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1. Introduction

In this paper we shall consider the problem of existence of solutions of a special class of
second order integrodifferential equations in Banach spaces. The physical origin of the
problem lies in the theory of vibrations of an extendible beam of length L, with ends held a
fixed distance apart, hinged or clamped, and is either stretched or compressed by an axial
force, taking into account the fact that, during vibration, the elements of a beam perform not
only a translatory motion, but also rotate [5, 14].

A mathematical model for this problem is an initial boundary value problem for the
nonlinear hyperbolic equation

L
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where z(z,t) is the deflection of point x at time ¢, « is a real constant proportional to the
axial force acting on the beam when it is constrained to lie along the z axis and X is a
nonnegative constant. The nonlinearity of the equation is due to the extensibility of the beam.
The above equation can be written in abstract form with the general nonlinear term as
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(I = AA)Z"(8) + A% (t) — [+ BM( || A2z || 2)]Az(t) = f(t, 2(¢), #(¢) (2)

If we take K = (I — AA) and [+ SM( || A2z || 2)JA — A2 = A for appropriate assump-
tions on «, 3, M, then equation (2) becomes

K2'(t) = Az(t) + f(t, 2(t), 2(£)). (3)

Hence, it is natural to consider the generalizations of the above equations as integrodif-
ferential equations of the form

t

KZ'(t) = Az(t) + f(t,z(t),ofg(t, s,2(8),2'(s))ds, 2'(t)). (4)

In many cases, it is advantageous to treat the second order abstract differential equations
directly rather than to convert them into first order systems. A useful tool for the study of
abstract second order equations is the theory of strongly continuous cosine families of
operators [15, 16]. The aim of this paper is to prove the existence of mild solutions in a
Banach space with suitable conditions on the operators K, A and the nonlinear functions f
and g. Related works to this kind of equation can be found in [6, 8, 11, 12].

2. Preliminaries

Consider the second order nonlinear integrodifferential equation of the form

Ka"(t) = Ax(t) + f(t,:v(t),oftg(t,s,x(s),x’(s))ds,m’(t)), teJ=][0,T], (5)

z(0)=zp€ X, 2'(0) =y € X, (6)

where K and A are linear operators with domains contained in a Banach space X and ranges
contained in a Banach space Y, which satisfy certain conditions, and the nonlinear functions
gJxJIxXxX—Xand f:J x X x X x X — Y are given.

In order to prove our main theorem, we assume certain conditions on the operators A and
K. Let X and Y be Banach spaces withnorm | - | and || - || respectively. The operators
A:D(A)Cc X - Y and K: D(K) C X — Y satisfy the following hypothesis:

(Hy) Aand K are closed linear operators,

(Hy) D(K) C D(A)and K is bijective,

(H3) K'Y — D(K) is continuous.

Substituting «(t) = Kz(t) in equation (5) we get

u'(t) = AKu(t)

+ f(t, Klu(t),oftg(t, s, K7 tu(s), (K~ ) (s))ds, (K u)'(t)). (7)

Now assume that
(Hy) AK™!generates a strongly continuous cosine family C(t), t € R, of
bounded linear operators on X and the adjoint operator (AK 1) is
densely defined, that is, D((AK~1)*) = X* (see [2]).
We need the following fixed point theorem to prove our main result.
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Schaefer Theorem: [13] Let F be a normed linear space. Let F: F — FE be a complete-
ly continuous operator, and let

((FY={x€ E:x=XFzforsome0 < \ < 1}.

Then either ¢(F) is unbounded or F' has a fixed point.
Further, we make the following assumptions:
(Hs) C(t),t> 0is compact.
(Hg) f(t, -, -, ):X x X xX — Y iscontinuous for each ¢ € J, and the function
f(-,z,y,2): J — Y is strongly measurable for each z,y, z € X.
(H;) For every positive constant  there exists a;, € L'(.J) such that

sup | ft,z,y,2) || <ag(t)for alla.a.t € J.
[z, lyl, 2] <k

(Hs) ¢:J xJxXxX— X is continuous and there exist continuous functions
a,b: J — [0,00) such that

19t s,2,9) | <a®bls)Q([x] + |yl)t,se ], zyeX,

where Qq: [0, 00) — [0, 00) is a continuous nondecreasing function.
(Hy) There exists a continuous function m: J — [0, co) such that

Itz y,2) [| <m@Q[x] + [yl + |z])ted zyzeX,

where Q: [0, 00) — [0, 00) is a continuous nondecreasing function.

For brevity, let us take
M =sup{ | K~'C(?) |
ag = sup{a(t):0 <

|:teJ}, M* =sup{ || K TAK~'S(t) || :t € J},
t < T} m(t)=max{(M + MT)m(t),aph(t)}
and

c=(M+ M) | Kxo || +(M+MT) | Kyo || -
Also, assume that

(Hio)
T

~ > ds
éf m (s)ds <cf OITOR

It is well known that if C(¢) is a strongly continuous cosine family with infinitesimal
generator AK ! and () is a solution of the problem (5)-(6), then

2(t) = K'C{t)Kzg+ K 1S(t) Ky

S

+ JtK-lsos = 5) (s, 2(s), [ gl 7, 2(7), (7)), (5)) s, (8)

The above equation is more general than equation (5) and every solution of (8) is called a
mild solution of (5)-(6). Further, equation (8) is easier to work with because of the nice
properties of the bounded operators C(¢), S(t), t € R as opposed to the unbounded operator
AK ™" in equation (7).
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3. Main Result

Theorem 3.1: Suppose (H;)-(Hip) hold. Then the problem (5)-(6) has at least one mild
solution on J.
Proof: Consider the space Z = C'(J, X) with norm

[ [ * =max{ |||, =]}

In order to study the existence problem for the equation (6)-(7), we apply the Schaefer
theorem to the following equation as in [9]

Ka'(t) = Azx(t) + /\f(t,x(t),oftg(t, s,z(s),x'(s))ds,z'(t)), t € J, 9)
z(0) = Az, 2'(0) = Ayo, A € (0,1). (10)
Let = be a mild solution of the problem (9)-(10). Then from
x(t) = MK C(t)Kxg + K 1S(t)Kyo)
+ /\OftKlS(t — ) f(s, x(s),ofsg(s, T, x(7), &' (7))dT, 2'(s))ds,

we have

|z(t) | <M || Kzo || +MT || Kyo ||

+ MTOffm(s)Q( [z(s) | + |2'(s) | +6[8a(8)b(7')90( |z(T) | + | 2/(7) | )d7)ds.

Denoting by wv(t) the right-hand side of the above inequality, we have

v(0) =M || Kzo || + MT || Kyo ||, |2(t) | <o(t),t e,

and

V() = MTm(6)Q( | x(t) | + | 2'() | +0fta(f)b(8)90( [ 2(s) | + [2'(s) | )ds)

< MTm()Qv(t)+ | 2'(t) | + aooftb(s)Qo(v(s) + | 2'(s) | )ds).
Therefore, if u(t) = sup{ || «'(s) || : s € [0,¢]}, ¢ € J, then
V() < MTm(t)Qv(t) + u(t) + aooftb(s)Qo(v(s) + u(s))ds).

But

2'(t) = A\ K TAK'S(t) Kzg + K~1C(t) Ky



Existence of Solutions

S

A KIC( = (6,20, ol (7). (1) /(9.

0
Thus we have,
u(t) < M* || Ko || + M || Kyo ||

S

+ Moftm(s)Q(v(s) +u(s) + [ a(s)b(1)Q(v(T) + u(7))dT)ds.

0
Denoting by r(t) the right-hand side of the above inequality, we have

u(t) <r(t), r(0)=M* || Kxo || + M || Ky ||, teJ

and
r'(t) = Mm(t)Qv(t) + u(t) + éfta(t)b(s)ﬂo(v(s) + u(s))ds)
< Mm()Qv(t) + r(t) + aooftb(s)ﬂo(v(s) +7(s))ds), te J.
Let
w(t) =v(t) +r(t) + aooftb(s)QO(v(s) + r(s))ds.
Then
w(0) =v(0) + r(0) = ¢, v(t) +rt) <w(t), t € J,
and
w'(t) = V' (t) + 7' (t) + apb(t)Q0(v(t) + r(¢))
< (M + MT)m(®)2(w(t)) + asb(t) 2 (1(?))
= (1) [Q(w(t)) + Qo(w(t))], t € J.
This implies

&£ ~J >0 ds
Q(s)+%(s) Sof m (s)ds <éf O+ teJ.

This inequality implies that there is a constant M/ such that

w(t) < My, t € J.

Then

119
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@) | <o), [[2'@) | <u)<r),tel,

and hence
[z *=max{||x|, [z} < M,

where M, depends only on 7" and on the functions m, a, b, 2y and €.
We shall now prove that the operator F': Z — Z defined by

(Fx)(t) = K'C(t)Kzg + K~1S(t) Ky

n OftK-lsu = (5,069, gl (), () ()

is a completely continuous operator.
Let By ={x € Z: ||z | * <k} for some k& > 1. We first show that F' maps Bj, into an
equicontinuous family. Letx € By and t,to € J. Thenif0 < t; <ty < T,

I (Fz)(t) — (Fz)(t2) |
< TKTHC() = Clea) || I Ko || + Il KTS(E) = SE)] | Kol

+ |l of K7YS(t1 —s) — S(ty — s)]f(s,x(s),of g(s,7z(7),2'(1))dT,2'(s))ds

—|—tf 2K‘lS(tg — s)f(s,x(s),ofsg(s,ﬂ x(7),2'(1))dT,2'(5))ds ||

< K Ct) = C)] |l || Kao | + | KT'[S(t1) = St)] || || Kyo |
+ Jtl | KU [S(t — ) — S(ts — )] || c(s)ds + MthtZak(s)ds

and similarly,
| (Fz)'(t1) — (Fz)'(t2) ||
S KO () = C () || || Kzo || + | KHS"(t) = S"(E)] | 1| Kyo |l

+Oft1 | KOt —s) — C(ta — S)]f(s,$(8)70f g(s, (1), 2'(7))d7,2'(s)) || ds

S

+ tfzK-louQ = 5) (s, 2(s), [ gl 7 2(7), ¢ (7))r, ' (5) s |

< | KTTAKTH (S () = S(t) || [ Ko || + | K7HC () = Cl)] || I Kyo

+ Oftl | K= [C(ty — s) = Ot — 5)] || an(s)ds + MtftQak(s)ds.
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The right-hand sides are independent of = € By, and tend to zero as t; — t, since C(t),
S(t) are uniformly continuous for ¢ € J and the compactness of C(t), S(t) for ¢ > 0 implies
the continuity in the uniform operator topology. The compactness of S(t) follows from that
of C(t). Thus F' maps By into an equicontinuous family of functions. It is easy to see that
the family F' By, is uniformly bounded.

Next we show E'Bj is compact. Since we have shown FBj is an equicontinuous
collection, it suffices by the Arzela-Ascoli theorem to show that F' maps B into a
precompact set in X.

Let 0 < ¢t < T be fixed and e a real number satisfying 0 < € < t. For x € B;, we define

(F.x)(t) = K'C(t)Kzg + K71S(t)Kyo + 0ft_Fles(t —8)f(s,x(s),2'(s))ds.

Since C(t), S(t) are compact operators, the set Y, (¢t) = {(F.z)(t): « € By} is precompact in
X forevery ¢, 0 < e < t. Moreover for every x € By, we have

I (Fa)(t) = (Fex)(?) |

S

=< ft I KIS (t = 5)f(s,2(s), [ g(s,7,2(7),2'(7))dr, '(5)) || ds

t—e 0

¢
< MT [ ap(s)ds

t—e

and

I (F)'(t) — (Fex)'(2) |

S

< ft | K71C(t = 5)f(s,2(s), [ g(s,7,2(7),2'(r))d7, ' (s)) || ds

t—e 0

< Mftozk(s)ds.

t—e

Therefore, there are precompact sets arbitrarily close to the set {(F'z)(t):x € By}. Hence,
the set {(Fz)(t): € By }is precompact in X.

It remains to show that F': Z — Z is continuous. Let {x,}3° C Z with =, — = in Z.
Then there is an integer ¢ such that || z,(¢) || <q, || 2,(t) || <gforallnandte J, so
[z@) [l <q [I2'() | <gandz,a’ € Z. By (Hj),

t t

ftan(t), [ g(t,s,2(s), 7,(s))ds, 2, (1) — f(t,2(t), [ g(t,s,2(s),2'(s))ds, z'(t))

0 0

for each ¢t € J and since
t t

1t zn(t), [ g(t,s,2u(s), 23, (5))ds, ,,(t) = [ (£, (L), [ g(t, 5,2(s),2'(s))ds, /(1)) |

0 0

< 2a,(1),
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we have by the dominated convergence theorem

S

| Fap — Fa || =sup || ftK’ls(t* $)[f(s:2n(s), [ g(s,7,20(7), 2),(7))dT, 27,(5))
teJ o 0

S

= f(s,2(s), [ g(s,7,2(7), 2/ (r))dr, 2'(s))]ds |

0

< MTéft I f(s,xn,(s)7ofsg(s, 7, 20(T), 2, (7))dT, 2}, (5))

S

— f(s,x(s),of g(s, 7, x(7), 2/ (1))dT,2'(s)) || ds — 0

and

I (Fzy) — (Fa)" |

S

=sup_|| ftK*lC(t = s)[f(ssxu(s), [ g(s,7,20(7), 2),(7))dT, 27,(5))
tedJ o 0

S

= f(s,2(s), [ g(s,7,2(7), 2/ (7))dr, 2'(s))]ds |

0

< Moft I f(s,xn(s),ofsg(sm,xn(T),x;(r))dT, x),(s))

- f(s,x(s),ofsg(s,r, x(7),2'(1))d7,2'(s)) || ds — 0,as n — occ.

Thus F'is continuous. This completes the proof that F' is completely continuous.

Finally, the set {(F) ={z € Z:x = AFz,\ € (0,1)} is bounded, as we proved in the
first step. Consequently, by Schaefer's theorem the operator F' has a fixed point in Z. This
means that any fixed point of £ is a mild solution of (5) on .J satisfying (Fz)(t) = x(t).

4. Nonlocal Cauchy Problem

In this section we shall consider the nonlocal Cauchy problem for the nonlinear second order
integrodifferential equation (5). This problem was first studied by Byszewski [3] for
semilinear equations in Banach spaces. Subsequently several authors have studied the same
problem for various classes of differential and integrodifferential equations in Banach spaces
[1,4,7,10].

Consider the second order nonlinear integrodifferential equation with nonlocal condition
of the form

Ka"(t) = Ax(t) + f(tyfﬂ(t),oftg(t, s, 2(s),2'(s))ds, ' (t)), t € J, (11)
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z(0) + h(z) = zo, 2'(0) = yo, (12)

where K, A, g, f are as before and h: C(J, X) — X is uniformly bounded.
By the hypothesis (H;)-(Hy), the solution of equation (11)-(12) is

z(t) = K'C(t)K[zg — h(x)] + K 1S(t)Kyo

+ éftKlS(t —8)f(s, x(s),éfsg(s, 7,2(7), 2'(7))dT, 2'(s))ds. (13)

For nonlocal term A, we assume the following condition.
(Hy1) h:C(J;X) — X and there exists a constant G > 0 such that

| h(z) || <G, forze C(J;X)

and the set {z(0):x € C(J; X), |z | < k,x(0) = zo— h(x)} is precompact in
X.
Then the existence of mild solutions for the problem (11)-(12) can be established in a similar
way as in Theorem 3.1 where the constant ¢ is taken as c¢= (M + M")
(I Kzo | +G)+ (M +T) || Kyo |-
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