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We develop an O( p log n) time algorithm to obtain optimal solutions to the p-pin n-net
single channel performance-driven implementation selection problem in which each
module has at most two possible implementations (2-PDMIS). Although Her, Wang
and Wong [1] have also developed an O(p log n) algorithm for this problem, experi-
ments indicate that our algorithm is twice as fast on small circuits and up to eleven times
as fast on larger circuits. We also develop an O(pnc-l) time algorithm for the c, c > 1,
channel version of the 2-PDMIS problem.
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1. INTRODUCTION

In the channel routing problem, we have a routing
channel with modules on the top and bottom of
the channel, the modules have pins and subsets of
pins define nets. The objective is to route the nets
while minimizing channel height. Several algo-
rithms have been proposed for channel routing (see,
for example, [2]).
When the modules on either side of the channel

are programmable logic arrays, we have the flexi-
bility of reordering the pins in each module; any
pin permutation may be used. The ability to reor-
der module pins adds a new dimension to the

routing problem. Channel routing with rearrange-
able pins was studied by Kobayashi and Drozd [3].
They proposed a three step algorithm (1) permute
pins so as to maximize the number of aligned pin
pairs (a pair of pins on different sides of the chan-
nel is aligned iff they occupy the same horizontal
location and they are pins of the same net), (2)
permute the nonaligned pins so as to remove cyclic
constraints, and (3) while maintaining an acyclic
vertical constraint graph, permute unaligned pins
so as to minimize channel density. Lin and Sahni

[4] developed a linear time algorithm for Step (1)
and Sahni and Wu [5] showed that Steps (2) and (3)
are NP-hard. Tragoudas and Tollis [6] present
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a linear time algorithm to determine whether there
is a pin permutation for which a channel is river
routable. They also showed that the problem of
determining a pin permutation that results in mini-
mum density is NP-hard in general, and they devel-
oped polynomial time algorithms for the special
case of channels with two terminal nets and chan-
nels with at most one terminal of each net being in
each module.

Variants of the channel routing with permutable
pins problem have also been studied [7- 10]. In these
variants restrictions are placed on the allowable
pin permutations for each module. Restrictions
may arise, for example, because the module library
contains only a limited set of implementations
of each module [7]. Another variant, considered
by Cai and Wong [8] permits the shifting ofmodules
and pins so as to minimize channel density. Exten-
sions to the case when over the cell routing is per-
mitted are considered in [9] and [10].
The variant of the channel routing with permu-

table pins problem that we consider in this paper
is the performance-driven module implementation
selection (PDMIS) problem formulated by Her,
Wang and Wong [1]. In the k-PDMIS problem, we
are given two rows ofmodules with a routing chan-
nel in between, up to k possible implementations
for each module (different implementations of a
module differ only in the location of pins, the mod-
ule size and pin count are the same); and a set of
net span constraints (the span of a net is the dis-
tance between its leftmost and rightmost pins). A
feasible solution to a k-PDMIS instance is a selec-
tion of module implementations so that all net

span constraints are satisfied. An optimal solution
is a feasible solution with minimum channel
density.

Figure l(a) shows a routing channel with two
modules on either side of the routing channel. As-
sume that each module has two implementations
and that the pin locations for the second imple-
mentation ofeach module are as in Figure (b). The
net span constraints of the five nets are 4, 4, 1,
1 and 6, respectively. This defines an instance of
the 2-PDMIS problem. Using the implementations
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FIGURE An example PDMIS problem. (a) first implemen-
tation; (b) second implementation; (c) selections that satisfy the
net span constraints; (d) selection with better density.

of Figure l(a), the net spans are 5, 3, 1, and 6,
respectively. The span constraint ofnet is violated.
If each module is implemented as in Figure (b), the
net spans are 1, 5, 1, and 4, respectively. This time,
the span constraint of net 2 is violated. If we
implement the modules as in Figure l(c) (i.e., for
modules and 2 use the implementations of Fig.
(a) and for modules 3 and 4, use the implementa-

tions of Fig. (b)), the net spans are 4, 4, 1, and 6,
respectively. Now, the net span constraints are
satisfied for all nets. The channel density when
module implementations are selected as in Figure
l(c) is 5. Selecting module implementations as in
Figure l(d), we obtain a feasible solution whose
density is 3.

Her, Wang and Wong show that the k-PDMIS
problem is NP-hard for every k >_ 3. For the 2-
PDMIS problem, they develop an O(p log n) algo-
rithm to find an optimal solution. In this paper, we
develop an alternative O( p log n) algorithm to find
an optimal solution to the 2-PDMIS problem.
Experiments indicate that our algorithm is twice as
fast on small circuits and up to eleven times as fast
on larger circuits.
We begin, in Section 2, by providing an over-

view of the O(p log n) algorithm of [1]. Then, in
Section 3, we describe our O( p log n) algorithm. In
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Section 4, we develop an O(pnc-1) algorithm for
the c, c > 1, channel 2-PDMIS problem. Experi-
mental results using the single channel 2-PDMIS
algorithm are presented in Section 5.

2. THE KNOWN O(p log n)-TIME
ALGORITHM

Her, Wang and Wong [1] show how to transform an
instance P of 2-PDMIS with net span constraints
and a constraint, d, on channel density into an
instance S of the 2-SAT problem (each instance of
the 2-SAT problem is a conjunctive normal form
formula in which each clause has at most two

literals). The 2-SAT instance S is satisfiable iff the
corresponding 2-PDMIS instance has a feasible
solution with channel density _< d. The size of the
constructed 2-SAT formula S is O(p), where p is
the total number of pins in the modules of P. Since
the channel density of the optimal solution is in the
range [1, n], where n is the total number of nets, a

binary search over d can be used to obtain an

optimal solution in O( p log n) time.
Her, Wang and Wong [1] use one boolean vari-

able to represent each module. The interpretation
is, variable xi is true iff implementation of mod-
ule is selected. The steps in the 2-PDMIS
algorithm of [1] are:

1. Construct the 2-SAT formula Cspan such that
Cspan is satisfiable iff the given 2-PDMIS for-
mula has a feasible solution. This is done by
constructing a 2-SAT formula for each net and
then taking the conjunction of these instances.
For each net j, the leftmost and rightmost mod-
ules on the top row and bottom row are identi-
fied. These (at most four) modules are the
critical modules for net j as the span of net j is
determined solely by these modules. A 2-SAT
formula involving the boolean variables that
represent these critical modules is constructed.
This 2-SAT formula has the property that truth
value assignments satisfy the 2-SAT formula iff
the corresponding module implementations

cause the net span constraint for net j to be
satisfied.

2. Construct a 2-SAT formula eden using a density
constraint d. eden is satisfiable only by module
implementation selections which result in a chan-
nel density that is <_ d. To construct eden, par-
tition the channel into a minimum number of
regions such that no region contains a module
boundary in its interior; for each region,
construct a 2-SAT formula so that the density
in the region is _< d whenever the 2-SAT formula
is true (this 2-SAT formula involves only the
module in the top row ofthe region and the one in
the bottom row); take the conjunction of the
region 2-SAT formulae.

3. Determine if the 2-SAT formula CspanA Cden
is satisfiable by using the strongly connected
components method described in [11]. This re-

quires that we first construct a directed graph
from Cspan / eden.

4. Repeat Steps 2 and 3 performing a binary
search for the minimum value of d for which

Cspan/ eden is satisfiable.

As shown in [1], the size of Cspan/ Cden is O(p);
Steps 1- 3 take O(p) time; and the overall com-
plexity is O(p log n).

3. OUR O(p log n)-TIME ALGORITHM

Our algorithm is a two stage algorithm that does
not construct a 2-SAT formula. In the first stage,
we construct a set of 2m "forcing lists", where m
is the number of modules. L[i] is a list of module
implementation selections that get forced if the
first implementation of module i, _< _< rn is selec-
ted; L[m + t] is the corresponding list for module
when the second implementation of module is
selected. By forced, we mean that unless the
module implementations on L[i] (L[m+i]) are selec-
ted whenever the first (second) implementation of
module is selected, we cannot have a feasible
solution that also satisfies the given density con-
straint. In the second stage, we use the limited
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branching method of [12] and the forcing lists
constructed in Stage to obtain a module im-
plementation selection that satisfies the net span
and density constraints (provided such a selection
is possible). To find an optimal solution, we use
binary search to determine the smallest density con-
straint for which a feasible solution exists.

3.1. Stage 1

In Stage 1, we construct the forcing lists L[1..2m].
If the selection of implementation of module
requires that we select implementation of module
j, we place j on the list L[i]; if the selection of im-
plementation of module requires that we select
implementation 2 of module j, we place m +j on

L[t]. Similarly when the selection of implementa-
tion 2 of module requires a particular imple-
mentation be selected for module j, we place either
j or m+j on L[m+i]. To assist in the con-
struction of the forcing lists, we use another array
C[1..m] with C[t] 0 if no implementation of
module has been selected so far; C[t] if the
first implementation of module has been selected;
and C[t] 2 if the second implementation has
been selected.

First, we construct the forcing lists necessary to
ensure the net span constraints. For each net for
which a net span constraint is specified, identify
the leftmost and rightmost modules, in each mod-
ule row, that contain net (see Fig. 2). There are
at most four such modules: leftmost module with
net in the top module row (module u of Fig. 2),
leftmost in the bottom module row (w), right-
most in top row (v) and rightmost in bottom row

1st imp.

2nd imp.

FIGURE 2 Critical modules of net i.

1st row

2nd row

(x). The span of net is determined by a pair of
these critical modules. One module in this pair is a
leftmost critical module and the other is a right-
most critical module. So, there are at most four
module pairs to consider (for the example of Fig.
2, these four pairs are (u, v), (w, v), (u,x) and
(w,x)).
When a critical module pair is considered, let A

denote the implementation of the left module (of
the pair) in which the leftmost pin of net is to the
right of the leftmost pin of net in the other
implementation (ties are broken arbitrarily). Let
A denote the other implementation of the left
module. Let B denote the implementation of the
right module for which the rightmost pin of net is
to the left of the rightmost pin of net in the other
implementation (ties are broken arbitrarily). Let
B denote the other implementation of the right
module. In the example of Figure 2, consider the
critical module pair (u, x), u is the left module and
x is the right module. The second implementation
of u is A and its first implementation is A t; the first
implementation of x is B and its second imple-
mentation is B t. There are four ways in which we
can select the implementations of the modules u

and x: (A,B), (A,B’), (A’,B) and (A’,B’). For
each of these four selections, we can determine the
span of net and classify the selection as feasible

(i.e., does not violate the net span constraint) or
infeasible. Notice that if the selection (A,B) vio-
lates the net span constraint for net i, then each
of the remaining three selection pairs also violates
the net span constraint for this net.
We have the following possibilities:

Case 1 [No selection is infeasible.] All four selec-
tions are feasible. In this case no addition is made
to the forcing lists.

Case 2 [Exactly one selection is infeasible.] The
infeasible selection must be (A t, B t) and the other
three selections are feasible. Now, the selection of
A forces us to select B and the selection of B
forces us to select A. Therefore, we add B to the
forcing list for A and A to that for B t. To add B
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to the forcing list of A (and similarly to add A to
the list of B r), we first check C to determine if an
implementation for the module corresponding to
A has already been selected. If no implementation
has been selected, we simply append B to the list
for A . If the implementation A has been selected,
then we do nothing. If the implementation A has
been selected, then the implementation B is forced
and we run the function Assign (L, C, B) of Figure
3 which selects implementation B as well as other
implementations that may now be forced. This
function returns the value False iff it has deter-
mined that no feasible solution exists.

Case 3 [Exactly two selections are infeasible.]
This can arise in one of two ways (a) (A, B) and
(A,B’) are feasible and (A’,B’) and (A’,B) are
infeasible and (b) (A,B) and (A ’,B) are feasible
and (A ’, B’) and (A, B’) are infeasible. In case (a),
we must select implementation A. This is done by
executing Assign (L, C,A). In case (b), we must
select implementation B; so, we perform Assign
(L, C,).

Case 4 [Exactly three selections are infeasible.]
Now (A,B) is the only feasible selection and we
perform Assign (L, C,A) and Assign (L, C, B).

Case 5 [All four selections are infeasible.]
case, the 2-PDMIS instance has no

solution.

In this
feasible

Once we have constructed the forcing lists for
the net span constraints, we proceed to augment
these lists to account for the channel density con-
straint. Of course, this augmentation is to be done
only when we haven’t already determined that the
given 2-PDMIS is infeasible. Our strategy to aug-
ment the forcing lists to account for the .density
constraint begins by partitioning the routing chan-
nel into regions such that no module boundary
falls inside of a region (see Fig. 4).
To ensure that the channel density is <_ d, we

require that the density in each region of the chan-
nel be _< d. This can be done by examining each
channel region. Let T be the module on the top
row of the channel region and B the module on the
bottom row. The density in this channel region is
completely determined by the nets that enter this
region from its left or right and by the implemen-
tations of T and B. Let T1, T2(BI, B2) denote
the two possible implementations of T(B). We
have four possible implementation pairs (T1, B1),
(T,B2), (T2, B1) and (T2, B2). We can determine
which of these four implementation pairs are in-
feasible (i.e., result in a channel region density
_> d) and use a case analysis similar to that used
above for net span constraints. The cases are:

Algorithm Assign (L, C, M)
/* Select implementation M and related modules */

if M is selected then
return True;

if M is selected then
return False;

/* M is undecided */
Mark M selected in C;
for each X E L[A] do

if not Assign (L, C, X) then
return False;

end for
Remove L[M] and L[M’];
return True;

Case 1 [None are infeasible.] Do nothing.

Case 2 [Exactly one is infeasible.] Suppose, for
example, only (T1, B2) is infeasible. We need to add

B1 to the forcing list for T1 and T2 to the list for
B2. This is similar to Case 2 for net span con-
straints.

1 2 3

5 4 1 2

3 1 2{6 1 3 7

1 7 4 a 1

FIGURE 3 Function Assign. FIGURE 4 Partition a routing channel into regions.
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Case 3 [Exactly two are infeasible.] This can
happen in one of six ways. If the feasible pairs
are (T1, B2) and (Tz, B1), then T1 forces B2, B2
forces T, T2 forces B1 and B forces T2. The
remaining five cases are similar.

Case 4 [Exactly three are infeasible.] There are
four ways this can happen. For example, if (T1, B1)
is the only feasible pair, then implementations
T1 and B1 must be selected. The remaining three
cases are similar.

Case 5 [All four are infeasible.] The 2-PDMIS
instance with density constraint d has no feasible
solution.

3.2. Stage 2

If following Stage we have not determined that
the 2-PDMIS instance is infeasible, Stage 2 is
entered. If no nonempty forcing list remains, all
implementations of the modules for which no im-
plementation has been selected result in feasible
solutions. When nonempty forcing lists remain, we
use the limited branching method of [12] to make
the remaining module implementation selections.
In this method, we start with a module whose
implementation is yet to be selected. For this
module, we try out both implementations, in paral-
lel, following the forcing lists L[t] and L[m+ t],
respectively. This is equivalent to running Assign
(L, C, i) and Assign (L, C,m + i) in parallel and
terminating when either (a) both return with value
False or (b) one (or both) return with value True.
when (a) occurs, we have an infeasible solution.
When (b) occurs, the selections made by the
branch that returns True are used. Note that the
parallel execution of Assign (L, C,i) and Assign
(L, C,m + i) is actually done via simulation by a
single processor; this processor alternates between
performing one step of Assign (L, C, i) and one of
Assign (L, C, rn + i) and stops when one of the two
conditions (a) or (b) occur. In case of (b), we
proceed with the next module with unselected
implementation.

3.3. Implementation Details

To implement Stage 2, we need two copies of the
implementation selection array C; one copy for
each parallel execution branch. Call these copies
C1 and C2. Although both are identical at the start
of Assign (L, C1, i) and Assign (L, C2, i), C1 and C2
may differ later. When the execution of these two
branches terminates, we need to set the Ci corre-
sponding to the unselected branch equal to that
of the selected branch. This is done efficiently by
maintaining two lists A1 and A2 of changes made
to C1 and C2 since the start of the two branches.
Then, if C1 is selected, we can use A to first
convert C2 back to its initial state and then use
to convert it from the initial state to C1. If C2 is
selected, a similar process can be used to convert

C1 to C2, The time need for this is IAI+IAzl
rather than Cll IC21 rn (as would be the case
if we simply copy C1 to C2 or C to

Further, since the forcing lists are shared by two
branches, these branches should not modify the
forcing lists. Therefore the simulation of Assign
omits the steps that remove forcing lists. Finally,
to efficiently simulate two parallel executions of
Assign, we need to convert the recursive version of
Figure 3 into an iterative version. Our iterative
code which simulates the parallel execution of two
Assign branches employs two queues Q1 and Q2.
A high level description of the code is given in
Figures 5, 6 and 7.

3.4. Time Complexity

To construct the net span constraints’ portion of
the forcing lists, we must identify the up to four
critical modules of each netand establish the forc-
ing constraints for each of the up to four critical
module pairs that determine the net span. The
critical modules for all nets can be determined in
O(p) time by making a left to right sweep of the
modules, keeping track, for each net i, of the first
and last modules in the top and bottom module
row that contain net i. Since all pin locations and
module boundaries are integers, the modules can
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Algorithm Satisfy (L,
/* Test whether L is satisfiable */
Copy C into C;
for 1 to rn do

if Cl[i] 0 then/* is undecided */
if L[i] is empty then

C[i] C2[i] 1;/* select first implementation */
else if L[m + i] is empty then

C[i] C2[i] 2;/* select second implementation */
else
EnQueue (Q,
EnQueue (Q2, m + i);/* m + i represent the 2nd implementation of module */
while Qx not empty and Q2 not empty do

a DeQueue (Q);
b DeQueue (Q2);
if a is rejected in C1 and b is rejected in C2 then

return False;
else if a is rejected in C1 then
EnQueue (Q, a);
if not Search (L, Q2, C2, A2, b) then

return False;
else if b is rejected in C2 then
EnQueue (Q2, b);
if not Search (L, Q, Cx, A,a) then

return False;
else

if a is undecided in C1 then
Add List L[a] into Q1;
Insert a into zi;
Mark a selected in C;

if b is undecided in C2 then
Add List L[b] into Q2;
Insert b into zl2;
Mark b selected in C2;

end while/* Q not empty and Q2 not empty */
if Q is empty then

Undo (C2, A2, Ci, ill);/* make C2 Ci */
else/* Q2 is empty */

Undo (Ci, Ai, C2, A2); /* make Ci C2 */
end if/* L[i] is empty */

end if/* module i is undecided */
end for
return True;

FIGURE 5 Function satisfy.
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Algorithm Search (L, Q, C, A, x)
/* Select module x and modules in Q and related modules, update list A */
Mark x selected in C;
Insert x into A;
Add List L[x] into Q;
while Q not empty do

y DeQueue (Q);
if y is rejected in C then

return False;
else if y is undecided in C then
Add List L[y] into Q;

else/* y is rejected in C */
Insert y into A;
Mark y selected in C;

end while
return True;

FIGURE 6 Function search.

Algorithm Undo (C, Ax, C2, A2)
/* make C = C2 by using delta lists */
for each x Ax do
Mark x undecided in C1;

for each x A2 do
Mark x selected in C;

FIGURE 7 Procedure undo.

be sorted in left to right order in linear time using
bin sort [13]. Each net’s contribution to the forcing
lists can now be determined in 19(1) time. There-
fore, representing each L[i] as a chain, the net span
constraints’ contribution to the L[t]s can be deter-
mined in O(p + n) O(p) time.
To construct the portion of L[t] that results from

the channel density constraint, we partition the
channel into regions by performing a left to right
sweep of the modules and using the module end
points as region boundaries. The number of chan-
nel regions is, therefore, O(m). In our implementa-
tion, we scan the channel four times to compute
the maximum density of each region for each of
the four possible implementations of the module
pair that bounds the region. This takes (p) time.
Once we have the densities of each region we can,

given the density constraint, construct the forcing
lists L[1..2m] in O(m) time. Notice that on
succeeding iterations of the binary search for an
optimal solution, only the contribution to L from
the density constraint may change. The new con-
tribution to L can be determined without recom-
puting the densities of each region.
The limited branching method of Stage 2 uses

two queues Q1 and Q2. The time needed to add
(EnQueue) or delete (DeQueue) an element to/
from a queue is O(1) [13]. In each iteration of the
for loop of Figure 5, the time spent following the
successful branch equals that spent following
the unsuccessful branch and the time needed to
make C1 and C2 identical (i.e., the cost of the
Undo operation) is, asymptotically, no more than
the time spent following the successful branch.
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The time spent following all successful branches is
no more than the size of the forcing lists because
no forcing list is examined twice. Therefore, the
Stage 2 time is O(p).
The binary search for the minimum density

solution iterates O(log n) times. Therefore, our algo-
rithm finds an optimal solution to the 2-PDMIS
problem in O( p log n) time.
Comparing our algorithm to that of [1], we note

that our algorithm has the potential of identifying
infeasible 2-PDMIS instances quite early; that is,
during the construction of the forcing lists. Al-
though infeasibility resulting from the critical mod-
ules of a single net being too far apart are detected
immediately by both algorithms, our algorithm
also can quickly detect infeasibility resulting from
forced selections during Stage 1. The algorithm
of [1] does not do this. Because of the calls to
Assign made during Stage 1, the size of the forcing
lists to be processed in Stage 2 is often significantly
reduced. As a result, the limited branching opera-
tion is often applied to much smaller data sets
than the 2-SAT graph on which the strongly con-
nected component algorithm is applied in [1].
These factors contribute to the observed speedup
provided by our algorithm relative to that of [1].

number of pins. These lists are developed using
ideas similar to those used in Section 3. Then,
using the limited branching method of Section 3,
we can determine, in O(p) time, whether it is
possible to select module implementations so that
the channel densities do not exceed (d, d2,..., d)
and so that the net span bounds are satisfied.
Thus, the method of Section 3 is easily extended to
obtain an O(p) feasibility test for (dl, d2,..., d).
Since there are O(n) possible density vectors (n
is the number of nets), the c channel 2-PDMIS
problem can be solved by trying out all O(n)
tuples in O(pn) time.
We can reduce this time to O(pn-1) as follows.

When c 2, first determine the least y such that ((n/
2), y) is a feasible channel density tuple. This is done
using a binary search on d2 and takes O(log n)
feasibility tests, each test taking O(p) time. We can
ignore tuples (dl, d2) with dl < (n/2) and d2 < y
because these tuples are infeasible, and we can
ignore tuples (d,d) with da > (n/2) and dz>_y
because these are inferior to ((n/2), y). Therefore, the
search for a better tuple than ((n/2),y) may be
limited to the regions dl < (n/2) and d2 >_ y, and d >

(n/2) and d2 < y. These two regions (Fig. 8) may
now be searched recursively. For example, to find
the best tuple in the region da < (n/2) and d2 > y,

4. MULTICHANNEL 2-PDMIS PROBLEM

In the multichannel 2-PDMIS problem, we have
c + 1, c > rows of modules. Each module has
pins on its upper and lower boundaries, each
module has two possible implementations, there is
a routing channel between every pair of adjacent
rows, and net span bounds are provided for every
channel [1]. Although Her, Wang and Wong [1]
develop a heuristic for the general multichannel
PDMIS problem, they do not consider polynomial
time algorithms for the multichannel 2-PDMIS
problem.
For any fixed channel density tuple (dl, d2,..., dc)

for the c routing channels, we can develop the
forcing lists in O(p) time, where p is the total

d2

eliminate

dl

FIGURE 8 The two regions to be searched recursively after
the binary search.
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find the least z such that ((n/4), z) is feasible. Now
search the two regions dl < (n/4) and d2 > z, and
dl > (n/4) and d2 < z. for a better tuple than ((n/
4),z).
The worst-case number of feasibility tests for the

above search strategy is given by the recurrence

N(n)=2N - +logn, n>2

and N(1)= 1. The solution to this recurrence is
N(n) O(n). Since each feasibility test takes O(p)
time, the 2-channel 2-PDMIS problem can be
solved in O(pn) time.
By doing an exhaustive search on the densities

of c- 2 channels and using the above technique
for the remaining 2 channeIs (i.e., for each choice
of densities for c- 2 channels, find the overall best
choice for the c channels as above), we can solve
the c-channel 2-PDMIS problem in O(p. nc-2. n)

O(pnc-1) time.

5. EXPERIMENTAL RESULTS

We implemented our algorithm as well as that of
Her, Wang and Wong [1] in C and measured the
run time performance of the two algorithms on a
SUN SPARCstation 5. Our first data set consists
of benchmark channels used in [1]. We partitioned
the top row and bottom row of the channel into
intervals and consider these intervals as "mod-
ules", and assume each module has two imple-
mentations. Table I gives the characteristics of
these circuits as well as the time, in seconds, taken
by the two algorithms. The optimal densities given
in Table I differ from those reported in [1] because
the partitioning of the top and bottom rows of
pins used by us is different from that used in [1].
The speedup provided by our algorithm ranges
from 1.67 to 2.20. Our second data set consists of
circuits designed to minimize the size of the forcing
lists constructed in Stage 1. The characteristics of
these circuits as well as the performance of the two
algorithms on these two circuits are given in Table
II. Our algorithm is 9 to 11 times as fast on these
circuits.

Channel n

TABLE Running time for benchmark channels

rn p Optimal

density [1]
Time/second

Our Speedup

exl 21
e x 3a 44
e x 3b 47
e x 3c 54
e x 4b 54
ex5 64

19 74 12 0.0022
36 158 14 0.0046
24 158 16 0.0035
23 178 18 0.0039
28 192 17 0.0045
40 190 18 0.0042

0.0010
0.0023
0.0021
0.0023
0.0024
0.0025

2.20
2.00
1.67
1.70
1.88
1.68

Channel

TABLE II Running time for generated channels

m p Time/second
[11 Our Speedup

w32 x 32
w64 x 64
w128 x 128
w256 x 256
w512 x 512
w1024 x 1024
w2048 x 2048
w4096 x 4096
w8192 x 8192

64
128
256
512
1024
2048
4096
8192
16384

66 192 0.0425 0.0046
130 384 0.0999 0.0105
258 768 0.2275 0.0225
514 1536 0.5130 0.0487
1026 3072 1.1755 0.1066
2050 6144 2.6150 0.2309
4098 12288 5.6700 0.4886
8194 24576 12.0500 1.0280
16386 49152 24.8800 2.1260

9.24
9.51
10.11
10.53
11.03
11.33
11.60
11.72
11.70
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6. CONCLUSION

We have developed an O(p log n) time algorithm
for the single channel 2-PDMIS problem and an
O(pnc-1) time algorithm for the c, c > 1, channel 2-
PDMIS problem. Experiments indicate that our
single channel algorithm is substantially faster than
the single channel algorithm of [1]. The heuristic
proposed in [1] for the k-PDMIS problem, k > 2,
uses the algorithm for the 2-PDMIS problem. By
using our 2-PDMIS algorithm, the k-PDMIS
heuristic of[l] will also run faster.
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