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Important layout properties of electronic circuits include space requirements and
interconnection lengths. In the process of designing these circuits, a reliable pre-layout
interconnection length estimation is essential for improving placement and routing
techniques. Donath found an upper bound for the average interconnection length that
follows the trends of experimentally observed average lengths. Yet, this upper bound
deviates from the experimental value by a factor § ~ 2, which is not sufficiently accurate
for some applications. We show that we obtain a significantly more accurate estimate by
taking into account the inherent features of the optimal placement process.
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1. INTRODUCTION

The production of VLSI and ULSI computer chips
requires the layout (placement and routing) of the
(logical) chip design onto a physical carrier. With
the advent of high level description languages such
as VHDL, with the extensive use of component
libraries, and with the standardization of produc-
tion parameters, more and more steps in the design
cycle are being automated. In the early days of
chip design, designing a chip manually was still
feasible. Nowadays, computer aided design (CAD)
tools are indispensable to cope with the complexity

and the limited time resources. For the placement
and routing phases, the quality requirements are
particularly stringent. For the results of these
phases to be good enough, accurate predictions of
relevant post-layout circuit properties are an
absolute necessity to limit the search in the vast
solution space. Hence, CAD tools use estimator
tools [1—-4], usually based on partitioning meth-
odologies [5].

The main circuit parameters that have to be
estimated are the interconnection length in the
placed design, area occupancy, attainable clock
frequency, power dissipation, and (especially for
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some types of gate arrays) channel densities. The
estimation is intended to be performed before the
circuit is actually placed (a priori estimation) and is
then used to obtain better layouts [3]. The esti-
mates also provide deeper insight in the placement
properties of circuits on different carriers, e.g.,
three-dimensional architectures, where optical
channels could be used for the third dimension
interconnections [6—8]. The possibilities of such
architectures can be explored without the need to
actually build the systems.

With physical feature sizes decreasing rapidly,
the time delay of electrical signals travelling in the
inter-connect between active devices and gates is
approaching and even surpassing the delay
through the devices and gates. The estimation of
the interconnection length early in the design cycle
therefore gains importance as an aid for floor-
planning, placement, and routing tools. The
accuracy of the estimates is of crucial importance
to the final design result. A priori interconnection
length estimation will become an essential step in
designing systems that have to meet stringent
performance criteria.

There have been a few attempts to predict
interconnection lengths. A first upper bound for
interconnection lengths has been found by Suther-
land and Oestreicher [9]. Since it is based on a
random placement, it yields excessively large
estimates. Donath [1,10] found that a hierarchical
placement technique gives much better intercon-
nection length estimates and his results have been
used by several other researchers [3,11-15].
Recently, Van Marck and Stroobandt have exten-
ded Donath’s technique to three-dimensional and
anisotropic architectures [7,8], Stroobandt and
Kurdahi have included models for multi-terminal
nets [16, 17], and Stroobandt has added the esti-
mation of external interconnection lengths [18].
Comparable work has been done by Ozaktas [19],
who investigates optical architectures, based on
interconnection models. Independently from Do-
nath, Masaki and Yamada [20] derived the same
interconnection length distributions and added
three-dimensional extensions. Davis er al. [15]

calculated Donath’s wire length distribution in
somewhat more detail.

Almost all recent papers on wire length esti-
mates are based on Donath’s pioneering research.
They produce the same valuable results but they
also have the same deficiencies. Donath estimates
the average interconnection length using a model
for the interconnection complexity of the circuit,
known as Rent’s rule [21]. Experimentally mea-
sured average interconnection lengths vary with
the number of logic gates in a circuit and with the
interconnection complexity of the circuit. Donath
found that his theoretically obtained average
interconnection length values appeared to follow
these variations [1]. However, Donath’s calculated
average interconnection length and the actual one
still differ by a factor 6=2. His method indeed
results in an upper bound for the average inter-
connection length. We would like to estimate the
average interconnection length more accurately.
Therefore, it is important to understand the under-
lying mechanisms that cause the overestimation in
Donath’s calculation.

In this paper, we show that the discrepancy
between the theoretical estimates and the experi-
mentally measured values is primarily due to the
lack of accuracy in the placement model used by
Donath. We consider this issue in Section 4, and in
Section 5, we present a way to introduce a new
placement model efficiently. This leads to a better
estimation for the average interconnection length
(Section 6), as will be verified experimentally
in Section 7. But first, we explain the circuit
model and the key issues of Donath’s placement
technique.

2. MODEL FOR THE CIRCUIT,
THE PARTITIONING PROCESS,
AND THE PHYSICAL ARCHITECTURE

A circuit can be represented by a set of inter-
connected blocks as in Figure 1 (the blocks can be
the representation of transistors, gates, or even
entire circuits). An interconnection between blocks
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FIGURE 1

Model of a circuit.

is called a net. A net that is connected to more than
two blocks is called a multi-terminal net. Some of
the nets are also connected to the outside of the
circuit. These are called external nets (as opposed
to internal nets which only connect to blocks
within the circuit). In order to model these external
nets properly, we introduce a new kind of block
and call it a pin. A pin models the external terminal
for the net. The other (internal) blocks are called
logic blocks. Every external net is connected to
exactly one pin. Note that the number of pins thus
equals the number of external nets.

Partitioning a circuit means dividing this circuit
into disjoint subcircuits (called modules), each
containing a subset of the blocks (Fig. 2). This
partitioning is guided by some kind of criterion.
Generally, the criterion is to minimize the number
of nets crossing the borders of modules in the
partition. Nets that are cut by module boundaries
are shared between two or more modules and are
said to be external to the modules. Therefore, the

O Logic block
o Net

o Pin

Module

FIGURE 2 Partitioning the circuit of Figure 1 into modules.

net is split into a number of subnets, one for each
module that shares the net. A new pin is assigned
to each subnet. Each module can then itself be seen
as a circuit and can be partitioned further. A
partitioning process where the modules themselves
are recursively partitioned is called a hierarchical
partitioning method.

In partitioned circuits, a relationship exists
between the number of elementary blocks B in a
module and the number of the module’s external
connections (pins) P. It is known as Rent’s rule
[21]:

P=T,B" (0<r<l, (1)

where T, is the average number of terminals per
elementary block and r is called the Rent expo-
nent. This exponent is a measure of the intercon-
nection complexity of the circuit [19]. Its value
increases for increasing interconnection complex-
ity. Generally, r varies from around 0.5 for simple
regular circuits (such as Random Access Memo-
ries), up to 0.75 for complex circuits (such as fast
full custom VLSI circuits) [22]. The validity of
Rent’s rule is related to the fact that designers tend
to build their circuits hierarchically, roughly ex-
hibiting the same complexity at each level of hier-
archy. Rent’s rule seems to apply to nearly all
circuits. Figure 3 shows the results of a circuit

100 T
ISCAS89 benchmark ‘s953'

average 1-,
Rent's rule

1 10 100 1000
B

FIGURE 3 Number of pins P versus number of blocks B for
every partition during the ‘ratiocut’ partitioning of the
ISCAS89 benchmark circuit ‘s953’, compared to Rent’s rule.
The size of the circles corresponds to the percentage of modules
that has P pins and B blocks in a pool of modules around an
average number of blocks.
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partitioning according to the ‘ratiocut’ partition-
ing method [23]. Rent’s rule can be observed easily
(especially when considering the average values)
and the Rent exponent is found to be 0.68.

The model for the circuit alone does not enable
us to estimate interconnection lengths since these
only get their meaning after the placement of the
circuit in a physical architecture or carrier. The
physical architecture often is a regular structure (in
gate arrays and standard cell layout) or can be
modelled as one (as a first order approximation).
We therefore model it as a square (part of a)
Manhattan grid (Fig. 4(b)). In this grid, each
gridpoint (cell) corresponds to a location where
one logic block of the circuit can be placed. The
gridlines correspond to the channels in which the
connections between the gates can be routed. All
lengths are thus measured using a Manhattan
metric.

3. DONATH’S TECHNIQUE

3.1. Hierarchical Placement

Donath’s technique to estimate the average inter-
connection length is based on a hierarchical
placement of the circuit into a square Manhattan

grid [1]. The circuit is partitioned hierarchically
into subcircuits. Each subcircuit at a hierarchical
level consists of four subcircuits (of equal size) at
the next (lower) level of hierarchy (Fig. 4 (a)). We
thus assume that the number of gates in the circuit
is a power of 4 (there are 4% gates, with K the
number of hierarchical levels). The circuit is placed
in a square Manhattan grid, which is also
partitioned into four subsquares of equal size
(Fig. 4(b)).

In Donath’s partitioning and placement scheme,
each subcircuit is assigned recursively to a sub-
square until all gates are assigned to exactly one
grid location. The recursion levels will be num-
bered K—1 (four subcircuits that constitute the
entire circuit) down to 0 (four subcircuits consist-
ing of only one logic gate). Note that external in-
terconnections are not included in the estimations
(these interconnections belong to level K and are
considered in [18]).

The partitioning of the circuit into four sub-
circuits of equal size should be done in such a way
that the partition satisfies Rent’s rule. That is, we
want to keep the number of interconnections
between the subcircuits as small as possible. This
is a necessary condition if we want our placement
scheme to be a good model for the optimal
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FIGURE 4 Recursive partitioning scheme of the circuit (a) and the physical architecture (b).

!The deviation from Rent’s rule at the partitioning levels with very large module sizes is explained in [21, 24]. In this paper, we will

not elaborate on this issue.
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placement of the circuit. We define an optimal
placement as one that minimizes the total inter-
connection length. It is indeed obvious that such a
placement tries to place densely interconnected
logic gates as close as possible, resulting in clusters
of such gates. Among clusters, there are fewer
interconnections. A placement scheme that keeps
the number of interconnections between the
subcircuits as low as possible thus leads to many
short interconnections and few long ones. This
behaviour is modelled accurately by the module
pin numbers following from Rent’s rule.

3.2. Average Interconnection Length

Given the above model for the circuit, the physical
architecture and Donath’s placement, we want to
find the average interconnection length. We can do
this by calculating the average number of inter-
connections N; and the average length of the
interconnections /; at every hierarchical level k
(0 <k < K—1). The average interconnection length
L (in number of cell pitches), computed over
all hierarchical levels, is then given by

~Zo Nicli
= TRy (2)
k=0 Nk
The computations of N, and /; are performed
for point-to-point interconnections only (as in [1]).
This simplification is based on the knowledge that
these nets outnumber all other nets in circuits and
that multi-terminal nets can be modelled as a
collection of point-to-point nets by pairwise
connecting some of the net terminals until a path
exists between every pair of terminals (possibly via
other terminals). This simplification somewhat
shortens the average wire length but it does not
have too much influence on the average values
computed in this section. In [16,17], Stroobandt
and Kurdahi present a possible way of including
multi-terminal nets into the calculations. In order
to keep the reasoning clear, we will not consider
this extension in this paper.

The expected number of interconnections at
each level of the hierarchy can be calculated using
Rent’s rule and can be seen to be [1]

Ni = T, 45(1 — 4771) 4500, 3)

where, according to Donath, o= 1/2 more or less
models the presence of multi-terminal nets.

We now seek to find the average interconnection
length [, for point-to-point interconnections at
hierarchical level k. The interconnections belong-
ing to hierarchical level k are those interconnec-
tions between logic blocks belonging to the same
(k+1)-th level hierarchical subcircuit, but to
different k-th level hierarchical subcircuits. Those
interconnections thus connect two gates placed in
different squares at hierarchical level k. Only two
different combinations are possible: either the
squares are adjacent or they are diagonally oppo-
sed (Fig. 5). We will call the first combination an
A-combination, the second one a D-combination.
For each of these combinations, we compute the
average interconnection length (denoted as /. , for
A-combinations, /;_;for D-combinations). For this,
it is assumed that the starting points and the end-
points of the interconnections between two squares
are uniformly distributed over those squares
(from now on, we indicate starting points and
endpoints of interconnections as interconnection
points). The enumeration of all possible lengths
(distances between interconnection points) for the
two combinations on every hierarchical level k,
is straightforward. The distributions are given
by [14]

i%a&u (0<i<))
213~12,\12+(2;1\\j—2)’—9”+ A (A<I<2))
Sk,a(l ) = (4)
_13+9>\]2__(27§\)2\4—1)I+27)\3—3)\ (2)‘ S l < 3)\)
0 otherwise
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FIGURE 5 Two possible combinations at a hierarchical level k&: an A-combination (a) and a D-combination (b).

for an A-combination, and

& 0<I<))

_3p 2 2_ 3_
3P +120 (162)% 3)I+4X° -4\ ()\Sl<2)\)

3 _ 2 2__ . 3
3824\ +(606/\)‘4 3)I—44)3+8) 2A<1<3)\)

Ska(l) =

«13+12>\12—(486/}\i*1)1+64)‘3_4)‘ (BA<I<4))

0 otherwise
(5)

for a D-combination. In these equations, the
squares have size \*> (Fig. 5) with \ = 2%,

The expected value for the average length in a
certain combination at a hierarchical level k£ then
equals (with Ce {a,d})

40
ol Sk c(l
c = ;lﬁi_(l (6)
1=0 Sk,C(l)
and results in
43 1
lka= RS (7)

A Square 1

Iea =2\, (8)

with A = 2¥. A more efficient way of calculating
these average wire lengths makes use of generating
polynomials and is presented in [25].

Since there are four A-combinations and two D-
combinations, the total average interconnection
length /; at the hierarchical level k is given by

Al + 2]
lk=‘L6'“ﬁ~ 9)

Combining Eq. (2) through 9 yields

_ 14H(K,r,1) — 2H(K,r1,3)

9H(K,r,2) ’ (10)
with
2K(2r—x) -1
H(K,V,X):W. (11)

Note that this function should be extended
continuously in the singular point r = x/2.

3.3. Asymptotic Behaviour

The calculations from the previous section show a
different scaling behaviour for different Rent
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exponents. With the total number of logic blocks
(or gates) G equalling 4%, the scaling behaviour is
given by

L~G3, r>05
L~log(G), r=05 (12)
L~ f(r), r<0.5

where f(r) is independent of the number of blocks
G. The Rent exponent thus plays an important
role. For complex circuits (r > 0.5), the average
length increases with the size of the circuit,
whereas it is independent of circuit size for circuits
of modest complexity (r < 0.5).

4. A CRITIQUE OF DONATH’S APPROACH

Donath reported a good resemblance between
theoretical and experimental scaling behaviour but
a more or less constant deviation between theory
and experimental results of a factor of approxi-
mately 2 [1] (see Fig. 6). In order to be able to
predict interconnection lengths more accurately, it
is important to understand the underlying reasons
for this.

Donath’s estimation technique is primarily
based on his hierarchical placement scheme. Every

8

10 100 1000 10000
G

FIGURE 6 Comparison between Donath’s average wire
length L, and experimentally measured average wire lengths
Ly, for circuits of varying size (according to the data provided
by Donath in [1]).

hierarchical level is treated separately without any
knowledge on the length of interconnections from
other levels of hierarchy. Donath simply assumes
that the interconnection points are uniformly
distributed over the gates of the square grid. It
is nevertheless clear that an optimal placement
strategy will place interconnected logic gates as
close as possible, regardiess of the hierarchical
level the interconnection belongs to. This means
that an optimal placement procedure will place
gates that are interconnected to a gate of another
square (at level k) preferably near the (common)
border of the two squares (as shown in Figs. 7 and
8 for the two combinations; the darker the zone,
the higher the number of interconnection points).
Consequently, the interconnections at lower levels
(e.g., k—1) will be placed at the center of the
square at level k£ which is, again, the border of a
square at level k— 1. This clearly represents the
optimal placement behaviour. Donath’s technique
does not take full account of this information. On
the contrary, the assumption of a uniform distri-
bution of interconnection points models a random
placement at each level. The average intercon-
nection length found by Donath therefore remains
an upper bound for the real value.

5. REFINING DONATH’S MODEL

5.1. Definitions

We define an interconnection length distribution as
a collection of values, indicating, for each length /,
how many interconnections have this length. The
sum of these values over all lengths / equals the
total number of interconnections. The normalized
distribution denotes, for each length /, the fraction
of interconnections that has length /. The global
distribution is defined as the interconnection length
distribution of the entire circuit. The global dis-
tribution contains information about all intercon-
nections considered together. At each hierarchical
level, we can also define a local distribution. Such a
distribution only contains information about
interconnections at a specified hierarchical level.
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Square 1 Square 2

FIGURE 7 The placement of interconnection points in an A-combination (darker zones contain more points).

Square 1

Square 2

FIGURE 8 The placement of interconnection points in a D-combination (darker zones contain more points).

5.2. Stochastic Model of the Placement Process physical architecture (Manhattan grid). Each pair
represents a connection to be routed. Both the
number of pairs N and the exact value of their
coordinates (P;,Q;) can be considered random

A physical placement of a netlist® is a list of N
pairs of points Py = ((P1,Q1), ..., (Py,0Op)) in the

2Again, we only consider point-to-point nets.



HIERARCHICAL PLACEMENT 9

variables; Py is a stochastic process. The joint
distribution of N and Py follows from the choice
of a circuit out of the pool of all “meaningful”
circuits and an optimal (possibly randomized)
placement into the physical architecture.

Once the list Py is known, both the wire lengths
and the hierarchical level in Donath’s partitioning
model are fixed: they are functions of Py through
the length distribution of the architecture. We can
thus write the length of a connection (P;, Q;) as
L(P;, Q)2 L, The hierarchical level K(P;, 0)) 2 K;
also follows from the actual places of P; and Q; in
the Manhattan grid.

We assume that the precise order of the elements
of Py is not important and we limit our scope to
circuits with a preset number of connections N. On
the basis of this assumption, we can assume that
the distribution of the first connection (Pi, Q)
characterizes the other interconnections (this does,
however, not imply statistical independence be-
tween pairs). Finally, we implicitly assume that the
process Py = ((P1,01),-- -, (Pn, On)) possessescer-
tain ergodic properties so that, for instance, the
distribution of L (Py, Q1) can be estimated from the
statistics of (L(Pl, Ql), L(Pz, Qz), ey L(PN, QN))
ofa “typical” circuit, valid for the entire population.
For N large enough, the expected values of the
observed statistics for the interconnection length
distributions are good estimates for the intercon-
nection length distributions themselves.

The global normalized wire length distribution
&) of a circuit, placed in a Manhattan grid, can
then be estimated by the probability distribution
of L;

& =P{L(P\,01) = I} (13)
and the global wire length distribution D; by

Dy = N& = NP{L(P\,Q1) = I}. (14)

The local normalized wire length distribution
(denoted by M) is the conditional distribution

Mk,lzP{L(PvaI)=I|K(P1aQ1)=k} (15)

and the local wire length distribution Ly ; at level &
can be calculated by multiplying the normalized
distribution by the expected value of the total num-
ber of interconnections at level k (denoted as Ny).
This expected value is given by

E[N] = NE[%] —NP{K =k}, (16)

which results in

Li = E[NJMy,

— NP{L(PL, ) = LK(P1, @) =k} )

5.3. Structural Distribution and Occupancy
Probability

Donath’s method for wire length estimations [1] is
based on the enumeration of all possible inter-
connections (pairs of points) in each adjacent
combination and each diagonal combination and
on all hierarchical levels. This way, one obtains a
wire length distribution that only depends on the
physical architecture the circuit will be placed in.
We will call this distribution the structural
distribution [26]. The distributions Sk, and Skg,
calculated in Donath’s method (Section 3), are the
normalized structural distributions for a square
Manbhattan grid.

We can also assign to each pair of points the
probability that an interconnection between the
two points will be effectively laid out in an optimal
placement of the circuit with preset Rent exponent.
This is what we call the occupancy probability.

Let A be the set of all points in a square (finite)
subregion of the Manhattan grid. The structural
distribution S(I) is then determined by the enu-
meration of all pairs (p, ¢) in the Manhattan grid,
a distance L(p,q) = [ apart. If we call this set of
pairs N (/), then the structural distribution is given
by the number of elements in that set

S(I) =N (18)
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with
NO={(pge AxA:L(p,q)=1}. (19)

The occupancy probability of a pair of points (p, q)
is the probability that the pair will effectively be
connected by a wire in an optimal placement of the
circuit in the physical architecture, and this prob-
ability is given by

Ppq =P{(P1,0Q1) = (p,9)} (20)

We can now write the global wire length
distribution D;, normalized on the total number
of interconnections N, as

% = P{Li = I} = P{(P1, Q1) € N(1)}

= Z P{(PlaQI):(p’q)}'

Since we only consider the wire length as
criterion for an optimal placement, we can assume
that P {(Py,01) = (p,q)} only depends on the
length L(p, q) but not on the precise location of the
points p and ¢. If we denote an arbitrary pair (p, q)
with L(p,q) = [ as (p, q);, then follows

% =P{(P1,0) = (p,q))} D> 1

L(pyq)=l

The factor P{(P;, Q1) = (p,q);} is the occupancy
probability of the pair (p,q);. As it only depends
on the length, we denote it as f(/). The second
factor on the RHS of the equation is the number
of pairs with length [/, available in the physical
architecture. This factor thus equals the structural
distribution S(/). Therefore we can write

£1="2= 1) SO (21)

By changing the distribution function of the
interconnection points we actually change the
occupancy probability f(/) for pairs of points,
i.e., the probability that a pair of points in the
Manhattan grid would be connected in a real
placement procedure. We know that an optimal

placement prefers shorter interconnections over
longer ones. It thus seems acceptable to assume
that most point pairs at the shortest distance will
be occupied and less at longer distances. Intui-
tively, we expect the occupancy probability to be a
monotonically decreasing function of the wire
length. On the other hand, we should also consider
the fact that the interconnection complexity of the
circuit restricts the possible choices so that not all
interconnections can have the shortest length. It is
not possible to place interconnected logic blocks
close to each other if other blocks have already
taken those positions. These restrictions increase
for circuits of higher complexity. The occupancy
probability therefore should depend on the Rent
exponent in such a way that it decreases less
(more) rapidly when the Rent exponent is larger
(smaller). In the next section, we will suggest a
possible expression for the occupancy probability.

5.4. Global Occupancy Probability

In [10] and [14], simple theoretical considerations
are used to indicate that the normalized distribu-
tion &; of interconnection lengths for a good two-
dimensional placement in a square Manhattan
grid should be of the form

gl ~ Cer—3 (1 < / < lmax)
~0 (1> Ina)- (22)

In this equation, C is a normalisation constant and
Imax 18 @ constant related to the size of the square
grid. In [3], Stroobandt et al., showed that the
trend of & (Eq.(22)) mainly depends on the
number of interconnections N, (given by Eq. (3))
at each hierarchical level and not on the way these
interconnections are distributed locally (i.e., per
hierarchical level).

Using Egs.(21) and (22), we can derive an
approximated equation for the occupancy prob-
ability. Note that the approximation must be most
accurate for small values of / since these occur
most frequently and dominate the distribution.
The structural distribution S(/) can be found by
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the enumeration of all possible point pairs of
length / and is given by [4]

(A2 (I=0)

21(6X*—6IX+12—1) (0<I<N)
S(l)=4

22A—1-1)2A=D(2A—1+1) (A<I<2))

L0 otherwise

(23)

It can be seen that the structural distribution
increases linearly with / for small values of /. This
can also be verified from Figure 9. We thus ap-
proximate the structural distribution by a distribu-
tion proportional to /. Therefore, the occupancy
probability can be approximated by

n_ D P s
f(l)—m~c T =¢l (24)

with C a normalization constant. This occupancy
probability obeys the requirement of a monotoni-
cally decreasing function of the wire length. It also
takes into account the restrictions imposed by
Rent’s rule: the occupancy probability decreases
less rapidly for higher values of r. Indeed, finding
the placement of a complex circuit is a lot more
difficult than finding the placement for a circuit

0.01

Structuraldistribution — .
Initial slope — ~ .

0.001

0.0001

0.00001

0.000001 * > +
1 10 100 1000 10000
Distance betweencells

FIGURE 9 The normalized structural distribution of a
Manbhattan grid of 1000 x 1000 cells in a log—log plot.

1

Wirelength distribution ——
0.1 F Scalingbehaviour j2r-3 — - |

1e2 f

1e-5 | I~
1e-6 | ~ {
1e-7 f

1e-8 | 1

1e-9 + + il
1 10 100 1000
Wirelength

10000

FIGURE 10 The global wire length distribution as a result of
weighing the structural distribution by the occupancy prob-
ability for a Manhattan grid of 1000 x 1000 cells.

that is less complex. The placement results in
longer wires in the first case than in the second.

The approximation of the structural distribution
(proportional to /) introduces a huge overestima-
tion of the number of wires with length [/ > \/2
(with ) the side of the Manhattan grid). The result
of this overestimation is an underestimation of the
occupancy probability for these wire lengths. Yet,
we should note that

1. the number of wires with such lengths is negl-
igible compared to the total number of wires;

2. the global wire length distribution only follows
P"=3 until a certain value /, smaller than the
maximum distance in the grid; for greater
lengths, the distribution decreases much more
rapidly (see Eq. (22)).

Figure 10 shows that, conversely, the global
distribution, found as the product of the (approxi-
mated) occupancy probability with the structural
distribution, follows the behaviour observed by
Donath (Eq. (22)), even for large values of /.

5.5. Local Occupancy Probability

The local wire length distribution on each hier-
archical level can also be expressed as the product
of the structural distribution at that level and an
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occupancy probability. We can write the local wire
length distribution £y ; (normalized on N) as

%:P{L(PMQI) = l,K(Plle) = k}
= Y P{(P1,01) = (p,9)}. 29
L(p.g)=l
K(pg)=k

Also within one level, the wire length remains the
only criterion for an optimal placement, so we can
still assume P{(P, Q1) = (p, q)} to only depend on
the length L(p, ¢), and not on the precise location
of p and g. We now denote an arbitrary pair (p, q)
with length L(p,q) =1 at level K(p,q) =k as
(p, @)1, and we denote the set of all pairs at level
k that have length / as N (/). This then leads to

Lut _ P{(P1,01) = (P, )1 WD)

N
=F(DSk(D). (26)

The factor P{(P1, Q1) = (p,9)«} is the occupancy
probability of a pair (p,q), . Since we assumed
that it only depends on the length of the intercon-
nection, it is also given by f(/). The second factor
is the number of pairs (connections) at level k
with length / and thus equals the local structural
distribution Sk(/).

Donath implicitly assumes a uniform occupancy
probability (all pairs have equal probability of
being ‘occupied’): P{(P1,01) = (p, @)z} is inde-
pendent of p and g (and thereby also independent
of the length and the level). For the local normal-
ized distribution Mﬁ ; this means, according to
Donath,

MR, = P{L(P1,Q1) = [|K(P1, Q1) = k}
P{L = 1,K, =k}
T PKi =k}
Z;%; P{(P1,01) = (p,9)}
B ZK(p,q):kP{(Pl’Ql) = (p,Q)}
__P{(P1,01) = (P, Q}INi (D)
P{(P1,01) = (P, @)} 21 Nk(D)]
S
CSe()

(27)

The normalized local wire length distribution in
Donath’s method thus equals (as we already know
from Section 3) the normalized structural distribu-
tion.

We already observed Donath’s model not to be
a good model for an optimal placement within one
hierarchical level. Therefore we introduce, at each
hierarchical level, our non-uniform occupancy
probability f(/) = C?"~* for each separate pair
of points (p, q);, . In the next section, we calculate
the average wire length by making use of this
occupancy probability f(/).

6. NEW AVERAGE WIRE LENGTH

We assume that all local occupancy probabilities
are given by f(I) = CP ~* (Eq. (24)). That way,
we introduce information on the optimal place-
ment of the entire circuit in each hierarchical level.

The local distribution at hierarchical level & is to
be found by weighing the structural distribution
Sk,c (Ce{a,d} Eqgs.(4) and (5)) with the occu-
pancy probability f(/) = C*~* (Eq. (24)). The
expected value for the average length in a certain
combination at a hierarchical level k then equals
(with Ce{a,d})

_ Stk Becf () 2
4 TR Seer () %)
_ 2 Sk (29)

?io Skc(DPr—4

The average interconnection length at hierarch-
ical level k is then given by Eq. (9):

4lk,a + 2lk,d
Ik = T .

The sums in Eq.(29) can not be computed
analytically without knowing the value for X = 2%,
Yet, if we want to compare our results with those of
Donath, both numerically and theoretically, an
analytical form of the average interconnection
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length is needed. A way around this problem is to
approximate the discrete distributions by contin-
uous ones. One can easily verify that the continuous
form of the Egs. (4) and (5) is given by

( _133%\3,\12 0<i<))
LDENIN () < [ < 2))

) = G0
LA 2NN ()) <] < 3N)

0 otherwise,
and
( o 0<I<N)
—3l3+12,\l62;12)\21+4>\3 (A<I<2))
MOE 313—24,\122/\64%21—44,\3 @A<I<3N)  (31)

—l3+12A126——)\4}‘8A21+64A3 (BA<I<4))

\ 0 otherwise.

A substitution of the sums in Eq. (29) by
integrals, for a Manhattan grid with an infinite
number of points in each dimension and size A x A
for each submodule at hierarchical level k, yields

S S (DIF=3dl

kC = 104 Y Slcc,C (-4 a’ (32)
For r > 0.5, this results in
la = ARa(r) (33)
lka = ARy(r), (34)
with
Ru(r) = (2r —3) 32+ — (2r +7)2% + (4r + 5)

C(2r+1) 3 —(r+3)2%+ (4r+3) "’
(35)

(2r —3) 4% —37+1 1 322 |

Ralr) = (2r +1)42-1 —32r 4 3021 _1° (39)
and
Ik = AR(r), (37)
with
R(r) = HRalr) + 2Ra(r) (38)

6

The sum over all hierarchical levels (Eq. (2)) then
yields

_ pnHE, 1, 1)
L=R(r) HE.12)’ (39)
with
2K(2r——x) -1
H(K, r,x) = W

The integral in the denominator of Eq. (32) does
not converge at the lower bound for » < 0.5. This
means that it is fully dominated by the values
around /=0, an area where the value should
be zero in the discrete case (sums). The error
introduced by the continuous approximation then
becomes extremely high but the divergence of the
integral shows that the average length no longer
scales with ), but remains constant. We will not
elaborate on the details here. Since the conver-
gence still exists for the diagonal combination, the
average length will be fully dominated by it and it
follows that

=Rd(r)H(K>ra 1)

L="3"H&.r2)

(r<1/2).  (40)

7. DISCUSSION AND RESULTS

7.1. Scaling Behaviour

The scaling behaviour is the same as in Donath’s
technique (compare Eq. (39) with Eq. (10)). This
results from the use of the same hierarchical
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FIGURE 11  R(r) (Eq. (38)) against Donath’s factor 14/9 for
0.5<r<1. Also a numerical result based on Eq. (29) is shown.

placement model with the number of interconnec-
tions at each hierarchical level estimated by Rent’s
rule.

The main difference between our estimates and
Donath’s estimates lies in the multiplicative con-
stant (R(r) versus 14/9) (Fig. 11). The factor R(r)
increases with increasing r, corresponding to the
fact that more complex circuits (with a higher r)
tend to have longer interconnections. The value of
R(r) is approximately 7/9, which is half the value
found by Donath, for rather complex circuits with
r < 0.8. This corresponds to our knowledge that
Donath’s estimates differ from experimental values
in a factor 6=2. In all cases (0 <r < 1), our esti-
mation of the average interconnection length is
more accurate than the one found by Donath.

7.2. Comparison of Our Wire Length
Distributions with Donath’s

Figures 12 and 13 show the global distribution
(filled line) as the sum of the various local
distributions (point lines), for Donath’s method
and our method, respectively. They both follow
the expected trend /~~3 (dashed line) but our
method follows this trend better for the small wire
lengths (note that, due to the logarithmic scale, our

1 T T
Localwirelength distributions -
o1 L Global wirelength distribution — |
) Bestfittedline -----
1e-2
163 |
te4 £
1e5 b 1
166 |
1e-7 i s b Lo H AN
1 10 100 1000 10000
Wirelength

FIGURE 12 The normalized global wire length distribution,
composed of local wire length distributions, calculated with
Donath’s method.
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FIGURE 13 The normalized global wire length distribution,
composed of local wire length distributions, calculated with our
method.

overestimation of the number of nets with length 2
only seems to be much larger than the under-
estimation of the number of nets of unit length,
but that this is not the case in reality; the order of
magnitude is comparable). The improvement in
the model for the optimal placement has resulted
in boosting the local distributions for low values of
I. The fact that, even at higher levels, short
interconnections are still abundant indeed coin-
cides with the intuitive notion of an optimal
placement.
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The difference between our method and Do-
nath’s is also shown on Figure 14. Our approx-
imation obviously is much better, especially at unit
length. It is only slightly worse than Donath’s for
lengths 2. The fact that there still exists a deviation
in our method (at very small lengths) is the result
of the fact that we still treat adjacent and diagonal
combinations in the same way, although their
average lengths are not the same, especially not at
the lowest level (1 compared to 2). A differentia-
tion in the number of interconnections assigned
to adjacent or diagonal combinations would re-
quire an extension of Rent’s rule to a second order
equation. This has not been accomplished yet.

Our wire length estimation uses a better model
for an optimal placement than Donath’s model.
This can also be seen from the following thought
experiment (Fig. 15): cut the Manhattan grid in
two parts by a vertical cut. Next, count the number
of interconnections that traverse the cut, assuming
that a circuit with a given Rent exponent is placed
according to Donath’s placement model. Let the
cut move from left to right and, for each cut
position, count the number of crossing wires. In
Figure 15, the interconnections numbered 1 and 2

0.6 T T T T : . . :

Donath >
0.5 Ourmethod -©--- |
. ‘ldeal’scaling ——
0.4 I, ]
03 .\ % |

o
0.2 B X‘\\\ i
01 | S |
X,
N g

0 . . . X g g

Wire length

FIGURE 14 The global wire length distributions according to
Donath’s method and our method, compared to the ‘ideal’
distribution (normalized on the range [1...1024]). Only the first
10 values are shown.
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FIGURE 15 Thought experiment: count the number of inter-
connections crossing a cut in the Manhattan grid.

are counted when the cut takes position 1, the
interconnections 3 and 4 when the cut takes
position 2. After we have done the same for a
placement according to our model, based on the
occupancy probability, we observe the results of
our count in Figure 16. The number of counted
wires (shown in Fig. 16 in % of the total number
of wires, as a function of the cut position) is always
smaller in our case than with Donath’s model.
Also the variation of this number over all cut
positions is smaller. This implies that our method
models an optimal placement better as an optimal
placement results in shorter wires and hence a
lower chance of a wire being cut.

7.3. Experimental Verification

In order to verify our model for the placement of a
circuit in a Manhattan grid, we performed several
experiments on benchmark circuits with our own
placement program, based on simulated annealing
[27]. The resulting wire length distribution for one
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FIGURE 16 The number of interconnections (in % of the total
number of interconnections in the circuit) for successive cuts
and a circuit with Rent exponent » = 0.6 in a Manhattan grid
of 256 x 256 cells. Comparison of Donath’s placement model
to our extension with a non-uniform occupancy probability.

of the benchmark circuits (‘c1908’) is shown in
Figure 17. Also the theoretical estimates, based on
Donath’s technique (dashed line) and our own
method (filled line), are shown in the figure. Our
model, taking into account the occupancy prob-
ability, obviously matches the experimental results
more closely, especially for wires of lengths 1 and
2 (which are the most important ones for the
calculation of the average wire length).

1000
Experimentalvalues ©
Donath's estimate -----
_________ Ournew estimate ——
100 ¢
10
1F B
0.1

100
Wirelength

FIGURE 17 The wire length distribution after placement of
the ISCAS85 benchmark circuit ‘c1908 nr’.

In Tables I, II, and III, the results are shown for
all benchmarks. Table I shows the results for the
benchmark circuits used by Donath in [1]. In this
table, our wire length estimates are much lower
than Donath’s and are related to the experimental
values more closely than Donath’s.

Tables II and III show the results of our own
experiments with the ISCAS benchmark circuits.
These results are also shown in Figures 18 and 19,
as a function of the number of logic blocks and the
Rent exponent, respectively. In these figures, we
have connected the corresponding points for clar-
ity. The rough appearance of the curves is due to
the strong dependency of the average length on
both the number of logic blocks and the Rent expon-
ent. Only one of these dependencies is shown in
the figures.

In Table II, we can again observe that our
estimates are much lower than Donath’s and that
they generally follow the experimental values more
closely. In some cases, we appear to underestimate
the wire length. This is partly due to the fact that the
occupancy probability underestimates the number
of long wires at the higher levels. For circuits that
are large enough, this has no real influence on the
average wire length, because the number of long
interconnections is relatively small. For smaller
circuits this influence is no longer negligible and for
those circuits we should actually change the
approximation of the occupancy probability at
the higher levels. Yet, it is clear, both from the
tables and the figures, that the circuits for which we
underestimate the average length, also lead to low
estimates with Donath’s technique. For these
circuits, also Donath’s estimates are much lower
than we would expect, since we know that Donath
overestimates average lengths by a factor of
approximately 2 [1]. The experimental value thus
appears too high. This could be a consequence of
not too good a placement, or it could be the result
of a bad estimate of the Rent exponent. The
phenomenon is even stronger in Table III and in
Figures 18 and 19. Our estimates are almost always
too low and even Donath often underestimates
the average length (which does not correspond to
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TABLE I Average wire length for a placement of Donath’s benchmark circuits [1]. Donath’s estimates (Lp) and our estimates,
based on the occupancy probability (L), compared to experimentally measured values (Lexp). G is the number of logic blocks in the
circuit, N the number of nets and r the Rent exponent (data copied from [1])

No. G N r Lexp Lp L (Lp/ Lexp) (/ Lexp)
1 528 1007 0.59 2.15 4.02 2.44 1.87 1.13
2 576 1111 0.75 2.85 5.26 3.25 1.85 1.14
3 671 1670 0.57 2.63 4.07 243 1.55 0.93
4 1239 2687 0.47 2.14 3.76 2.21 1.76 1.03
5 2148 7302 0.75 3.50 7.37 4.29 2.11 1.23

TABLE II Average wire length for a placement of the ISCAS85 benchmark circuits. Donath’s estimates (Lp) and our estimates,
based on the occupancy probability (L), compared to experimentally measured values (Lexp). G is the number of logic blocks in the
circuit and r the Rent exponent

Name G r Lexp Lp L (Lp/ Lexp) L/ Lexp)
c432 160 0.62 2.925 3.304 2.157 1.129 0.737
c499 202 0.62 3.177 3.468 2.237 1.091 0.704
c880 383 0.62 2.764 3.949 2.433 1.428 0.880
cl355 546 0.73 2.804 5.030 3.108 1.793 1.108
c1908 880 0.72 2.865 5.558 3.356 1.939 1.171
c2670 1193 0.73 2.817 6.098 3.643 2.164 1.293
c432nr 157 0.62 2.890 3.291 2.155 1.138 0.745
c499nr 202 0.65 3.157 3.586 2.318 1.135 0.734
c1355nr 546 0.74 2.786 5.110 3.166 1.834 1.136
¢c1908nr 878 0.71 2.893 5.455 3.288 1.885 1.136
c2670nr 961 0.79 2.482 6.463 3.994 2.603 1.608

TABLE III Average wire length for a placement of the ISCAS89 benchmark circuits. Donath’s estimates (Lp) and our estimates,
based on the occupancy probability (L), compared to experimentally measured values (Leyp). The experimental value Lo only takes
the first 10 values into account. G is the number of logic blocks in the circuit and » the Rent exponent

Name G r Lexp LD L L 10 (LD/ Lexp) (L/ Lexp) (L/ Ll 0)
s27 13 0.26 1.500 1.710 1.403 1.500 1.140 0.935 0.935
5208.1 112 0.35 1.946 2.444 1.620 1.855 1.256 0.832 0.873
5298 133 0.37 2.598 2.538 1.692 1.694 0.976 0.651 0.998
s386 165 0.51 3.713 2.976 1.937 1.928 0.801 0.521 1.004
s344 175 0.40 2.045 2.699 1.768 1.710 1.319 0.864 1.033
5349 176 0.40 2.045 2.701 1.768 1.796 1.320 0.864 0.984
s382 179 0.35 2.520 2.584 1.712 1.837 1.025 0.679 0.931
s444 202 0.29 2.505 2.478 1.660 1.957 0.989 0.662 0.848
s526 214 0.47 3.187 2.976 1.928 2.174 0.933 0.604 0.886
$526n 215 0.43 3.181 2.856 1.859 2.046 0.897 0.584 0.908
s510 217 0.65 4.036 3.643 2.347 2.505 0.902 0.581 0.936
5420.1 234 0.37 2.089 2.714 1.795 1.843 1.299 0.858 0.973
s832 292 0.51 5.337 3.264 2.065 1.785 0.611 0.386 1.156
5820 294 0.54 5.229 3.389 2.138 1.830 0.648 0.408 1.168
5641 398 0.69 1.882 4.393 2.731 1.608 2.333 1.451 1.698
s713 412 0.71 1.940 4.557 2.845 1.636 2.348 1.465 1.738
5953 424 0.68 4.371 4.393 2.717 2.616 1.004 0.621 1.038
s838.1 478 0.41 2.182 3.078 1.888 1.966 1.410 0.865 0.960
51238 526 0.66 4.885 4.471 2.722 2.459 0.915 0.557 1.106
s1196 547 0.64 4.330 4.370 2.647 2.218 1.009 0.611 1.193
51494 653 0.58 5.806 4.112 2452 1.919 0.708 0.422 1.277
51488 659 0.59 5.703 4.185 2.500 1.786 0.733 0.438 1.399

51423 731 0.50 2.552 3.615 2.202 1.882 1.416 0.862 1.170
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FIGURE 18 Our estimates (L) and Donath’s (Lp), compared
to the experimental values (Leyp and Lio): average wire length of
the ISCAS benchmark circuits as a function of the number of
logic blocks G.

7 T T
| x
| - Lp K
61 ‘onls o 1
- L °o ),&‘:l ’
51 : X
4t
3}
2 -
1r J
0 1 . . . .
0.2 0.3 0.4 0.5 0.6 0.7 0.8

FIGURE 19 Our estimates (L) and Donath’s (Lp), compared
to the experimental values (Leyp and Lyo): average wire length
of the ISCAS benchmark circuits as a function of the Rent
exponent r.

Donath’s own results [1]). The cause of this more
likely is the fact that the ISCAS89 benchmarks
contain a lot of nets with very high net degree.
Multi-terminal nets are not included in the model
yet. In the experimental placements, however, nets
with high net degrees are very long. In normal
circuits, the number of nets with high net degree is

too small to cause a significant deviation in the
average length [4]. This is not the case for the
ISCASS89 benchmark circuits. Figure 20 shows, for
instance, the wire length distribution after place-
ment of the ISCASS89 circuit ‘s832’ (more figures to
show this is also true for the other benchmarks, can
be found in [28]). The figure clearly shows an excess
of long wires compared to the general trend. These
wires are all multi-terminal nets with high net
degrees. Since the total number of wires is not very
large, these nets do have a significant influence on
the average wire length. If we do not include these
‘exceptional’ nets, we find a much better corre-
spondence between the theoretical and the experi-
mental values (for convenience, only the first 10
values of the distribution are taken into account).
These experimental values are shown in the column
Ly, of Table III. A comparison between those
values and our theoretical estimate L gives a
relative difference of less than 20% for 19 circuits
out of 24. Figures 18 and 19 show that the
experimentally obtained average wire length values,
based only on the first 10 values of the distribution,
generally are much lower than the original experi-
mental values. Moreover, they are closely related to
our theoretical estimates, especially when we also
compare both to Donath’s estimates. Although
omitting the long wires obviously influences the

1000

Experimentally measuredwirelength distribution <
Generalslope of the wirelength distribution

100

0.1

100 1000
Wirelength

FIGURE 20 Illustration of the existence of exceptionally large
interconnections in the placed ISCAS89 benchmark circuits.
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whole experiment and the results should be
discussed with great care, we can conclude that
our model for wire length estimates resembles
experimentally measured lengths quite good, but
that our model does not take into account specific
properties of nets with high net degree. This has
been the subject of our latest research work [16, 17].

8. CONCLUSION

In this paper, we have presented a modification of
Donath’s technique for a priori wire length esti-
mation, introducing the occupancy probability as a
better model for an optimal placement. This way,
we have obtained a new average interconnection
length estimation corresponding more closely to
the experimental values than the upper bound
found by Donath. Our new accurate a priori inter-
connection length estimation technique can have
a large impact in future CAD tools for floorplan-
ning and placement, in particular in view of the
increasing importance of wires in digital circuits.
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