuristic algorithm
has been to reduce the complexity (the number of
comparison operations) of the verification. A
common method to achieve this objective is to
partition the nodes of the two graphs into several
groups with the same features. If the number of
nodes in these partitions is small (possibly only
one), the number of comparison operations de-
creases drastically and isomorphism can be tested
in acceptable computing time for a large number
of nodes [1].
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1.1. Previous Methods

In simulation-based methods [2], only exhaustive
simulation can guarantee the functional isomorph-
ism between the two circuits. This is prohibitively
costly in most cases and the simulation result
differences cannot easily locate the erroneous parts
of the circuit.
Many methods reported so far are based on the

refinement algorithm [3, 4], in which the set of all
nets and all components is partitioned into classes
with homogeneous properties: the types of com-
ponents and the number of adjacent components.
The initial partition is successively refined by
taking into account the properties of the neigh-
bors. Elements (components or nets) in singleton
classes of one circuit should be directly matchable
with elements in the respective classes of the other
circuit.
Most of the previous comparison tools perform

flat-level comparisons [3, 4]. This was sufficient in
the past as designs were less complex. These tools
become inefficient and inadequate as the design
size grows beyond a few million components. For
most fiat-level approaches, verification time grows
as O(Nm) where N is the number of components
and m >> 1. Memory requirements grow linearly
with the size of the design. The problem with the
fiat-level approach is that it takes too long (40-
50 hours) to verify about 3-4 million devices [6].

Hierarchical approaches have also been pro-
posed for the circuit comparison problem [5-7].
Some methods require isomorphic hierarchies for
the schematic and the layout netlists. This is not
often the case, since in most cases the schematic
hierarchy reflects the functional organization of
the circuit, whereas the layout hierarchy is built
based on its geometric structure. Spreitzer [5]
approached the problem by modifying the hier-
archies to make them isomorphic. Nonetheless the
hierarchical methods cannot be used for all kinds
of circuits. Pelz and Roettcher [6] proposed a
hybrid approach of hierarchical pattern matching
and refinement methods. But the complexity of the
hierarchical pattern matching is in O (n n) in the

worst case, where n is the flat target circuit size
([components[ /[nets[).
To improve the handling of functional iso-

morphism, Spickelmier et al., proposed the appli-
cation of a rule-based expert system [8]. Pin
permutations and functional equivalence condi-
tions of subcircuits can be flexibly handled by the
rule-based system. However, due to runtime and
memory requirements, this method is limited to
small-sized circuits.

1.2. The Features of Our Hierarchical
LVS Comparison

In this paper, we propose a new hierarchical netlist
comparison technique, which compares a hier-
archical netlist and a flattened netlist, for layout
verification based on refining and hierarchy re-

structuring. The features of our hierarchical LVS
can be summarized as follows:

It is a hierarchical comparison technique using
a modified refinement algorithm. Hierarchical
comparison methods are more efficient in CPU
time and requires less memory than flattened
comparison methods.
The hierarchy is restructured to remove ambi-
guities for consistent hierarchical comparisons.
When a subcircuit is used with some of its in-
puts connected together at a higher level in the
hierarchy, it is difficult to find the subcircuit
from the layout netlist. Finding subcircuits with
power/ground connections and/or floating (un-
used) signals are also difficult. Especially, find-
ing subcircuits which consist of multiple groups
of disconnected devices requires almost exhaus-
tive search. In these cases, we restructure the
hierarchy by generating new modified versions
of the subcircuits for consistent hierarchical
comparisons.
Simple gates are found by using a fast rule-
based pattern matching algorithm. Most inte-
grated circuits contain a large number of simple
gates, such as inverter, NAND, and NOR gates.
Finding simple gates using the refinement
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algorithm is inefficient because they have only a
small number of transistors. Therefore, we find
those gates by using a fast rule-based pattern
matching algorithm.
Permutable pins are considered during compar-
isons.

2. HIERARCHICAL LVS COMPARISON

In this section, we describe the overall algorithm of
our hierarchical LVS comparison method. Two
netlists are used for the comparison: a hierarchical
netlist from the original schematic design and a
flattened netlist extracted from the layout. The
overall algorithm of our hierarchical LVS compar-
ison is shown in Algorithm 1.

ALGORITHM Hierarchical LVS comparison
Read netlists;
Restructure the hierarchy;
Merge series tr’s for both netlists;
Find simple gates in both netlists;
for(each subcircuit s from leaves to

the root of the hierarchical netlist) (
if (# used < Th_Used) {

Expand s;
continue;

Find candidates for s from the layout netlist
and its corresponding key node k from s;

if (# candidates # used)
Expand s;/, flatten it ,/

else {
for(each candidate c for s) {

Verify image of s starting from c and k;
if (Verification is successful)

Replace matched part by s;
else {
Expand s;/, undo replacement and

flatten it ,/
break;
}

}
}

The main part of our hierarchical LVS compar-
ison system is based on the refinement algorithm.
We find subcircuits from the layout netlist in
bottom-up order. To find images of one subcircuit
from the layout netlist, we use a modified version
of SubGemini algorithm [9]. The algorithm is quite
effective, but it assumes that the external nets of a
subcircuit are not connected together at a higher
level in the hierarchy. However, real designs of
integrated circuits have many subcircuits with
merged inputs which are connected together.
Therefore, we find this type of subcircuits, and
then restructure the hierarchy by generating new
modified versions of the subcircuits, so that later
hierarchical comparison becomes straight-for-
ward. The hierarchy restructuring is described in
detail in Section 3.
Now we describe major parts of Algorithm in

detail.

2.1. Merging of Series Transistors

Integrated circuits usually contain a great number
of series transistors. Furthermore, their gate
signals are permutable in many cases. To match
the permutable signals and to reduce the complex-
ity of the isomorphism checking, it is desirable to
merge a set of series transistors into a new multi-
gate device. Series transistors can be found by
examining nets. A net connecting only two source/
drain terminals of the same-type transistors (or
series transistors) conforms a new multi-gate
device. However, when the common net is also
connected to another external terminal in a larger
circuit, the transistors attached should not be
merged into a multi-gate device. The merged series
transistors are used later to find simple gates.
Series transistors can be checked by visiting each
net with degree of 2.

2.2. Finding Simple Gates

Most integrated circuits contain a large number of
simple gates, such as inverter, NAND, and NOR



120 W. KIM AND H. SHIN

gates. Since the simple gates are composed of only
a small number of transistors, finding all of them
by using the refinement algorithm is inefficient.
Therefore, we have developed a fast rule-based
pattern matching algorithm. We apply this algo-
rithm for both netlists.

In case of CMOS circuits, inverters have two
transistors of different types with a common drain
signal and a common gate signal. The other drain
of the p-transistor is connected to Vdd and that of
the n-transistor is connected to Gnd. Note that the
drain and the source of a transistor are inter-
changeable.

Series transistors can make NAND or NOR
gates with corresponding parallel transistors.
When a set of series transistors are p-type transis-
tors with one of their sources connected to Vdd,
we search for dual n-transistors, with the common
drain signal, whose gates are connected to the
gates of the series transistors. If all the gate-match-
ed n-transistors are found, we replace the series
p-transistors and all the gate-matched n-transis-
tors by a NOR gate. When series transistors are of
n-type, with one of their sources connected to
Gnd, we search for a NAND gate, in a similar
way.

This can be easily extended for other circuit
types, such as domino or non-dual circuits.

2.3. Hierarchical Subcircuit Matching

The main part of our hierarchical LVS comparison
consists of a recursive loop for finding subircuits
from the layout netlist. Subcircuits are processed
in bottom-up order because a subircuit can only
be matched after all its child subircuits are
matched. All the sub-circuits in the hierarchical
netlist are ordered by a breadth first search (BFS)
algorithm. When there are several subircuits in a
hierarchy level, we process the most frequently
used subircuit first, so that the size of the layout
netlist can be reduced as soon as possible. This
procedure rebuilds the hierarchy from the layout

netlist to match the given restructured schematic
hierarchy.
We have used a modified SubGemini [9]

algorithm for finding each subcircuit. It consists
of two phases. In phase I, SubGemini identifies all
possible matchable locations of the subcircuit in
the layout netlist. It does this by applying a
partitioning algorithm to both netlists. This
procedure chooses a key node, k, in the subcircuit
and identifies all possible nodes in the layout
netlist which might match the key node. This set of
nodes is called the candidate vector, CV. Phase I
acts as a filter to reduce the number of instances
that need to be checked. In phase II, SubGemini
verifies whether there is an actual subcircuit at
each location indicated by the candidate vector. It
examines each node c in the candidate vector and
attempts to find a mapping between nodes in the
subcircuit graph and nodes in the layout graph,
such that k matches c. This is done by initially
postulating a match between k and c, and by
labeling the two nodes with a unique label.
Starting from these nodes, the algorithm simulta-
neously labels both the layout netlist and the
subcircuit netlist such that labels of nodes match if
and only if there is a valid mapping between the
two graphs. If this procedure finds exactly match-
ing labels in the layout netlist for all the nodes in
the subcircuit, then a subcircuit has been found.
Otherwise, the candidate node is a false candidate.

In this paper, we modified the SubGemini as
follows:

Since the hierarchical comparison technique
may be efficient when subcircuits are used many
times in the higher level subcircuits, the algo-
rithm optionally expands subcircuits which are
used only a couple of times to the next higher level.
The bound for the number of subcircuits used
(Th_Used) is given by the user. When the value is
set to 1, the algorithm attempts to find all the
subcircuits hierarchically.
When the number of candidates (nc) for a

subcircuit is different from that of subcircuits used
(nu) in the schematic netlist after Phase I, some
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candidates may cause illegal matching. To prevent
this problem, we check ne and nu. If they are
different, we expand/flatten the subcircuit to the
next higher level. Therefore, if a candidate match-
ing fails, we expand the subcircuit in the schematic
netlist and also expand previously matched parts
of the subcircuit in the layout netlist. With this
expansion of both netlists, we can verify the circuit
hierarchically without losing consistency.

Figure shows an example in which straight-
forward matching is not possible. The subcircuit
CA shown in Figure l(a) can be matched to the
dotted block CA in Figure l(b) which includes
parts of subcircuits CB and CC. However, if I1
belongs to a subcircuit CB and NR2 belongs to
another subcircuit CC, then CA in Figure l(b)
must not be matched to CA in Figure l(a). Be-
cause the match is not consistent. I and NR2
can produce an illegal candidate for the subcircuit
CA. In this case nc is larger than nu, which indi-
cates an illegal matching. Therefore, we expand
the subcircuit CA to the next level, if nc =/: nu.

If there is an error for a subcircuit in the layout
netlist then nc may be less than nu for subcircuits
containing the errorneous part. Then those sub-
circuits may be expanded to the next higher level.
After trying all the subcircuits to match, we can
find the errorneous parts from the remaining net-
list as described in [4].

Since these cases do not occur frequently,
resolving this problem by exhaustively checking
all the combinations of possible matchings is
impractical. Therefore, we solve this problem by

expanding the subcircuit and by performing
matching at the next hierarchical level.

3. HIERARCHY RESTRUCTURING

During preprocessing, we restructure the hierarchy
of the schematic netlist for consistent hierarchical
matching. Subcircuits with power/ground inputs,
merged inputs, or floating signals cannot be found
directly by using the SubGemini algorithm. When
a subcircuit consists of more than one connected
group of devices, the refinement algorithm cannot
be directly applied. Therefore, we generate mod-
ified versions of those subcircuits by exploiting
external connections of them so that straight-
forward hierarchical matching can be used later.
The hierarchy restructuring process is summarized
in Algorithm 2.

ALGORITHM 2 Hierarchy restructuring
for(each subcircuit s from the root to leaves) {

for (each device d in s) {
Find power/ground signals;
Find merged terminals;
Find floating signals;
if (any of them exists) {
Try to find s’ from the subcircuit list;
if (s’ doesn’t exist) {
Make a new subcircuit s’ from s;
Append s’ to the subcircuit list;

}
Modify terminals of d;

!1 ’,CA:

N

(2(?

(a) One subcircuit in the schematic (b) The subcircuit in the layout

FIGURE Subcircuits which may cause a false matching.
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}
}

}
for (each subcircuit s from leaves to the root) {

n number of disconnected groups in s;
if (n _> 2) {

Split s;
Expand s;

Following subsections describe major parts of
the algorithm in detail.

3.1. Subcircuits with Special Inputs

Subcircuits with special inputs can be found by
exploiting external signals of each subcircuit in the
hierarchical netlist. Some of these signals may
propagate to their child subcircuits. Therefore,
external signals are processed in top-down order.

Figure 2 shows an example of a subcircuit with
special inputs. Figure 2(a) shows the original
subcircuit OPTION. Figure 2(b) is an example
usage of the subcircuit in a higher level subcircuit.
Signals O and 02 are merged and the merged signal
is floating. Signals 03, 04 and 06 are merged and is

03
0,5

(a) A subcircuit named OPTION

IB

IC ="

Vdd OI
oat)

(b) One usage

Vdd

1 ,I

Z

T

!.

5

(c) A modified version

FIGURE 2 An example of generating modified subcircuit.

OUT
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connected to other devices. 05 is floating and 07 is
connected to Vdd. Now the subcircuit will look like
Figure 2(c) in the layout netlist. If we do not know
that the signal 05 is floating, two transistors
connected to 05 cannot be merged in the subcircuit
because it is an external signal. However, in the
layout netlist, two transistors connected to 05 can
be merged because it has only two transistors, i.e.,
05 is never used outside of the subcircuit. We
identify this case by exploiting the external connec-
tions in the hierarchical netlist and then generate a
modified version ofOPTION as in Figure 2(c) in the
restructured schematic netlist. Then the circuit in
Figure 2(c) can be matched with the layout netlist
extracted as shown in Figure 2(b).

Floating signals of a subcircuit are propagated to
child subcircuits. When a floating signal is con-
nected to only one device in the subcircuit then it is
propagated again as floating. However, if a floating
signal is connected to more than one device, it is not
floating any more. For example, if F1 and F2 are
floating signals of the subcircuit ’C’ in Figure 3,

FI

F2

FIGURE 3 Propagation of floating signals.

then F1 is propagated to the subcircuit ’A’ as
floating, while F2 is propagated to subcircuits A
and B as normal external signals.

3.2. Subcircuits with Multiple Groups

When a subcircuit consists of multiple discon-
nected groups of devices, it cannot be found by the
Phase II of the SubGemini algorithm. We split this
subcircuit into several connected subcircuits and it
is expanded to the higher level. The higher level
subcircuit also can consists of multiple discon-
nected groups. Therefore, we process each sub-
circuit in bottom-up order.

Figure 4 shows an example subcircuit. The
original subcircuit E consists of subcircuits A, B, C
and D. However subcircuit groups A-B and C-D
are disconnected. In this case, we split E into E1
and E2 so that each of them contains A-B and C-
D, respectively. Then we expand the subcircuit E
which consists of E1 and E2. In this case, new
subcircuits, E1 and E2 are generated, while E is
removed, since E cannot be easily found.

4. EXPERIMENTAL RESULTS

We implemented our hierarchical LVS (HLVS)
comparison algorithm on a Sun Ultra SPARC
workstation running at 296 MHz by using the C
programming language. We have tested our HLVS
system on several industrial circuits and our own

(a) Original subcircuit (b) Split subcircuits

El

E2

(c) Restructured subcircuit

FIGURE 4 A subcircuit with multiple groups.
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designs. For example, we verified circuits, such as a
MCU with 27,091 transistors and a RAM with
1,328,692 transistors, in 6 seconds and 243 seconds,
respectively. Table I shows the characteristics of the
example circuits. Many different subcircuit types
are used in circuits ex2 and ex3 while only a small
number of subcircuit types are repeatedly used in
ex4 through ex7.

Table II shows the experimental results of our
hierarchical LVS and those of another well known
algorithm, GeminiII (version 2.7, 1993). For
GeminiII, the CPU times for flattening and
comparison are shown in the parenthesis. Cur-
rently, the threshold value, Th_Used (explained in
Subsection 2.3), of our HLVS system is 64 (by
default), i.e., a subcircuit is hierarchically processed
if it is used more than 64 times in a circuit.
Note that the well-known commercial LVS tool,

Dracula [10] (Rev. 4.3) took 395 seconds to verify
ex2 (which was run by a layout expert in an
industry), while our HLVS took only 27 seconds
on a SPARC 20 workstation. The Dracula run
time includes only LVS execution time, excluding
database compilation and circuit extraction times.

Figure 5 shows CPU time variations for several
large hierarchical circuits. It shows that the

CPU
Isec]

250

200

150

I00

50-

200 400 600 800 1000 1200 #tr[K|

FIGURE 5 Linear characteristics of our algorithm.

execution time of our algorithm increases almost
linearly with the number of transistors, when the
circuit is hierarchically designed.

These experimental results show that the pro-
posed method is very effective and efficient.

5. CONCLUSIONS

We have developed a hierarchical LVS comparison
technique which rebuilds the hierarchy, if possible,
from the layout netlist by hierarchically applying
the refinement algorithm. The hierarchical techni-

circuit

TABLE The characteristics of the example circuits

# transistors # subcircuit # total
types subcircuits used

# average
subcircuits used

exl
ex2
ex3
ex4
ex5
ex6
ex7

circuit

5,628 5 231
6,015 66 1,506
27,091 148 10,098
82,194 12 26,140
332,204 14 104,592
664,352 15 209,085
1,328,692 15 418,148

46
23
68

2,198
7,471
13,939
27,877

TABLE II Comparisons of experimental results

GeminiII

CPU [see] Memory [MB] CPU [see]

HLVS

Memory [MB]

exl
ex2
ex3
ex4
ex5
ex6
ex7
total

(< 1+1) 2.6 < 2.3
< (< 1+< 1) 2.7 < 3.0

3 (1 / 2) 12 6 15
33 (6 + 27) 38 12 23

236 (62 + 174) 153 49 84
639 (239 + 400) 306 107 185

1,941 (1,032 + 909) 611 243 381
2,854 1,125.3 419 693.3
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que is especially efficient when a subcircuit is
repeatedly used. The hierarchy rebuilding may not
be successful when there are ambiguous cases.
Future works are necessary in this area. The
parasitic effects, which are causing problems in
UDSM designs, may be considered in future LVS
[11].

Simple gates are found by using a fast rule-
based pattern matching algorithm. Experimental
results show that our hierarchical LVS approach is
effective, especially when the circuit is large and
hierarchically structured.
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