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We have developed a full-band pseudopotential-based approach to describe semi-
conductor nanostructures. The method relies on the bulk Bloch functions expansion of
the system wavefunction, which guarantee an efficient integration of the full-band
approach in self-consistent schemes where Schroedinger and Poisson equations are
solved iteratively. In order to gain efficiency of the method a suitable separation between
structure dependent and material dependent contributions to the system hamiltonian is
presented. Results are shown for a typical Si/SiO2 MOS structure.
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1. INTRODUCTION

Several semiconductor devices exploit the confine-
ment of electrons in spatial regions of the order of
few nanometers. This is the case, for example, of
Silicon MOS or III-V HEMTs. Such confinement,
and related size quantization, are achieved using
semiconductor heterojunctions, an ingredient also
common to optoelectronic devices, such as lasers
and modulators.

Typically, carrier confinement in semiconductor
nanostructures is described in terms of k.p
expansion within the Envelope Function Approxi-
mation (EFA). This "standard model", however,
is not capable of describing the system in the
entire Brillouin zone and loses validity for ultra-
small systems.

All the limitations of the EFA can be over-
come by using full-band methods. In our

approach we describe the semiconductor nano-
structure in term of empirical pseudopotentials
[1]. Although only few parameters are needed
a large number of plane waves is required to
accurately describe the system even in the bulk
case. Thus, no guarantee exist that such
approach can be easily extended to nanostruc-
tures where dimension of hundred of A_ are
typical. The purpose of this article is to present
a method that maintains both the degree of
physical insight of full band approaches and the
speed of typical effective mass models. The
method, based on the bulk Bloch functions
expansion of the system wavefunction [2-8]
allows us to efficiently incorporate the full-band

Corresponding author.

91



92 F. CHIRICO et al.

approach into self-consistent schemes where
Schroedinger and Poisson equations are solved
iteratively.

2. THEORY

The one-electron Hamiltonian for a generic nano-
structure in the presence of an external potential
V(r), is given by

h2

2m v2 + W(r)V(r d) + V(r)

where r is the material index, c is the atomic base
index, d, the a-th atom offset in the unit cell,
W(r) a weight function [7] that selects the atom
type and V(r) the (periodic) local atomic pseu-
dopotential in real space related to the c-th atom
of material or. We are assuming that all materials
constituting the structure have the same Bravais
lattice although the approach can be generalized to
strained materials [9, 6].
We expand the system wavefunction b(r) over

a linear combination of the bulk Bloch wave-
functions bnk(r) of all the materials forming the
nanostructure

nko-

(2)

where N is the number of unit cells in the large
supercell which contains our nanostructure, n the
band index and k the wave vector. In a plane
wave expansion, the bulk Bloch wavefunction are
written as

qSnk(r) (r]nkr) V/ZOnk(G)lei(G+k).r
G

(3)

with G the reciprocal lattice vector and 9t0 the
volume of the unit cell.
By using Eqs. (2) and (3) and assuming a pro-

per representation of the external potential the
Schr6dinger equation for the nanostructure can

be written as a generalized eigenvalues problem [6]"

7"n’k’o nkoCnak E Sn,k, or’, nko"Ck
nkcr nkcr

(4)

where

Sn,k,a,,nk <dk’’lnko-> kk’ Zonk(G)*Bk(G)
G

represents the bulk wavefunction overlap (equal
to n’k’,nk only if a’ a).
The hamiltonian matrix element is given by:

4n’k’cr’, nko "-[-

+ W’ (k ’"r’t"n’k’a’,nka
(6)

where Wf’(k) and V(k) are the discrete Fourier
transform (DFT) of the W and V terms in Eq. (1),
while the expression for the A, B and are
obtained by direct evaluation [10]. The A,/3, C and
S matrices depend on the materials composition
of the nanostructure and do not depend on the
particular geometry, sequence of layers, and poten-
tial profile of the nanostructure itself. Thus, given a
material set, ,4, B, C and S matrices can be pre-
calculated and all variations in geometry and/or in
the external potential (as in typical self-consistent
cycle) will require only the DET of W and V. This
as an essential separation since the time spent to
calculate A,/3, and may be large while that to
obtain W2" (k) and V(k) is negligible.
The influence of space-charge effects induced

by electronic free-charge rearrangement can be in-
cluded in the full-band approach at a Hartree level
by solving self-consistently Poisson equation [11].
In obtaining the space dependent charge density, it
is necessary to consider explicitely the symmetry of
the system. It always possible to define a unit cell
of the (bulk) material forming the nanostructure in
such a way that some basis vector belongs to the
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"perpendicular" space where the translational
symmetry of the system is broken and the rest
of the basis vectors belong to the "parallel"
space, where the full periodicity of the crystal
is preserved. A given Bravais vector can thus be
decomposed in the perpendicular and parallel
components R--R+/-+RII. For Rll a reciprocal
parallel space can be defined and consequently
the Brillouin zone BZI[ for the kll vectors

(k k+/- + kll). In the case of a dots, for example,
th parallel space will be empty thus the perpendi-
cular space will coincide with the Bravais lattice

(R R+/-).
In order to reduce the microscopic oscillation

between atomic planes, a macroscopic average
similar to that used in the band-offset calculation
[12] is considered. The averaged wave-function is
thus given by

NEE_C.n,k,.-ad, Lkei(k-k’)+/- R+/-

crtffk ank

Bn,k’ Bnk (G)G,%
G

(7)

The charge density p(R+/-) is defined as:

e f dkllp(R+/-) (27r)z z,,

E I b(R+/-’ kll’ E )12j (g )

where e is the electron charge, u labels the energy
levels (E) for a given kll and D the dimeosionality
of the parallel space. The function f(E,,, EF) is
defined as follows

(E)- {f(E’EcF)-f(E,EF)
for the conduction states
for the valence states

(9)

where f(E,, EF) is the Fermi distribution function
with a given Fermi level EF. Electron and holes
Fermi levels, EF and EF respectively, are different
if the system is out of equilibrium as in presence
of optical or electrical injection. ](E, EF) is a

well behaved function which is different from zero

only in the proximity of the valence and conduc-
tion band edges. Poisson and Schr6dinger (Eq. 4)
equations, are iteratively solved until convergence
is reached. To speed-up the convergence we use a
first order expansion of the method presented in
Ref. [13].

3. EXAMPLE OF FULL-BAND
SELF-CONSISTENT CALCULATION

In the following we present the results of our self-
consistent full-band approach for a Si/SiO2 MOS
structure. We consider MOS system grown in the
[001] direction and we choose for the unit cell the
following basis

R1 a[0.5, 0.5, 0],
R2 a[-0.5, 0.5, 0],
R3 a[0, 0, 1].

(10)

The translational symmetry is thus broken only in
the R3 direction thus allowing an easy separation
between the perpendicular (R+/- nR3) and paral-
lel (RII mR1 +/R2) spaces. The two-dimensional
Brillouin zone has an irreducible-wedge (IW)
defined by

0<_kx<--; O<_ky< min kx,27r-kx (11)
a a

The kll integration needed to calculate the
charge density Eq. (8), is performed by using a

special k-points sampling [14] of the irreducible
wedge. However, only a small portion of the
irreducible wedge will contribute to the density,
namely those conduction band (or valence band
when considered) states close to the Fermi level.
We have found that convergent results can be
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obtained with a small number of special k-points should be imposed at the real edges of the devices.
in such regions, namely by using 3 kll points However, electrons will accumulate mainly in the
with ]kll < 0.06 and 18 kll < points with ]kll- quantized channel at the interface with the oxide.
[0.85, 0]1 < 0.2 (here we use 2r/a units). In order to approach the problem we have use
The full-band approach is not applied to the an embedded calculation: the whole structure is

whole MOS. In fact the dimension of a typical divided in a quantum region where the full band
MOS will be of the order of several micrometers approach is consider and in a classical region
and the potential variation will occur over this where quantization effects are not present. In
whole scale. This means that boundary condition this latter region, a classical three-dimensional
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FIGURE (a) Self-consistent conduction band edge profile and the electron density for the Si/SiO2 MOS structure. (b) Quantized
channel with the first three (squared) envelope wavefunction. The zero of the envelope correspond to the energy of the quantized
level.
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Thomas-Fermi description is used to calculate the
electron density (if present) and ionized doping
density.
We have considered a quantum region of

200 ML (56.5 nm) starting at the metal/SiO2 inter-
face towards the Si layer; the total width of the
device is 31am. We choose 41 k-points and 2
conduction bands in the bulk band expansion for
each semiconductor. In this calculation we use a
pseudo-SiO2, that is we use for the insulator the
same lattice structure of silicon, while the pseudo-
potential are tuned in order to obtain a band
structure that mimics the real band structure of
SiO2.

Figure a shows the calculated conduction band
edge and the electron density. The Quantized
channel with the first three (squared) envelope
wavefunction is shown in Figure lb. The zero of
each wavefunction has been set to the energy of
the corresponding energy level.
We should point out that the integration in the

2D-Brillouin zone in kll [0, 0] and kll [0, 0.85]
27r/a represents the two situations where quantiza-
tion arises from electron with longitudinal mass
and from electrons with transversal mass in the X
valleys.

Finally we would like to address the question of
the CPU load of such calculations. Starting from
a classical initial guess of the potential profile,
convergency of the results of Figure is obtained
in 10 self-consistent cycles. The overall calculation
is achieved in less than one hour in a typical single-
processor workstation. The calculation of the
A,/3, C and S matrix element is much more time
consuming and may require many hours of
computation. However, as discussed previously,

such matrix elements need to be calculated only
once. Moreover, the structure of such matrix
element call for a straightforward parallelization
where each element of the matrix can be calculated
in a different processor.

Acknowledgements

This work has been partially funded by MURST,
CNR progetto 5% Microelettronica, and by the
Office of Naval Research

References

[10]

[11]

[12]

[13]

[14]

[1] Cohen, M. L. and Chelikowsky, J. R., Electronic Structure
and Optical Properties of Semiconductors, 2nd edn.
Springer Ser. Solid-State Sci., 75 (Springer, Berlin, 1989).

[2] Kohn, W., In: "Solid State Physics: Advances in Research
and Applications", Seits, F. and Turnbull, D. Eds.
(Academic, New York, 1957), 5, 257.

[3] Altarelli, M., In: "Heterojunction and Semiconductor
Superlattices", Allan, G., Bastard, G., Boccara, N.,
Lannoo, M. and Voos, M. Eds. (Spronger, Berlin, 1986),
p. 12.

[4] Burt, M. G. (1999). J. Phys.: Condens. Matter, 4, 6651;
ibid., 11, R53 (1992).

[5] Fischetti, M. V. and Laux, S. E. (1993). Phs. Rev. B, 48,
2244.

[6] Froyen, S. (1996). J. Phys.: Condens. Matter, 8, 11029.
[7] Wang, L.-W., Franceschetti, A. and Zunger, A. (1997).

Phys. Rev. Lett., 78, 2819.
[8] Foreman, B. A. (1998). Phys. Rev. Lett., 80, 3823; ibid., 81,

425 (1998).
[9] Wang, L.-W. and Zunger, A. (1999). Phys. Rev. B, 59,

15806.
Chirico, F., Di Carlo, A. and Lugli, P., submitted to Phys.
Rev. B.
Di Carlo, A., Pescetelli, S., Paciotti, M., Lugli, P. and
Graf, M. (1996). Solid State Comm., 98, 803.
Baldareschi, A., Baroni, S. and Resta, R. (1988). Phys.
Rev. Lett., 61, 734.
Trellakis, A., Galick, A. T., Pacelli, A. and Ravaioli, U.
(1997). J. Appl. Phys., 81, 7880.
Froyen, S. (1989). Phys. Rev. B, 39, 3168.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


