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This paper presents a synthesizable VHDL model of a three-dimensional hyperbolic positioning system
algorithm. The algorithm obtains an exact solution for the three-dimensional location of a mobile given
the locations of four fixed stations (like a global positioning system [GPS] satellite or a base station in a
cell) and the signal time of arrival (TOA) from the mobile to each station. The detailed derivation of the
steps required in the algorithm is presented. A VHDL model of the algorithm was implemented and
simulated using the IEEE numeric_std package. Signals were described by a 32-bit vector. Simulation
results predict location of the mobile is off by 1 m for best case and off by 36 m for worst case. A C++
program using real numbers was used as a benchmark for the accuracy and precision of the VHDL
model. The model can be easily synthesized for low power hardware implementation.
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INTRODUCTION

Recently interests have emerged in using wireless
position location for Intelligent Transportation System
applications such as incident management, traffic
routing, fleet management and E-911 telephone service
[1]. Many designs have been proposed to solve the
wireless position location problem [2-4]. Beacon
location approach evaluates the signal strength from a
mobile at many different known locations and determines
the location of mobile. The other position locator
approach is to evaluate the angle-of-arrival of a signal at
two or more base stations, which determines the line of
bearing and ultimately the mobile location is determined.
The most widely used position location technique for
geolocation of mobile users is the hyperbolic position
location technique, also known as the time difference of
arrival (TDOA) position location method. This technique
utilizes cross-correlation process to calculate the
difference in time of arrival (TOA) of a mobile signal
at multiple (two or higher) pairs of stations. This delay
defines a hyperbola of constant range difference from the
receivers, which are located at the foci. Each TDOA
measurement yields a hyperbolic curve along which the
mobile may be positioned. When multiple stations are
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used, multiple hyperbolas are formed, and the intersec-
tion of the set of hyperbolas provides the estimated
location of the source.

Many organizations are developing competing products
to comply with the FCC’s E-911 mandate, which requires
US cellular carriers to provide location information of
phone calls, effective October 2001. The accuracy
required is 100 m or better. Many of these products will
implement the above-mentioned TDOA technique for
locating a mobile with varying degrees of accuracy.
Methods for calculating the TDOA and mobile position
have been reviewed previously [1,2]. Some methods
calculate the two-dimensional position and others estimate
the three-dimensional position depending on the degree of
simplicity desired. In this paper, a more detailed derivation
of a set of equations needed to locate the three-
dimensional position of a mobile is presented. We have
considered global positioning system (GPS) [5-8] to
estimate the location. The nominal GPS operational
constellation provides the user with between five and eight
satellites visible from any point on the earth. For better
accuracy four GPS satellite signals are typically used to
compute positions in three dimensions. The detailed
derivation in this work will be the basis for implementing
a positioning algorithm in C++ and VHDL. The VHDL
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version will utilize the IEEE numeric_std package so it
can be synthesized into an ASIC by anyone seeking a
hardware implementation.

THE ALGORITHM

The essence of the TDOA technique is the equation for the
distance between two points.

d= o —xP+ 0P+ @ ()

The distance between a mobile and a station is
determined indirectly by measuring the time it takes for a
signal to reach the station from the mobile. Multiplying
the TOA ¢ by the signal velocity ¢ gives us the distance d.
From now on, R will be used to represent the distance d
since it is the more commonly used notation in TDOA
literature.

We need to solve for the three unknowns x, y and z
(mobile position). Therefore, Eq. (1) is expanded to three
equations when the specific locations of three satellites 7, j
and k are given. This requirement can be easily met since
GPS satellites broadcast their exact locations.

cti=R; = \/(Xi — P+ — W@ - Q)

cti =R = \/(xj — '+ -+ G- )

=R =\~ + = @ - @)

where, x;, y;, zi, Xj, ¥j» Z; and Xy, yx, 7 are the position of ith,
Jjth and kth satellite, respectively and these positions vary
with time.

Unfortunately, solving the three equations for three
unknowns will not lead to a simple and satisfactory
solution because of the square root terms. The solution can
be simplified by adding another satellite / for an additional
equation. In addition, the accuracy of the mobile position
will be further improved if four equations are used. This
requirement is easily met since four GPS satellites are
guaranteed to be in the horizon of any location on earth
[9]. The four equations will be combined to form
expressions for time difference of arrivals (TDOAs) R,
Rik’ Rkj and Rkl-
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Moving one square root term to the other side gives us:
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Squaring both sides produces the following set of
equations:
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RE — 2Ry — 57 + O — 9 + (& — 2
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Expanding the squared terms to the left of the square
root term produces:
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Eliminating the x? y? and z” terms reduces the
equation set to:

RE = 2Ry /(i — X7 + 01— 9P+ (@ — 9P + 4
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Shifting all but the square root term to the right and
combining similar terms produces:

V@ =02+ 0y~ 3 + @ - 2
= [R,«2j+x,-2—xf+y,~2—yf+z,~2—zf+2xjx
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The equation set can now be simplified by
substituting xj; for x; — x;, y; for y; —y; and so on.

Ve =02+ Oy = 3P + @ - 2
= [Rl<2j+xi2 —xj?+yi2 —yf+zi2 —zjz+2xjix

+ 2y;iy + 22zl /2Ry (29)
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Equations (5)—(8) are now in a useful arrangement.
Equations (29)—(32), when squared, are intersecting
hyperboloids. By equating Egs. (29) and (30) to form
Eq. (33), we can derive a plane equation in the form of

y = Ax 4+ By + C by rearranging the terms as shown in
Egs. (34) and (35).

(R +x; = x7 +y7 =7 +27 — 27 +2xx+ 2y;y+ 2221 /2Ry
=R+ Y —vitg
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Equation (35) is now in the desired form of a plane
equation as follows:

y=Ax+Bz+C (36)
where
Rixxji — RijXyi
A= {7"’9 -’x"} 37)
Rijyii — Rixyji

and
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2[Rjyki — Riyjil
(39)
Similarly, equating Eqgs. (31) and (32) produces a

second plane equation y = Dx 4 Ey + F. The resulting
set of equations are:

y=Dx+Ez+F (40)
where
R — R
= |RuXi i Xik @n
[Rijyie — Ruryje
and
"Riuzie — Rz
7= |Rugic iZlk 42)
\Riiyie — Ry
and

. RulRy+xt = x? +yE =y 423 — 221 = RylRy +xf —xi +yi —yi +22 = 51

2[Ry — Ruyji]
(43)

Equating the plane Eqs. (36) and (40) produces a linear
equation for x in terms of z.

Ax+Bx+C=Dx+Ez+F (44)
x=Gz+H (45)
where
E—B
G=—— 46
1D (46)
and
F-C
H=— 47
1D 47

Substituting Eq. (45) back into Eq. (36) produces a
linear equation for y in terms of z.

y=A(Gz+H)+Bz+C (48)
y=Iz+J (49)
where
I=AG+B (50)
and
J=AH+C (51)
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Equations (45) and (49) are now substituted back
into Eq. (30) to derive the position z.

2R/ (s — (G2 + H)? + (i — Uz 4+ D)+ i — 2
= [Rizk—i-xi2 —x,%—i—y,-z —yi—i—z? —Zi

+ 2x3i(Gz + H) + 2yii(lz + J) + 2z42] (52)

2R,»k\/(G2z2 = 2Gz(x; — H) + (x; — HY)) + (1222 = 2I2(y; = )+ (i — DD + (22 = 252+ D)
=Li+K (53)
where
K=Ri+x}—x+y' —yvi+2 — 2 +2x,H
+ 2ykiJ (54)
and
L =2[x1;G + yuil + 2z] (55)
4R [G?2* + 1727 + 22 — 2Gz(x; — H) — 20z(y; — J)
— 2%z + (i — HY? + (i — I + 271

=L%> +2KL; + K? (56)

ARZIG? + 17 4+ 112% — 8RL[G(x; — H) + 1(y; — J)
+ zilz + 4R [(xi — H)> 4+ (i — ))* + 2]
=L%%+2KL; + K? (57)

To obtain z, Eq. (57) is rearranged into a binomial
equation.

Mz* —Nz+0=0 (58)
where
M =4R;[G* +1*+ 1] - L* (59)
and
N =8R2[G(x; — H) + I(y; — J) + z;] + 2LK ~ (60)

and

0=4R2[(xi — H? + (i — ) + 21— K* (6]

The solution for z is:

N N\* o
= (=) == 62
‘T (2M> M 62)

The z coordinate can be put back into the linear Egs. (45)
and (49) to solve for the coordinates x and y.

VHDL MODEL

The equations for the x, y and z position of the mobile was
modeled using VHDL. The numeric_std package was
used to construct the VHDL model that was readily
synthesized into a low power digital circuit. The details of
the circuit are beyond the scope of this paper. The input
signals of the model are the x, y, z positions of four GPS
satellites i, j, k, [ in meters, and the signal TOAs from the
individual satellites to the mobile in nanoseconds. The
input signal assignments are xi, yi, zi, ti, xj, yj, 7J, 1, Xk, yk,
zk, tk, x1, yl, zI and tl.

GPS satellite altitudes are approximately 10,900
nautical miles (20,186,800 m). Therefore, the TOA range
is roughly 6,700,000—-7,600,000 ns. This means the input
signals can be adequately described by a 32-bit vector. In
order to perform signed arithmetic operations, the input
signal assignments are of type SIGNED. The binary
representation for negative numbers is 2’s complement.
The TDOAs are converted to distances by multiplying
them by the binary representation of 100,000, and then
dividing the result by the binary representation of
333,564 ns/m.

Since all signal and variable assignments are vectors
representing integers, a method for maintaining adequate
precision in divide and square root operations is needed.
This will be achieved by multiplying the numerator by the
binary representation of 1.0 X 10'° in divide operations.
This method is preferred to using decimal point notation to
decrease the complexity of the model. However, the length
of the vectors increases for successive multiplication
operations, leading to a 200-bit vector for the interim
value O.

The numeric_std package does not contain an over-
loaded square root operator. Therefore, Dijkstra’s bisec-
tion algorithm [10] is used to compute the integer square
root of a positive integer represented by a 64-bit vector.
Sixty four bits is deemed adequate since the position z and
the square root term cannot be larger than 32 bits by
definition.

The square root operation gives two values for z, so the
output signals z1, z2, x1, x2, yl, y2 are for two possible
mobile positions. The z value representing the mobile
position can be determined by using a fifth satellite, or
checking if the value is in the horizon of the four satellites
relative to earth. The details of the VHDL model of the
algorithm are provided in Appendix A.
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Satellite |
75092320 ns to mobile
(-18785564,18785564,0)

N

tellite j
8283279 ns to mobile
(-15338349,15338349,15338349

mobile
(0,6380000,0)

Satellite i
67335898 ns to mobile
(0,26566800,0)

Satellite k
86023981 ns to
(0,6380000, 25789348)

~

e [

(0,0,0) z axis folded out

Earth

FIGURE 1

TESTING THE MODEL

Accolade’s demonstration edition of Peak VHDL was used
to compile the model and run simulations. The model was
also compiled and synthesized with Mentor Graphics’
AUTOLOGIC 1I [11] in low power mode to ensure the
model was synthesizable. A high level schematic was
generated (not shown here) using AUTOLOGIC’s default
component library.

Figures 1 and 2 show two different real life situations.
The satellite positions and TOA from the satellite at

A real life situation with the satellite positions and TOA from the satellite at the mobile is specified in nanoseconds.

the mobile in nanoseconds are specified in the figures.
The known position of a mobile was used to determine the
input test data for #i, ¢j, tk and tl. The test data for the
satellite positions xi, yi, zi, Xj, yJ, 7j, xk, yk, zk, xI, yl and zl
are realistic numbers.

The VHDL test benches representing the real life
situations in Figs. 1 and 2 were used to validate the model.
The test bench converted the base 10 numbers in Fig. 1 or
Fig. 2 to binary numbers and outputted the x, y and z
positions of the mobile in binary and base 10 format. Two
test benches (Appendix B and C) representing two sets of

Satellite i
86320708 ns to mobile
(-15102069,21482069,368

R

mobile

-y axis

3683495,3683495,3683495)

Satellite k
67335895 ns to mobile
(15338349,15338349,15338349)

Satellite j
75293013 ns to mobile
0,6?0000, 25789348)

y and z axis

Satellite 1
78283279 ns to mobilg
(26566800,0,0)

FIGURE 2  Another real life situation where the satellite positions and TOA from the satellite at the mobile is specified in nanoseconds.
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TABLE I The results of VHDL simulation after applying the first test
bench (Appendix B) for Fig. 1

TABLE IV The results of C++ program (Appendix E) which
corresponds to the second test bench (Fig. 2)

Signal Value Signal Value
int_x2 -1 x1 3683494
int_y2 6379964 vl 3683495
int_z2 0 zl 3683495
X2 TILLILIIIIII I eeeeaaI11111it

y2 00000000011000010101100110111100

2 00000000000000000000000000000000

data were used to simulate the model. Two C+ 4~ programs
(Appendix D and E) using real numbers were used as a
benchmark for the accuracy and precision of the VHDL
model. The results of VHDL simulation displayed in Table
I after applying the first test bench (Appendix B) for Fig. 1.
Table II shows the results of VHDL simulation after
applying the second test bench (Appendix C) for Fig. 2.
Results from the C++ program (Appendix D) which
corresponds to the first test bench are shown in Table III
whereas Table IV shows the results from the C+4+
program (Appendix E) which corresponds to the second
test bench.

The C4+4 program and VHDL model produced
the same results. This means the VHDL model can
produce the coordinates as accurate as a GPS utilizing a
general purpose microprocessor with a 32-bit IEEE
floating point ALU. For Fig. 1, the y position was off by
36 m, and the x position was off by 1 m. For Fig. 2, the x
position was off by 1 m. The VHDL model’s accuracy
could be improved by extending the precision beyond the
ten decimal points as it is currently constructed. However,
the number of gates will increase in the synthesized circuit.

SUMMARY

In summary, we have presented a synthesizable VHDL
model of a three-dimensional hyperbolic positioning

TABLE II  The results of VHDL simulation after applying the second
test bench (Appendix C) for Fig. 2

Signal Value

int_x1 3683494

int_yl 3683495

int_z1 3682495

x1 00000000001110000011010010100110
vl 00000000001110000011010010100111
zl 00000000001110000011010010100111

TABLE III The results of C++ program (Appendix D) which
corresponds to the first test bench (Fig. 1)

Signal Value
x1 -1

vl 6379964
zl 0

system algorithm. We obtained the exact solution for the
three-dimensional location of a mobile given the locations
of four fixed GPS satellites or a base station in a cell and
the signal TOA from the mobile to each station. The
algorithm was implemented using a VHDL model of and
simulated using the IEEE numeric_std package. Simu-
lation results for two different situations predict location
of the mobile is off by 1 m for best case and off by 36 m for
worst case. A C++ program using real numbers was used
as a benchmark for the accuracy and precision of the
VHDL model. The model can be easily synthesized for
low power hardware implementation.
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APPENDIX A

--VHDL model for computing x, y, z position of mobile given four satellite
--positions and TOAs from satellites to mobile

library ieee;
use ieee.std logic 1164.all;
use ieee.numeric_std.all;

entity hyperbolic is

port (xi,xj,xk,x1l,yi,vj,vk,yl,zi,zj,zk,z1l,ti, tk,tj,tl: in SIGNED(31l downto 0) ;
x1,%x2,yl,y2,2z1,2z2: out SIGNED(31l downto 0));

end hyperbolic;

architecture behave of hyperbolic is

signal o: SIGNED(199 downto 0);

signal n: SIGNED (195 downto 0) ;

signal m: SIGNED(191 downto 0);

signal c,f,1: SIGNED(95 downto 0);

signal sl12,sl16,s21,s22,s24: SIGNED(131 downto 0);

signal s9,s11,s13,s15,s23,k: SIGNED(99 downto 0);

signal sl1,s2,s3,s4,s5,s6,s87,s8,s10,s14,s17,s18,s19,s20,s826,s27,s29,s30,
a,b,d,e,g,h,i,j,vi2,yj2,vk2,y12,xi2,xj2,xk2,x12,2z1i2,z32,2k2,z12,
rij2,rik2,rkl2,rkj2: SIGNED(63 downto 0);

signal rij,rik,rkj,rkl,xji,xki,xjk,x1lk,yji,vki,yjk,vlk,zji,zki,zjk,z1lk,
light, thou, root,s28,s31,s32,s33,834,s35,s36: SIGNED(31 downto 0);

signal one_e_10: SIGNED (35 downto 0):="001001010100000010111110010000000000";
begin

light<=to_signed(333564,32); thou<=to_signed(100000,32) ;

sl<=abs (thou* (ti-tj)); s5<=s1/light; rij<=resize(s5,32); rij2<=rij*rij;
s2<=abs (thou* (ti-tk)); s6<=s2/light; rik<=resize(s6,32); rik2<=rik*rik;
s3<=abs (thou* (tk-tl)); s7<=s3/light; rkl<=resize(s7,32); rkl2<=rkl*rkl;
s4<=abs (thou* (tk-tj)); s8<=s4/light; rkj<=resize(s8,32); rkj2<=rkj*rkj;
Xji<=xj-xi; yji<=yj-vi; zjic=zj-zi; yi2<=yi*yi; xi2<=xi*xi; zil2<=zi*zi;
xki<=xk-xi; yki<=yk-yi; zki<=zk-zi; Yi2<=yi*yj; xj2<=xj*xj; zj2<=zj*zj;
xlk<=x1-xk; ylk<=yl-vk; zlk<=zl-zk; vk2<=yk*vk; xk2<=xk*xk; zk2<=zk*zk;
xjk<=xj-xk; yjk<=yj-vk; zjk<=zj-zk; v12<=yl*yl; x12<=x1#*x1; zl2<=zl*zl;

s9 <=one_e_10* (rik*xji-rij*xki); s10<=rij*yki-rik*yji;

sll<=one_e_ 10* (rik*zji-rij*zki); sl3<=one_e_ 10*(rkl*xjk-rkj*xlk);
sla<=rkj*ylk-rkl*yjk; sl5<=one_e 10*(rkl*zjk-rkj*zlk);
s17<=rij2+xi2-xj2+yi2-yj2+2i2-2j2; 518<=rik2+xi2-xk2+yi2-yk2+zi2-zk2;
s19<=rkj2+xk2-xj2+yk2-yj2+zk2-2j2; s20<=rkl2+xk2-x12+yk2-y1l2+zk2-212;
sl2<=one_e_10* (rik*sl17-rij*sl18); slé<=one e 10* (rkl*sl9-rkj*s20);
$21<=SHIFT_RIGHT(sl12,1); §22<=SHIFT_RIGHT (sl6,1);
a<=resize(s9/s10,64) ; b<=resize(s1l1/s10,64); c<=resize(s21/s10,96);

d<=resize(sl1l3/sl14,64); e<=resize(sl5/sl4,64); f<=resize(s22/s14,96);
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s23<=one_e_10* (e-b) ; s24<=one_e_10* (f-c);
g<=resize(s23/(a-d),64); h<=resize(s24/(a-d),64);
i<=resize(((a*g)/one_e_10)+b,64); j<=resize(((a*h)/one e 10)+c,64);

k<=sl8+*one_e 10+SHIFT LEFT(j*yki,1)+SHIFT LEFT (h*xki,1);

1<=SHIFT LEFT(g*xki+i*yki+zki*one_ e 10,1);

m<=SHIFT_ LEFT (rik2* (g*g+i*i+one_e_10*one_e_10),2)-1*1;
s26<=resize(one_e_10*xi-h,64); s27<=resize(one_e_10*yi-j, 64);
n<=SHIFT_LEFT (rik2* (g*s26+i*s27+zi*one_e_10*one_e_10),3)+SHIFT_LEFT (1*k,1);
0<=SHIFT LEFT (rik2* (s26*s26+s27*s27+zi*zi*one_e_10*one_e 10),2)-k*k;

s28<=resize (SHIFT RIGHT (n/m,1),32);
s29<=resize(o/m,64) ;
s30<=828%s28-529;

squareroot:process (s30)
variable g,r,s,t:signed (63 downto 0);
begin
q:=s30;
s:=to_signed(0,64) ;
r:=to_signed(0,64) ;
£:="0100000000000000000000000000000000000000000000000000000000000000™;
for j in 1 to 32 loop

s:=r+t;

if s<=qg then
q:=9-8;
r:=s+t;

end if;

r:=shift_right(r,1);
t:=shift right(t,2);
end loop;
root<=resize(r,32);
end process squareroot;

s31<=828+root; z1l<=s31;
s32<=resize((g*s31l+h)/one_e 10,32); x1l<=832;
s33<=resize((a*s32+b*s31+c) /one e 10,32); yl<=s33;
s34<=s28-root; z2<=834;
s35<=resize((g*s34+h)/one_e_10,32); x2<=835;
s36<=resize((a*s35+b*s34+c) /one_e 10,32); y2<=836;

end behave;
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APPENDIX B

--VHDL test program for hyperbolic.vhd

--TEST CASE 1
library ieee;
use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity test is
end test;

architecture stimulus of test is

component hyperbolic

port (xi,xj,xk,xl,vi,yj,vk,yl,zi,zj,zk,zl,ti, tk,tj,tl:in SIGNED (31 downto O0);
x1,x2,y1l,y2,21,z2: out SIGNED(31 downto 0));

end component;

signal ti:SIGNED (31 downto 0):=to_signed(67335898,32
signal tj:SIGNED (31 downto 0):=to_signed(78283279,32
signal tk:SIGNED(31 downto 0):=to_signed (86023981, 32
signal tl:SIGNED (31 downto 0):=to_signed (75092320, 32

signal xi:SIGNED (31 downto
signal xj:SIGNED (31 downto
signal xk:SIGNED (31 downto
signal x1:SIGNED (31 downto

:=to_signed(0,32);
:="11111111000101011111010010010011"; -~
:=to_signed(0,32);
:="11111110111000010101101011100100"; -~

i

i

i

i

signal yi:SIGNED (31 downto 0):=to_signed(26566800,32) ;
signal yj:SIGNED (31 downto 0):=to_signed(15338349,32);
signal yk:SIGNED (31 downto 0):=to_signed(6380000,32);
signal yl:SIGNED (31 downto 0):=to_signed(18785564,32);

signal zi:SIGNED (31 downto
signal zj:SIGNED (31 downto
signal zk:SIGNED (31 downto
signal z1:SIGNED (31 downto

signal x1,x2,yl,y2,2z1,22:SIGNED(31 downto 0):=to_signed(0,32);

) :=to_signed(0,32);

) :=to_signed(15338349,32);
)

)

:=to_signed(25789348,32) ;
:=to_signed(0,32);

signal int x1,int x2,int y1l,int y2,int zl,int z2:integer:=0;

begin

sl: hyperbolic port map (xi => xi, xj
yi =>yi, vyj
zi => zi, zj
ti => ti, tj
zl => zl1, z2
x2 => x2, vyl

> tJ,
> z2,
> yl,

> X3,
=> vJ,

23,

x1l =

int_xl<=to_integer(xl); int_ x2<=to_integer (x2);
int _yl<=to_integer(yl); int_y2<=to_integer(y2);
int_zl<=to_integer(zl); int_z2<=to_integer(z2);

end stimulus;

vk,

=> zk,

tk,
x1,
v2);

xl=>x1,
yl=>yl,
zl=>z1,
tl=>tl,

(-15338349)

(-18785564)
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APPENDIX C

--VHDL test program for hyperbolic.vhd
--TEST CASE 2

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity test is
end test;

architecture stimulus of test is

component hyperbolic

port (xi,xj,xk,x1,vi,yvj,vk,vl,zi,zj,zk,z1l,ti,tk,t]j,t
x1,x2,y1l,y2,21,2z2: out SIGNED (31 downto 0));

end component ;

signal ti:SIGNED downto

(31 :=to_signed(86320708,3
signal tj:SIGNED (31 downto

(31

(31

) (

) :=to_signed(75293013,3
) :=to_signed (67335895, 3
) :=to_signed(78283279,3

signal tk:SIGNED downto
signal tl:SIGNED downto

signal xi:SIGNED (31 downto 0
signal xj:SIGNED (31 downto 0
signal xk:SIGNED (31 downto 0O
signal x1:SIGNED (31 downto O

)

) :=to_signed(0,32);

) :=to_signed(15338349,3
) :=to_signed(26566800,3
signal yi:SIGNED (31 downto
signal yj:SIGNED (31 downto
signal yk:SIGNED (31 downto
signal yl:SIGNED (31 downto

) :=to_signed(21482069,3
) :=to_signed(6380000,32
) :=to_signed(15338349,3
) :=to_signed(0,32);

signal zi:SIGNED (31 downto 0):=to_signed(3683495,32

signal zj:SIGNED (31 downto 0):=to_signed(25789348,3

signal zk:SIGNED (31 downto 0):=to_signed(15338349,3
(31 0) (

signal z1l:SIGNED downto :=to_signed(0,32);

signal x1,x2,y1l,y2,2z1,2z2:SIGNED(31 downto 0):=to_signed(0,32);

1: in SIGNED(31 downto 0);

2)
2);
2);
2)

7

i

:="11111111000110011000111110001011"; -~

2);
2);

2);
)i
2);

)i
2);
2)

7

signal int_x1,int x2,int_yl,int_y2,int_zl,int_z2:integer:=0;

begin

sl: hyperbolic port map (xi => xi, xj => xj, xk =>
yi => yi, vj => yj, vk =>
zi => zi, zj => zj, zk =>
ti => ti, tj => tj, tk =>
zl => z1, z2 => z2, x1 =>
X2 => x2, yl =>vyl, y2 =>

int _xl<=to_integer(xl); int_x2<=to_integer(x2);
int_yl<=to_integer(yl); int_y2<=to_integer(y2);
int_zl<=to_integer(zl); int_z2<=to_integer(z2);
end stimulus;

xk, xl=>x1,
vk, yl=>yl,
zk, zl=>zl,
tk, tl=>tl,

v2);

(-15102069)
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/******************************************************************************

// C program for calculating x,y,z position of mobile given four satellite
// positions and TDOAs to mobile - TEST CASE 1

//******************************************************************************

#include <iostream.h>
#include <math.h>

main ()

{

double ti=67335898; double tk=86023981; double tj=78283279; double tl1l=75092320;
double x1i=0; double xk=0; double xj=-15338349; double x1=-18785564;
double yi=26566800; double yk=6380000; double yj=15338349; double yl=18785564;
double zi=0; double zk=25789348; double zj=15338349; double z1=0;

cout<<"ti = "<<ti<<endl; cout<<"tj = "<<tj<<endl; cout<<"tk = "<<tk<<endl;
cout<<"tl = "<<tl<<endl; cout<<"xi = "<<xi<<endl; cout<<"xj = "<<xj<<endl;
cout<<"xk = "<<xk<<endl; cout<<"xl = "<<xl<<endl; cout<<"yi = "<<cyi<<endl;
cout<<"yj = "<<yj<<endl; cout<<"yk = "<<yk<<endl; cout<<"yl = "<<yl<<endl;
cout<<"zi = "<<zi<<endl; cout<<"zj = "<<zj<<endl; cout<<"zk = "<<zk<<endl;
cout<<"zl = "<<zl<<endl;

double xji=xj-xi; double xki=xk-xi; double xjk=xj-xk; double xlk=xl-xk;

double xik=xi-xk; double yji=yj-yi; double yki=yk-yi; double yjk=yj-vk;

double ylk=yl-vk; double yik=yi-yk; double zji=zj-zi; double zki=zk-zi;

double zik=zi-zk; double zjk=zj-zk; double zlk=zl-zk;

double
double

double
double

double
double

s9 =rik*xji-rij*xki; double
sl2=(rik* (rij*rij + xi*xi -
-rij* (rik*rik + xi*xi -

s13=rkl*xjk-rkj*xlk; double
s16=(rkl* (rkj*rkj + xk*xk -
-rkj* (rkl*rkl + xk*xk -

sl0=rij*yki-rik*yji; double sll=
xj*xj + yi*yi - yj*yj + zi*zi -
xk*xk + yi*yi - yk*yk + zi*zi -

sl4a=rkj*ylk-rkl*yjk; double sl5=
xj*xj + vk*yk - yj*yj + zk*zk -
x1*x1 + yk*yk - yl*yl + zk*zk -

rij=abs((100000* (ti-tj))/333564); double rik=abs((100000* (ti-tk))/333564);
rkj=abs ((100000* (tk-tj))/333564); double rkl=abs((100000* (tk-tl))/333564);

rik*zji-rij*zki;
zj*zj)
zk*zk))/2;
rkl*zjk-rkj*zlk;
zj*z7)

z1*z1))/2;

sl4;
(f-c)/(a-d);

) -829;

double a= s9/s10; double b=s11/s10; double c¢=s12/s10; double d=s13/
double e=s15/s14; double f=s516/s14; double g=(e-b)/(a-d); double h=
double i=(a*g)+b; double j=(a*h)+c;

double k=rik*rik+xi*xi-xk*xk+yi*yi-yk*yk+zi*zi-zk*zk+2*h*xki+2*j*yki;
double 1=2* (g*xki+i*yki+zki) ;

double m=4*rik*rik+* (g*g+i*i+1)-1*1;

double n=8*rik+*rik* (g* (xi-h)+i* (yi-j)+zi)+2*1+%k;

double o=4+*rik*rik* ((xi-h)* (xi-h)+(yi-j)* (yi-g)+zi*zi)-k*k;

double s28=n/(2*m) ; double s29=(o/m) ; double s30=(s28*%*s28
double root=sgrt(s30); cout<<endl;

int zl=s28+root; //cout<<"zl = "<<zl <<endl;

int z2=s28-root; cout<<"z2 = "<<z2 <<endl;

int xl=g*zl+h; //cout<<"xl = "<<x1l <<endl;

int x2=g*z2+h; cout<<"x2 = "<<x2 <<endl;

int yl=a*xl+b*zl+c; //cout<<"yl = "<<yl <<endl;

int

}

y2=a*x2+b*z2+c;

cout<<"y2

"<<y2 <<endl;
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//******************************************************************************

// C program for calculating x,y,z position of mobile given four satellite
// positions and TDOAs to mobile - TEST CASE 2

//******************************************************************************

#include <iostream.h>
#include <math.h>

main ()
{

double
double
double
double

cout<<
cout<<
cout<<
cout<c<
cout<<
cout<c<

double
double
double
double

double
double

double
double

double
double

double
double
double
double
double
double
double
double
double
double
int z1l
int z2
int x1
int x2
int y1
int y2

}

ti=86320708; double
x1=-15102069; double

yi=21482069; double
z1=3683495; double
"ti = "<<ti<<endl;
"t]l = "<<tl<<endl;
"xk = "<<xk<<endl;
"yj = "<<yj<<endl;
"zi = "<<zi<<endl;
"zl = "<<zl<<endl;

xji=xj-xi; double xk
xik=xi-xk; double yj
ylk=yl-yk; double yi
zik=zi-zk; double zj

rij=abs ((100000* (ti-
rkj=abs ((100000* (tk-

s9 =rik*xji-rij*xki;
sl2=(rik* (rij*rij +
-rij* (rik*rik +
sl3=rkl*xjk-rkj*xlk;
sl6=(rkl* (rkj*rkj +
-rkj* (rkl*rkl +

a= s89/s10; double b=

tk=67335895; double tj=75293013; double
xk=15338349; double xj=0; double

cout<<"tj =
cout<<"xi =
cout<<"xl =
cout<<"yk =
cout<<"zj =

i=xk-xi; double
i=yj-yi; double

t1=78283279;
x1=26566800;

vk=15338349; double yj=6380000; double yl=0;
zk=15338349; double zj=25789348; double z1l=0;
"<<tj<<endl; cout<<"tk = "<<tk<<endl;
"<<xi<<endl; cout<<"xj = "<<xj<<endl;
"<<xl<<endl; cout<<"yi = "<<yi<<endl;
"<<yk<<endl; cout<<"yl = "<<yl<<endl;
"<<zj<<endl; cout<<"zk = "<<zk<<endl;
xjk=xj-xk; double xlk=xl-xk;
vki=yk-yi; double yjk=yj-vk;
zji=zj-zi; double zki=zk-zi;

k=yi-yk; double
k=zj-zk; double

zlk=z1-zk;

tj))/333564); double rik=abs((100000*(ti-tk))/333564);
tj))/333564); double rkl=abs((100000* (tk-tl))/333564);

double s10=rij
xi*xi - xj*xj +
xi*xi - xk*xk +

*yki-rik*yji; double sll=
yi*yi - yj*yj + zi*zi -
yvi*yi - yk*yk + zi*zi -

rik*zji-rij*zki;
zj*z7j)
zk*zk)) /2;

double sl4=rkj*ylk-rkl*yjk; double sl5=rkl*zjk-rkj*zlk;
xk*xk - xj*xj + yvk*yk - yj*yj + zk*zk - zj*zj)
xk*xk - x1l*xl + yk*yk - yl*yl + zk*zk - zl*zl))/2;

s11/s10; double

c=s812/s10; double d=s13/

sl4;

e=s15/s14; double f=s16/s14; double g=(e-b)/(a-d); double h=(f-c)/(a-4d);

i=(a*g)+b; double j=

(a*h) +c;

k=rik*rik+xi*xi-xk*xk+yi*yi-yk*yk+zi*zi-zk*zk+2*h*xki+2*j*yki;

1=2* (g*xki+i*yki+zki
m=4*rik*rik* (g*rg+i*i

)i
+1)-1*1;

n=8*rik*rik* (g* (xi-h)+i* (yi-j)+zi)+2*1*k;
o=4*rik*rik* ((xi-h)*(xi-h)+(yi-j)*(yi-j)+zi*zi)-k*k;

s28=n/(2*m) ; dou
root=sqrt (s30) ;

=s28+roo0ot;
=s28-root;
=g*zl+h;
=g*z2+h;
=a*x1+b*zl+c;
=a*x2+b*z2+C;

ble s29=(o/m) ;
cout<<endl;
//cout<<"zl
cout<<"z2 =
//cout<<"x1
cout<<"x2 =
//cout<<"yl
cout<<"y2 =

double s30=(s28*s28

= "<<zl <<endl;
"«<z2 <<endl;
= "<<x1 <<endl;
"<<x2 <<endl;
= "<<yl <<endl;
"<<y2 <<endl;

) -829;
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