Laser Chem., 1999, Vol. 19, pp. 223-225 Reprints available directly from the publisher Photocopying permitted by license only © 1999 OPA (Overseas Publishers Association) N.V.
Published by license under
the Harwood Academic Publishers imprint,
part of The Gordon and Breach Publishing Group.
Printed in India.

CO PHOTOLYSIS OF CYTOCHROME OXIDASE INVESTIGATED BY PS RESONANCE RAMAN SPECTROSCOPY

JOHANNES P. M. SCHELVIS^a, COSTAS VAROTSIS^b, GEURT DEINUM^a and GERALD T. BABCOCK^{a,*}

^a Department of Chemistry, Michigan State University, East Lansing, MI 48824; ^b Department of Chemistry, University of Crete, 71409, Iraklion, Crete, Greece

(Received 11 April 1997)

Low-power picosecond resonance Raman spectroscopy was used to investigate the identity of the axial ligand of heme a_3 and relaxation processes in the heme a_3 pocket of cytochrome oxidase after CO photolysis. Our results show that the proximal histidine remains ligated to heme a_3 after CO photolysis excluding the transient ligation of a photolabile, endogenous ligand. Furthermore, the relaxation of the heme a_3 macrocycle modes occurs on the sub ps time scale, while relaxation of the heme pocket to its equilibrium conformation takes place on the μ s time scale.

Keywords: Picosecond; resonance Raman; cytochrome oxidase; CO; photolysis

INTRODUCTION

Cytochrome oxidase contains 4 redox active metal centers: heme a, heme a_3 , Cu_A and Cu_B . The catalysis takes place at the binuclear center formed by heme a_3 and Cu_B . The dynamics in the heme a_3 pocket have been studied extensively using CO photolysis and two models have been proposed. In one model [1] the proximal histidine remains ligated to heme a_3 , while in the other model [2] an endogenous ligand dissociates from Cu_B and transiently binds to heme a_3

^{*}Corresponding author.

displacing the proximal histidine after CO photolysis. We have applied low-power ps resonance Raman difference spectroscopy to identify the axial ligand of heme a_3 directly after CO photolysis.

METHODS

Cytochrome oxidase was isolated from beef heart. Raman difference spectroscopy was done with two synchronously pumped dye lasers with 7 ps pulses at a 153 kHz repetition rate. Photolysis pulses were 36 nJ at 592 nm and probe pulses were 16 nJ at 441 nm.

RESULTS AND DISCUSSION

The low-frequency resonance Raman spectrum of the fully reduced enzyme (Fig. 1a) contains contributions from both hemes, while the spectrum of its CO-complex (Fig. 1b) only shows peaks of heme a^{2+} using 441 nm excitation. The a_3^{2+} vibrations that disappear upon CO ligation, reappear in the Raman difference spectra (Fig. 1c-f) after CO photolysis. Although the a_3^{2+} macrocycle modes at 332, 366 and 400 cm⁻¹ are unchanged in the photolysis product, the Fe-his frequency is upshifted from 214 to 220 cm⁻¹ as was observed in ns experiments [1, 2]. The intensities of the modes in the difference spectra were not sensitive to attenuation of the probe power by a factor of 8, indicating that we do not observe additional photolysis due to the probe pulses. Since the Fe-his mode is observed at 0 ps delay time and substantial protein movement to accommodate ligation of a distal ligand is not expected on this fast time scale, we conclude that the proximal histidine remains ligated to heme a_3 . Furthermore, the a_3^{2+} macrocycle modes show no frequency shift on the time scale of our experiment, so most likely they assume their equilibrium frequencies on the sub ps time scale. The heme a_3 pocket relaxes to its equilibrium conformation on the us time scale as indicated by the relaxation of the Fe-his vibration.

FIGURE 1 Low-frequency Raman spectra of cytochrome c oxidase from beef heart obtained with 441 nm excitation. The equilibrium fully reduced enzyme (a) and its CO complex (b). Difference spectra taken at $-20\,\mathrm{ps}$ (c), $0\,\mathrm{ps}$ (d), $30\,\mathrm{ps}$ (e), and $1\,\mathrm{ns}$ (f) after CO photolysis. The difference spectra were obtained by subtracting the probe-only spectrum from the pump-probe spectrum after normalization on the 438 cm⁻¹ heme a^{2+1} mode. In spectra 1c-1, CO was photolyzed with 592 nm pulses.

References

- [1] Findsen, E. W., Centeno, Babcock and Ondrias (1987). J. Am. Chem. Soc., 109, 5367
- [2] Woodruff, W. H., Einarsdóttir, Ó. et al. (1991). Proc. Natl. Acad. Sci. USA, 88, 2588.