
VLSI DESIGN
1999, Vol. 10, No. 1, pp. 71-86
Reprints available directly from the publisher
Photocopying permitted by license only

(C) 1999 OPA (Overseas Publishers Association) N.V.
Published by license under

the Gordon and Breach Science
Publishers imprint.

Printed in Malaysia.

Empirical Study of Block Placement
by Cluster Refinement

JIN XU a, PEI-NING GUO b and CHUNG-KUAN CHENGb’*

Cadence Design Systems, Inc., 555 River Oaks Parkway, San Jose, CA 95134,"
b Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093-0114

(Received 7 September 1998; In finalform 20 November 1998)

In this paper we propose an efficient cluster refinement approach for macro-cell place-
ment. The algorithm selects a cluster ofblocks dynamically, and finds an optimal solution
for all the blocks in the cluster simultaneously. This is different from previous zone re-
finement approach which optimizes the allocation of one single block in each operation.
Experimental results on the MCNC benchmark circuits show that the approach achieves
excellent area utilization while minimizing the wire length at the same time.

Keywords." VLSI, layout, physical design, placement

1. INTRODUCTION

Placement of blocks on a 2D surface is one critical
process in VLSI layout design. The major objec-
tives are chip area and wire length minimization.
Since the number of possible placements increases
explosively with the number of blocks, even sub-
sets of the problem have been shown to be NP-
complete or NP-hard [13].
Onodera et al. [13] presents a building block

placement approach which employs a branch-and-
bound strategy to search for an optimal solution
within the whole solution space of size 2n(n+2>. The
maximum number of blocks which can be placed

in a reasonable amount of CPU time is around
six. Large problems are decomposed to reduce the
number of blocks below the manageable limit,
and a placement is constructed hierarchically in a
bottom-up manner.

H. Murata et al. [11] introduces a P-admissible
solution space of size (n!)2 8n, where n is the total
number of blocks, and applies a simulated anneal-
ing method to search for a good solution.

Shin et al. [15] applies zone refinement technique
in IC layout compaction. Blocks are peeled off row
by row from the precompacted layout, moved
across an open zone, and reassembled at the other
end of the zone in a denser configuration. They

*Corresponding author. Tel." (619)534-6184, Fax: (619)534-7029, e-mail: kuan@cs.ucsd.edu

71

72 J. XU et al.

sweep across the zone to optimize the allocation of
one single block in each operation.
Note that the above approaches can be applied

to general structures. For slicing structure, Yama-
nouchi et al. [18] proposes a partial clustering and
module restructuring algorithm.

In this paper, we present a new cluster refine-
ment approach, which consists of the following
three parts:

(1) sequential cluster selection which reduces the
complexity of the problem to a manageable
degree;

(2) cluster optimization which employs an efficient
branch-and-bound strategy to search for an
optimal solution for all the blocks in the
cluster;

(3) adaptive cluster overlapping which explores
larger solution space to achieve better results.

To demonstrate the efficiency of the algorithm,
we apply our algorithm to the MCNC benchmark
circuits. Experimental results show that the algo-
rithm obtains excellent area utilization while mini-
mizing the wire length at the same time.
The following sections in this paper are orga-

nized as follows. We formulate the problem in
Section 2. Section 3 describes the details of the
algorithm. Then the complexity analysis and
experimental results are given in Section 4 and
Section 5 respectively. Finally, Section 6 presents
concluding remarks.

2. PROBLEM DESCRIPTION

Inputs of the placement problem are

a set of blocks with fixed geometries and fixed
pin positions.
a set of nets specifying the interconnections
between pins of the blocks.
a set of pads (external pins) with fixed positions.
a set of user constraints, e.g., block position/
orientation, critical nets, if any Given the input
specifications, the objective of the problem is to

find the positions and orientations of each
block, so that the chip area and wire length be-
tween blocks are minimized while satisfying all
the given constraints.

Since it is impractical to calculate the exact wire
length at placement stage where detailed routing
has not yet been carried out, we estimate the length
of each net as one-half of the perimeter of the
minimum bounding box of the net.
The objective function, which measures the

quality of the resulting placement, can be ex-
pressed as follows,

E C1 ChipArea + C2 x WireLength

where C1 and C2 are the constant weights for chip
area and wire length respectively.

3. CLUSTER REFINEMENT ALGORITHM

Cluster refinement algorithm intends to improve
over traditional zone refinement algorithm by
giving more flexibility on cluster selection. With
the capabilities of cluster optimization and over-
lapping, cluster refinement algorithm provides a
better approach for block placement. The detail
description of cluster refinement algorithm is given
as follows.

3.1. Overall Algorithm

Zone refinement is a technique used in the purifica-
tion process of crystal ingots. It provides a general
framework for reducing the total number of blocks
to the degree which can be handled at one time.
However, the traditional zone refinement algo-

rithm [15] probably cannot find the optimal solu-
tion due to the predetermined order of the blocks.
Figure illustrates an example. If block A is
placed in its best position, which is also the best
position for block B. It is impossible for block B
to be placed in its best position if we place block
A first. Therefore, the better solution is prevented
in this case.

PHYSICAL DESIGN 73

(a) (b)

FIGURE Illustration of placement by different orders. (a) A
first, (b) B first.

The major contribution of our work is that
we select a cluster of blocks dynamically, employ
a branch-and-bound strategy to find an optimal
solution for all blocks, then move the blocks in the
cluster simultaneously.

Figure 2 shows the situation when cluster refine-
ment is in progress. A placement consists of two
regions ofblocks, separated by a zone called a ’gap’.
The lower bound ofthe top region forms the ’ceiling’
profile, while the upper bound of the bottom region
forms the ’floor’ profile, as illustrated by the bold
lines. The ’gap’ profile is obtained by ’deducting’ the
ceiling from the floor profile.
When cluster refinement starts, all blocks are in

the ceiling region, while the floor region and the
cluster are totally empty. First a cluster of blocks
is selected by the cluster selection algorithm, and
is ’peeled off’ from the ceiling. Then the cluster
optimization algorithm is applied to the cluster,
and the cluster is placed onto the floor based on
the results obtained. A new cluster is obtained by
the cluster overlapping algorithm and the cluster

ceiling

oor

FIGURE 2 Cluster refinement in progress.

optimization algorithm is applied to the new
cluster. The algorithm loops until the ceiling is
empty.

Figure 3 shows the outline of the algorithm. The
algorithm improves an initial placement along
one direction, alternates the optimizing direction
and begins the next iteration. It may iterate many
times until no improvement is achieved, or a given
number of iterations is reached.

3.2. Cluster Selection

Our cluster selection algorithm is based on the
constraint graphs [15]. It selects a cluster adap-
tively and sequentially, according to the current
partial placement. We first give the definition
of neighbors, then present the cluster selection
algorithm.

DEFINITION TWO blocks are neighbors if they are
adjacent to each other in either the horizontal or
the vertical constraint graph.

Therefore, two blocks are horizontal neighbors if
they are adjacent in horizontal constraint graph,
vertical neighbors if adjacent in vertical constraint
graph.
For example, in Figure 4(a), the neighbors of

block are block 2(right), block 3(above) and
block 4(above), based on the constraint graphs
shown in Figure 4(b), where block 2 is its horizon-
tal neighbor, while blocks 3 and 4 are its vertical
neighbors.
The algorithm identifies the block which dom-

inates the minimum gap distance to be the ’critical’
block, then build up a cluster of size k with this
block and its k-1 neighbors. Figure 5 shows the
outline of the cluster selection algorithm.

In Figure 4(a), block is identified first and a
cluster of size 4 is built up with it and its three
neighbors, blocks 2, 3 and 4.
Note that the cluster size k here is actually the

upper bound. The algorithm can adopt flexible
cluster size, depending on the number of neigh-
bors of the critical block. For example, in Figure 6,
if k 4, but the critical block only has 2

74 J. XU et al.

ClusterRefinement

Select a compaction direction;

for(n:O; n<IterationNumber; n++)

Construct the ceiling;

Initialize the floor;

while(ceiling not empty)

ClusterOverlapping;

Update the ceiling;

ClusterOptimization;

Update the floor;

Alternate the compaction direction;

FIGURE 3 Outline of the algorithm.

ceiling

horizontal constrainl

vertical constraint

@

(a) (b)

FIGURE 4 Cluster selection in progress. (a) Cluster selected (b) Constraint graphs for block 1.

neighbors, block 2 and 3, the cluster obtained will
be of size 3.

3.3. Cluster Optimization

In order to find an optimal solution, we evaluate
all of the possible configurations on the selected
cluster. Because the number of possible combina-
tions increases exponentially with the number of
blocks in the cluster, we employ a branch-and-

bound technique to explore the solution space
effectively.

3.3.1. Branching Operations

We enumerate the state space as a tree whose
nodes correspond to partial placements for some
blocks in the cluster. The successors of a node
correspond to the implementation of the blocks to
be considered next. A path from the root to a leaf
represents a complete placement for the cluster.

PHYSICAL DESIGN 75

ClusterSelection (k)

Identify a critical block u;

Add u to the cluster;

Sort u’s horizontal neighbors in y dimension from low to high;

Sort u’s vertical neighbors in x dimension from right to left;

Append vertical neighbor list to horizontal neighbor list;

repeat until k blocks are selected or u has no neighbors left

Find the first neighbor v;

if v has no vertical neighbors below it

add v to the cluster;

Delete v from u’s neighbor list;

FIGURE 5 Cluster selection algorithm.

ceiling

tloor

horizontal

vertical

(a) (b)

FIGURE 6 Cluster size k as a upper bound. (a) Cluster selected, (b) Constraint.

3.3.2. Order

Suppose k blocks are selected in the cluster and
are numbered 1, 2,...,k. To find the best order
of placing the blocks, we try all of their combi-
nations, i.e., k! permutations, as shown in the
recursive permutation tree in Figure 7.

3.3.3. Rotation

Each block may be specified in any one of eight
orientations, i.e., two rotations and four reflec-
tions (Fig. 8). We specify one rotation out oftwo for
each block when placing each block, because rota-

tion is closely related to the final chip area. Since
reflection is only directly related to wire length, we
try the four reflections for each block only when
making estimates to reduce the total wire length.

(53
Pn(1,2 n...

Pn. (2,3 1(1,3 n) Pn_ (1,2 n-1

Pn_2(3,4 n) Pn-2(1,4 n) Pn-2(l,3 n-l)

FIGURE 7 Recursive permutation tree.

76 J. XU et al.

(a) (b)

FIGURE 8 Orientation of a block. (a) Rotation, (b) Reflection.

3.3.4. Virtual Grid

When we search for the optimal positions for a
block in the cluster, we have to try all of the pos-
sibilities, i.e., all the virtual grids created by the cor-
ners of blocks, including those which have been
placed onto the floor, and which are still in the
ceiling, as illustrated in Figure 9.

3.4. Bounding Operations

The efficiency of the branch-and-bound strategy
depends a lot on the bounding technique. By
pruning unpromising branches in the decision tree,
we can explore the solution space much more
efficiently.

3.4.1. Corners Only

Assume we have k blocks numbered by
{1,2,...,k}, the permutation of k blocks can be
expressed as

P1,P2,... ,Pi,. ,Pk

where Pi is the number of the i-th block in the
permutation. Given a permutation, we can reduce
the number of virtual grids to be evaluated. For
instance, when we are placing two neighboring
blocks P1, P2 in a permutation, we have to eval-
uate all of the virtual grids for the block PI first,
then, for the P2. When their order becomes P2, P1
in a new permutation, after the block P2 has been
placed, it creates some new grids in the floor. Then
to place the block P1, the only virtual grids we
have to evaluate are those new grids, because they
are the only grids that could not be evaluated
when placing P1 in the previous permutation.
Therefore, the following important theorem holds.

THEOREM When searchingfor the optimalposition
for the i-th block in a permutation, we only have to

evaluate the new corners created by the (i-1)th
block if

Pi < Pi-1

ceiling

floor

FIGURE 9 Virtual grid.

virtual grids

PHYSICAL DESIGN 77

In general, we have to search for all of the
virtual grids to place a block. The theorem above
suggests that we only need to evaluate those
virtual grids in the range from the leftmost to the
rightmost position of the previous block (Fig. 10),
because all other possibilities have been covered
when placing the blocks by other permutations.
This greatly reduces the search space and let the
algorithm prune unpromising branches and reach
the optimal solution much more efficiently.
For example, if Pi < Pi-1, after Pi-1 has been

placed as shown in the figure above, to place Pi,
the number of virtual grids we have to evaluate is
only two (Fig. 10).

3.4.2. Lower[Upper Bound

We first place each block in the cluster at its
original x-position, and calculate the cost func-
tions and record their values and the x-positions as
the current best knoWn solution. Those values,
along with the constraints given, provide lower/
upper bounds for the placements obtained in the
search process later. The cost functions used in this
paper are as follows: gap distance, chip width, chip
length, dead space created, wire length.
Each node in the decision tree corresponds to a

partial placement in which only rotations or posi-
tions of some blocks in the cluster are determined,
and only permutation among those blocks is
established, while those of the others have not
yet been established. Associated with the nodes,
are the partial cost values of the corresponding
placement. If any one of them exceeds the cor-
responding lower/upper bound, we can say that

ceiling

floor

FIGURE 10 Corners only.

the branch is not promising, the search process
along the branch will be terminated.
When the search process along a branch reaches

a leaf node, a complete placement for the cluster is
obtained. If the cost values of the placement are
better than the current best known solution, we
update the values and save the current x-positions
as the best known solution.

Figure 11 illustrates the final decision tree we
have to search for when k 4.

3.5. Cluster Overlapping

After cluster optimization, the best positions and
order for placing the blocks in the cluster have
been obtained. We can place only some of the
blocks in the cluster onto the floor, while replacing
the other blocks again to find better solutions.
Therefore, the first (< k) blocks in the cluster,
in the best order obtained, are deleted from the
cluster, and placed onto the floor in their corre-

sponding best positions, while the other k-l
blocks are still kept in the cluster. The algorithm
then selects another blocks from the ceiling.
These new blocks, together with the k- origi-
nal blocks, form a new cluster of size k, which has
k- blocks overlapping with the original cluster.
The cluster optimization algorithm is applied to
the new cluster as described in the previous
sections.
For example, if k 4, 2, block 1, 2, 3, 4 are

the four blocks in the cluster, the best order
obtained for placing the four blocks are 1, 3, 4, 2,
and the corresponding best positions are as shown
in Figure 12(a). The first two blocks and 3 are
placed onto the floor in their best positions, and
deleted from the cluster, while blocks 2 and 4 are

still kept in the cluster. The algorithm then gets
another two blocks A and B from the ceiling, and
builds up a new cluster by the four blocks 2, 4, A,
B (Fig. 12(b)). A better result will be achieved after
cluster optimization, as illustrated in Fig. 12(c).

Figure 13 shows the outline of the cluster
overlapping algorithm.

operation: symbol:

(a) order; (b) rotation; (c) virtual grid corners only

FIGURE 11 Decision tree when k 4.

(a) (b) (c)

FIGURE 12 Cluster overlapping.

ClusterOverlapping k, 1

if(cluster not empty)

Delete the first 1 blocks by the best order found;

ClusterSelection(1);

else

ClusterSelection(k);

FIGURE 13 Cluster overlapping algorithm.

PHYSICAL DESIGN 79

4. COMPLEXITY ANALYSIS

We will start investigating the complexity of our
algorithm by adopting the well-known analysis of
the traditional zone-refinement (Z-R) algorithm
[15]. First we discuss the complexity of constraint
graphs and the traditional Z-R algorithm, and
then analyze our extension parts of clustering and
branch-and-bound algorithms.

4.1. Complexity of the Constraint Graphs
and Z-R Algorithm

Traditional Z-R algorithm deals with n blocks and
utilizes two necessary data structures" constraint
graphs and ceiling-floor-gap relations. These struc-
tures are maintained throughout the program and
updating them are the key operations of the entire
algorithm.

Shin et al. [15] gives a detail proof that the initial
construction of the structures takes O(n 2) and that
the updating process needs O(n) for each block
moving. A complete pass of Z-R needs O(n) up-
date operations resulting in an overall complexity
of O(n 2).

LEMMA 2 Given a permutation (pl, P2, pk), the
total number of branches is

k

B(pl,P2, ,Pk) bi.
i=1

LEMMA 3 Given a cluster (1, 2,...,k), the total
number of branches in its decision tree is

Pl, P2 Pk Epermutation

B(pl,p2, ,Pk).

For most cases, the cluster size k is equal to or
less than 5 and m is about O(v/-). Table I gives the
complexity when k is less than or equal to 5.

LEMMA 4 Given k and l, the overall complexity of
the algorithm will increase by a constant factor k/l
from the cluster refinement without overlapping
algorithm.

Thus, the overall complexity of the cluster
refinement algorithm will be O(2Cmn2). And for
small k, it becomes O(nZ+k/2).

4.2. Complexity of Cluster Refinement
Algorithm

We assume k blocks per cluster and m virtual
grids for each cluster moving. The bounding opera-
tions give a enormous amount of pruning from
the original solution space of size O(k!mk). The
following is the complexity analysis of our
algorithm.

LEMMA Given a permutation (pl,P2,...,pk), the
branches at level is

m, if V Pi_l < Pibi 2, otherwise

The number of branches in each node is either m

for new pattern of permutations, or 2 when it is
corner-only because some previous permutations
have covered most of the virtual grids already.

4.3. Comparison to Other Approaches

Cluster refinement takes the advantages of the
traditional Z-R algorithm and utilizes exhaustive
search in local area to improve it. Extra branch-
and-bound searching increases the complexity by
the factor of O(2km) to the traditional Z-R
algorithm’s O(n2).

Onodera’s topological relationship approach
[13] takes 0(2n(n+2)) to find the optimal solution,
and can only handle up to six blocks as mention-
ed by the author. Another approach, Murata’s

TABLE Cluster size and complexity

k number Of branches

m
2 mZ+2.m
3 m + 4.2.m + 22.m
4 m4 + 11.2.m + 11.22.m + 23.m
5 m + 26.2.m 4 + 66.22.m + 26.23.m + 24.m

80 J. XU et al.

10
40

1035

103o

1025
0

e 1020

10
ls

101

0
o o o ,,c

I.
2 3 4 5 6 7 8 8

N

FIGURE 14 Comparisons.

Onodera [13]

Murata [11]

Cluster Refinement
k=4, 1=2.. k=2, 1=2

Zone Refinement

10

sequence-pair [11] has solution space of size
o(Sn(n!)2), and only a small fraction of the whole
space is searched by their simulated annealing
method.

Figure 14 shows the comparison of various
approaches.

5. EXPERIMENTAL RESULTS

To examine the efficiency of the proposed algo-
rithm, we apply our algorithm to the MCNC
benchmark circuits. The algorithm is implemented
in C and executed on a Sun Sparc20 workstation.

5.1. Initial Placement

The algorithm may start from any initial config-
uration. If no initial configuration is given, then it
constructs an initial placement itself. The initial
placements used in this paper are constructed as
follows. We select one block each time, by the
sequence of the input benchmark files, try two
rotations and all the virtual grids, search for the
smallest y-position in the floor profile as the best

position to place the block. Power or ground is
treated as a single net. All initial placements, as
shown in Table II, are constructed in less than one
second of CPU time.

5.2. The Effect of Clustering

The algorithm can employ different cluster sizes.
Without clustering, i.e., when the cluster size k is
one, the cluster refinement is just the traditional
zone refinement. In general cases, the more blocks
are selected in the cluster, the more CPU time the
algorithm will take. It is also expected that the
better results the algorithm will achieve, because
the branch-and-bound algorithm will search for
larger solution space.

Table III shows the results obtained without
cluster overlapping by using different cluster sizes
for the biggest MCNC benchmark circuit ami49,
wherek=l=4, C= 1, andC2=0.
As we can see, when the cluster size k increases

from one to five, the chip area decreases. When k
is one, i.e., without clustering, the dead space
and wire length are 10.29% and 925 respectively.
When k is four, the dead space drops to 5.95%,

PHYSICAL DESIGN 81

Circuit

TABLE II Initial placements constructed

Hp Xerox Ami33 Ami49

#blocks 9 11 10 33 49
#nets 97 83 203 123 408
#pins 214 264 696 480 931
#I/Os 73 45 2 42 22
area (mm) 84.24 14.54 29.65 1.382 41.00
dead space (%) 44.73 39.25 34.73 16.32 13.57
wire length (mm) 706 266 740 121 1231

Cluster size

TABLE III Placements for ami49 using different cluster sizes

2 3

area (mm2) 39.51
dead space (%) 10.29
wire length (mm) 925
CPU (sec) 5.0

38.99 38.38 37.69 37.26
9.08 7.64 5.95 4.87
959 885 764 888
11.3 46.5 1861.7 23202.3

and wire length drops to 764. Though the CPU
time also increases with the cluster size, when k is
four, the CPU time required is still a very reason-
able half an hour.

5.3. The Effect of Cluster Overlapping

Cluster overlapping enables the algorithm to
search for larger solution space to find better
results. Table IV shows the results for all MCNC
benchmark circuits obtained without cluster over-
lapping when the cluster size is four, where k

4, C 1, and C2 0.
Table V shows the effect of cluster overlapping

on placements for the benchmarks, where k 4,
l=2, C1= 1, andC2=0.

Table VI shows the effect of different over-
lapping sizes (k-l) on placements for the biggest
benchmark circuit ami49, where k 4, C1 1,
and C2 0.

5.4. The Effect of C’s

Parameter C’s are the corresponding constant
weights of chip size and wire length in the cost
function. Apparently, the bigger C1 is given with
respect to C2, the better the chip size would be
achieved, and vice versa.

Experimental results for the MCNC bench-
marks are shown in Tables VII-XI, where k 4
and 2.
The corresponding initial placements and final

placements are shown in Figure 15.
It is difficult to fairly compare our algorithm to

the other approaches, because they include routing
space in their placements, which is not necessary
any more because of recent technology progress.
However, it is estimated that the chip area and
wire length would increase around 10% and 5%
respectively, if routing space is introduced based
on the technology factor T [11]. So our approach
still outperforms others a lot.

Circuit Apte

TABLE IV Placements without cluster overlapping

Hp Xerox Ami33 Ami49

area (mm2) 48.42 9.575 20.30 1.207 37.69
dead space (%) 3.83 7.77 4.69 4.15 5.95
wire length (mm) 321 185 477 64 764
CPU (sec) 23.8 18.0 18.8 603.4 1861.7

82 J. XU et al.

TABLE V The effect of cluster overlapping

Circuit Apte Hp Xerox Ami33 Ami49

area (mmz) 48.12 9.205 19.80 1.177 36.63
dead space (%) 3.25 4.07 2.25 1.81 3.25
wire length (mm) 558 221 696 82 1330
CPU (see) 33.0 20.2 38.2 1514.9 3822.8

TABLE VI Placements for ami49 using different overlapping sizes

Overlapping size 3 2

area (mm2) 36.32 36.63 36.73
dead space (%) 2.42 3.25 3.50
wire length (mm) 1357 1330 1533
CPU (sec) 7566.1 3822.8 1669.9

TABLE VII Experimental results for apte, k 4, 2

C1 C2 C1 C2 C1 C2 C1 C2
0 0.001 0.01 0

area (mm2) 48.12 48.44 48.44 49.74
dead space (%) 3.25 3.88 3.88 6.38
wire length (mm) 558 374 334 330

TABLE VIII Experimental results for hp, k 4, 2

C1 C2 C1 C2 C1 C2 C1 C2
0 0.001 0.01 0

area (mm2) 9.205 9.436 9.575 9.899
dead space (%) 4.07 6.42 7.77 10.79
wire length (ram) 221 215 192 185

TABLE IX Experimental results for xerox, k 4, 2

C1 C2 C1 C2 C1 C2 C1 C2
0 0.001 0.01 0

area (mm2) 19.80 20.01 20.54 20.70
dead space (%) 2.25 3.32 5.79 6.53
wire length (mm) 696 627 526 482

TABLE X Experimental results for ami33, k 4, 2

C1 C2 C1 C2 C1 C2 C1 C2
0 0.001 0.01 0

area (mm2) 1.177 1.195 1.203 1.246
dead space (%) 1.81 3.26 3.84 7.18
wire length (mm) 82 74 67 54

TABLE XI Experimental results for ami49, k 4, 2

C1 C2 C1 C2 C1 C2 C1 C2
0 0.001 0.01 0

area (mm2) 36.63 36.65 37.34 38.38
dead space (%) 3.25 3.30 5.08 7.64
wire length (mm) 1330 879 791 727

oo_ii

o0_14

00_22

0c_24

oo_2t

00_23

oo_13 Iolk
oc_i2 oc_22 0o_i4 0c_21

(a) initial placement(44.73%) final placement(3.25%)

(b) initial placement(39.25%) final placement(4.07%)

FIGURE 15 Final placements for the MCNC benchmark circuits. (a) apte (b) hp (c) xerox (d) ami33 (e) ami49.

84 J. XU et al.

(c) initial placement(34.73)

3LK])

I)LKT

3LKLR

LKP’

LKRS

LKRC
LKUR

final placement(2.25)

bkl3

bk6

bkgo

bk2t

bkt2

bkl4b bklSa

bk2 ’bktSb

bk20

bk4

bkSb

(d)

initial placement(16.32%)
bkt3 bk20

kTa bk4Obki5
!bk6o

!bklTb bkl6 bkl9 bklbki4b’
bkllbkgd bkiSa

bkl8

kZ’keb

bk7

bkSb

bkSa

bklOb

bk21

bkl

final placement(1.81%)

FIGURE 15 (Continued).

PHYSICAL DESIGN 85

110O1

HO04

H033

044

H048

H042

initial placement(13.57%)

H011

HOi

H048

H022

H049

H017 HO02

HO04

(e) final placement(2.42)

FIGURE 15 (Continued).

6. CONCLUSIONS

We present an efficient cluster refinement algo-
rithm which minimizes the chip area and wire
length at the same time. We try all possible con-
figurations on the selected cluster to minimize the
gap distance between the ceiling and the floor. A

virtual grid and permutation order are generated
dynamically to eliminate redundant branches,
which was the cause of much higher complexity
in other approaches. The experimental results
demonstrate clearly that the bounding operations
proposed are very effective, and result in a very
efficient search within the large solution space.

Experimental results on MCNC benchmark
circuits show excellent potential for the algo-
rithm. The algorithm reaches good solutions in a
practical amount of CPU time on the benchmark
circuits.

Acknowledgment

The authors would like to thank the reviewers
for their comments and the support by NSF
grant MIP-9529077 and by California MICRO
program.

References

[10]

[11]

[1] Banerjee, P. (1994). "Parallel Algorithms for VLSI
Computer-Aided Design", PTR Prentice Hall.

[2] Burkard, R. E. and Bonniger, T. (1983). ’A heuristic for
Quadratic Boolean Programs with Applications to Quad-
ratic Assignment Problems", European Journal Opera-
tional Research, 13, 374-386.

[3] Cheng, C. K. and Kuh, E. S., "Module Placement based
on Resistive Network Optimization", IEEE Trans. Com-
puter-Aided Design, CAD-3, 218- 225, July 1984.

[4] Gao, T., Caidya, P. M. and Liu, C. L. (1992). "A
Performance Driven Macro-Cell Placement Algorithm",
Proc. 29th Design Automation Conf., pp. 147-152.

[5] Hamada, T., Cheng, C. K. and Chau, P., "An Efficient
Multi-level Placement Technique Using Hierarchical
Partitioning", IEEE Trans. Circuits and Systems, 39,
432-439, June 1992.

[6] Hu, T. C. (1982). "Combinatorial Algorithms", Addison
Wesley.

[7] Dai, W. M. and Kuh, E. S., "Simultaneous Floor Plan-
ning and Global Routing for Hierarchical Building-Block
Layout", IEEE Trans. Computer-Aided Design, CAD-6,
828-837, Sept. 1987.

[8] Esbensen, H. and Kuh, E. S., "EXPLORER: An Inter-
active Floorplanner for Design Space Exploration", Proc.
EuroDAC’96, pp. 356-361, Sept. 1996.

[9] Koakutsu, S., Kang, M. and Dai, W. W.-M. (1996).
"Genetic Simulated Annealing and Application to Non-
slicing Floorplan Design", Proc. 1996 Physical Design
Workshop, pp. 134-141.
Lengauer, T. (1990). "Combinatorial Algorithms for
Integrated Circuit Layout", John Wiley & Sons Ltd.
Murata, H., Fujiyoshi, K., Nakatake, S. and Kajitani, Y.,
"Rectangular-Packing-Based Module Placement", Proc.

86 J. XU et al.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

IEEE International Conf on Computer-Aided Design’95,
pp. 472-479, Nov. 1995.
Neapolitan, R. and Naimipour, K. (1996). "Foundations
of Algorithms", D. C. Heath and Company.
Onodera, H., Taniguchi, Y. and Tamaru, K. (1991).
"Branch-and-Bound Placement for Building Block Lay-
out", Proc. 28th Design Automation Conf, pp. 433-439.
Otten, R. H. J. M. (1982). "Automatic Floorplan Design",
Proc. 19th Design Automation Conf., pp. 261-267.
Shin, H., Sangiovanni-Vincentelli, A. L. and Sequin, C. H.,
’"Zone-Refining’ Techniques for IC Layout Compaction",
IEEE Trans. Computer-Aided Design, 9, 167-178, Feb.
1990.
Wong, D. F. and Liu, C. L. (1986). "A New Algorithm for
Floorplan Design", Proc. 23rd Design Automation Conf.,
pp. 101-107.
Xu, J., Guo, P. N. and Cheng, C. K. (1997). "Cluster
Refinement for Block Placement", Pro. 34th Design
Automation Conf, pp. 762-765.
Yamanouchi, T., Tamakashi, K. and Kambe, T. (1996).
"Hybrid Floorplanning Based on Partial Clustering and
Module Restructuring", Proc. IEEE International Conf
on Computer-Aided Design, pp. 478-483.

Authors’ Biographies

Jin Xu received the B.S. degree from the Uni-
versity of Electronic Science and Technology of
China, Chengdu, China, in 1985, and the M.S.
degree from Tsinghua University, Beijing, China,
in 1988, both in electrical engineering. She is a
Senior Member of Technical Staff ar Cadence
Design Systems, Inc., San Jose, CA. Her research
interest are in VLSI physical design algorithms,
especially in floorplanning and placement.

Pei-Ning Guo received the B.S. degree in
computer science from the National Taiwan

University, Taiwan, the M.S. degree in computer
science from New York University, and the Ph.D.
degree in computer science and engineering from
the University of California, San Diego in 1998.
He joined Mentor Graphics Corp., San Jose, as
a senior engineer in 1999. His research interests
include floorplan and placement approaches for
VLSI physical design.
Chung-Kuan Cheng received the B.S. and M.S.

degrees in electrical engineering from the National
Taiwan University, Taiwan, and the Ph.D. degree
in electrical engineering and computer science
from the University of California, Berkeley, in
1984. From 1984-1986 he was a Senior CAD
Engineer at Advanced Micro Device Inc. In 1986,
he joined the University of California, San Diego
(UCSD), where he was a Professor in the Com-
puter Science and Engineering Department. Cur-
rently, he serves as a Chief Scientist at Mentor
Graphics while taking leave from the university.
His research interests include network optimiza-
tion and design automation on microelectronic
circuits. Dr. Cheng has been an Associate Editor
of IEEE Transaction on Computer-Aided-Design
of Integrated Circuits and Systems since 1994.
He is a recipient of the best paper award IEEE
Transaction on Computer-Aided-Design of Inte-
grated Circuits and Systems, 1997, the NCR
Excellence in Teaching award from the School of
Engineering, UCSD in 1991.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

