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This paper presents two primary results relevant to physical design problems in CAD/VLSI through a
case study of the linear placement problem. First a local search mechanism which incorporates a
sophisticated neighborhood operator based on constraint relaxation is proposed. The strategy exhibits
many of the desirable features of analytical placement while retaining the flexibility and non-
determinism of local search. The second and orthogonal contribution is in netlist clustering. We
characterize local optima in the linear placement problem through a simple visualization tool—the
displacement graph. This characterization reveals the relationship between clusters and local optima
and motivates a dynamic clustering scheme designed specifically for escaping such local optima.
Promising experimental results are reported.
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INTRODUCTION

Three of the most successful and prominent paradigms for

solving physical design problems in CAD/VLSI are

constraint relaxation, local search, and netlist clustering.

This paper provides new perspectives on each of these

topics via a case study in linear placement.

Background

Constraint relaxation has provided the foundation of

numerous university and commercial approaches to the

cell placement problem. These techniques are often

referred to as “analytical placement” and generally adopt

the following or similar philosophy. First, the “slot

constraints” of the problem are released resulting in a

continuous space optimization problem which can be

solved optimally and efficiently. There are several

possibilities with respect to the particulars of the

continuous formulation—e.g. quadratic placement [4],

“linearized” quadratic placement [5], linear programming

based relaxations [6] and quadratic placement using

spectral methods [7]. A solution to this relaxed

formulation results in a physically infeasible placement

with cell overlap; this placement is then refined in a top-

down manner (typically by recursive partitioning of the

layout area) to eventually converge on physically feasible

solution. The intuitive appeal of such approaches is that

the relaxation solves a true global optimization problem

taking into account the entire netlist simultaneously. The

methods also tend to be quite computationally efficient.

(As an aside, min-cut based placers [8] can also be

considered members of this general class. However, the

relaxation of slot constraints for min-cut is not

continuous—rather many slots are replaced with two (or

four in the case of quadrisection [9])—and the relaxed

problem is not solved optimally because of the NP-

completeness of graph partitioning.)

The second paradigm of local search adopts the

philosophy of repeated perturbation of a current solution

(typically, but not always, physically feasible). A final

optimized solution is converged upon via a sequence of

such perturbations. Typically, perturbations (or moves) are

very simple—e.g. pair-wise exchange. The candidate

moves define a neighborhood structure for the problem—

each configuration (placement) having a set of neighbor-

ing configurations which can be reached in a single move.

The intuitive appeal of this kind of approach is multi-

faceted. First, the entire solution space is reachable via

some sequence of moves (assuming a reasonable

neighborhood operator). Second, the technique can be

made non-deterministic via randomization allowing
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natural exploitation of additional CPU resources (relax-

ation-based techniques are, by and large, much more

deterministic in nature). Further, in the particular case of

simulated annealing (SA) [10]—perhaps the most

celebrated local search paradigm for cell placement—

there are some theoretical results [11] indicating that, with

a proper cooling schedule, SA converges to a global

optima with probability approaching 1. Unfortunately, the

rate of convergence is not, in general, polynomially

bounded. Yet, perhaps the most convincing testimony to

the local search paradigm is its remarkable success in

practice.

The third paradigm—netlist clustering—can be con-

sidered orthogonal to the first two. The motivation for

netlist clustering varies significantly from paper to paper.

A typical reason for clustering is simply to more

effectively deal with huge designs—by pre-processing

the netlist and creating a clustered netlist, the problem size

becomes more manageable. There are a number of other

engineering-oriented reasons for clustering—e.g. in a

design with widely varying cell sizes, a clustering step is

frequently used to create clusters of roughly equivalent

size (thereby enabling the use of cell-oriented algorithms

on the clustered netlist). Some recent results in

partitioning [12,13] have also successfully applied

clustering technology to obtain state of the art results in

impressive CPU time. Overall however, it appears that

clustering technology is not quite as mature as some other

techniques with little consensus on appropriate clustering

metrics and on the underlying objectives of clustering

itself.

Contributions

The results in this paper touch on all three of these topics:

constraint relaxation, local search and clustering. The

contributions are summarized as follows.

. First, we propose a local search mechanism in which

the neighborhood operator itself is much more

sophisticated and directed than those typically used.

The operator is itself based on a linear programming

relaxation of the problem where a subset of the cells are

“mobile” and the remaining cells are fixed by the

current placement. An efficient network flow algorithm

is used to solve the linear programming (LP)

formulation. Generally speaking, a single move in

this scheme is as follows: extract (by some randomized

means) a sub-circuit from the netlist; solve the LP

relaxation where all cells outside the sub-circuit are at

fixed positions as determined by the current placement;

heuristically legalize the resulting relaxed placement;

evaluate the new placement and accept or reject. The

technique adopts a more analytical and global view of

the problem while maintaining the desirable features of

the local search paradigm. Experimental evidence is

presented indicating the potential of such a unification

of analytical methods and search-based methods.

. Second, we present studies characterizing local optima

in the linear placement problem and their relation to

circuit clusters. We have devised a simple visualization

tool—the displacement graph—for characterizing the

differences between two placements. By studying the

differences between known excellent placements and

mediocre local optima it is revealed that such local

optima typically have successfully found many

appropriate clusters of cells, but that these clusters

are not globally placed correctly. A local search

algorithm working on the flat netlist is unlikely to

uncover this structure and as a result it is usually very

difficult to improve such solutions (i.e. they are local

optima). However, via a simple dynamic clustering

strategy based on the current linear placement, such

global structure can often be revealed, allowing us to

escape the local optima. The key points of the

clustering strategy are as follows.

– Clusters should be derived from the current place-

ment. A similar philosophy has been adopted by Saab

[3]. The idea is that good placement algorithms do an

excellent job of finding good clusters—instead of

finding clusters via a pre-process, we let the placer do

the work.

– The strategy should be dynamic. While simple

strategies based on wiring density seem to identify

good clusters in a given placement, it seems unwise to

rely on just a few such decisions. As a result, the

algorithm repeatedly clusters and flattens the circuit

optimizing in each phase via the local search

algorithm.

We have dubbed the resulting strategies RBLS

(“rebels”) for Relaxation Based Local Search and

RBLS/C for the dynamic clustering version. These

techniques have produced very promising experimental

results: new best known results have been found for every

circuit in a set of benchmarks used in a recent series of

papers on linear placement [1,2]. Additionally, the

computational overhead of the techniques is shown to be

reasonable.

The remainder of the paper is organized as follows. In

the next section, we define some necessary terminologies.

In the third section, we present the relaxation based local

search algorithm. The fourth section presents our dynamic

clustering strategy. The fifth section presents the overall

RBLS/C algorithm. The sixth section presents experimen-

tal results on the linear placement with MCNC bench-

marks, followed by conclusion in seventh section.

PRELIMINARIES

We model a netlist by a hypergraph GðV ;EÞ; where V is a

set of cells and E is a set of nets. A hyperedge e [ E is a

subset of two or more cells in V (i.e. e # V). Each cell
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corresponds to a component of a circuit and each net

represents a common signal among its constituent cells.

For a linear placement P, let P[i ] denote the cell placed

in location i and P21½v� the location of cell v with the

assumption that each cell has unit-size. A placement P is

legal if P : N ) N is one-to-one function. Let ei be a set of

cells which are connected to a net i. Then, the length of net

i, len(ei), is defined as

lenðeiÞ ¼
u;v[ei

maxjP21½u�2 P21½v�j

and the linear placement problem as

min
XjEj
i¼1

lenðeiÞ over all legal placement P:

RELAXATION-BASED LOCAL SEARCH

Overview

The top-level local search strategy used in RBLS is quite

traditional. From the current solution we sample a

neighboring solution and move to that solution if the

objective (wire length) is improved. If no improvement is

seen for k (a given parameter) consecutive moves, the

search terminates. The novelty of RBLS is in how we

generate neighboring solutions. This process is summar-

ized as follows:

. Sub-circuit extraction: Given a parameter m, extract a

sub-circuit Mð# VÞ where jMj ¼ m: M will be called

the set of “mobile nodes”. From M we determine the

fixed node set F: the set of nodes in ðV 2 MÞ which are

directly connected to a member of M via some net.

Extracted sub-circuit consists of node set F < M and

net set E0 induced by M, i.e. G0 ¼ ðF < M;E0Þ:
. Optimal relaxed placement: Optimally place each

member of M ignoring slot constraints under a linear

programming relaxation of the problem. Note that the

relative order of cells in F influences this solution.

. Placement legalization: Resolve cell overlap to obtain

a physically feasible placement.

Each of these steps is detailed in the following

subsections.

Sub-circuit Extraction

To extract a sub-circuit G0 ¼ ðV 0;E0Þ; where V 0 ¼ F < M;
we extract M first. The simplest method for extracting a

subset M would be a random selection. However, such a

simple scheme would result in many disconnected

components and the resulting optimization problem does

not capture much of the interaction between cells.

Therefore, we have adopted the following randomized

scheme which produces a set of connected components.

Experiments have shown this scheme to be superior to

simple random selection. First, given a parameter m,

mobile nodes are selected as follows:

1. M ˆ B/* mobile node set */

2. C ˆ B/* Set C has candidate nodes for mobile nodes

*/

3. Extract a node v [ V M at random and M ˆ M < {v}

4. A ˆ {u [ ejv [ e;;e [ E}=* set of nodes adjacent

to v */

5. C ˆ C < A M

6. If jCj ¼ 0 go to step 3

7. Extract a node v [ C at random and M ˆ M < {v}

8. Repeat step 4–7 while jMj , m

Once M is extracted, we determine the fixed node set F

and the “active nets” E0 (all nets which influence the

relaxed placement problem for M ) as follows: E0 ¼

{eij for some node u [ M; u [ ei}: F ¼ {vjv [ ei M;
where ei [ E0; and v is either left- or right-extreme node

of ei in the current placement P}.

Figure 1, shows an example of extracted sub-circuit and

current placement P.

LP-formulation of a relaxed Placement

Given a set of mobile nodes M, we can derive a simple

linear program for optimally placing M. Such a linear

program will produce an x-coordinate xv for each mobile

node v [ M: The LP is of course influenced by the

locations of the fixed nodes F; let Xv be the location of a

node v [ F in a given feasible placement P, i.e. Xv ¼

P21½v�: Then the LP relaxation can be stated as follows.

min
e[E0

P
ðre 2 leÞs:t:

le # xv # re;;v [ e;

xv ¼ Xv;;v [ F

The dummy variables re and le in the formulation give

the leftmost and rightmost ends of net e.

To illustrate the relaxation process, suppose we have a

given legal placement P and sub-circuit as shown in Fig. 1.

FIGURE 1 An example of the current placement P and a sub-circuit
extracted from P. Total wire length of P is 20.
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Figure 2 shows a possible solution of LP (optimal

solutions not being necessarily unique).

In early experiments, a public domain LP-solver† was

used and it indeed proved to be an unacceptable

bottleneck. Fortunately, it was discovered that the solution

of the linear program could be obtained very efficiently by

using network flow techniques presented next.

Network Flow Based Algorithm

We utilize a simple network flow based algorithm for

solving the LP relaxation used in our neighborhood

operator. The algorithm is a refinement of Picard and

Ratliff’s solution to the Rectilinear Distance Facilities

Locations Problem [14]. The algorithm iteratively finds

minimum cuts from left to right which assign mobile

nodes to bins formed by each of the fixed nodes. The

resulting placement is an optimal solution to the LP

formulation. The algorithm has also proved to be very

efficient in practice.

Given an extracted sub-graph G0 ¼ ðV 0;E0Þ and the

current placement P, we use f ið1 # i # jFjÞ to denote the

ith fixed node from the left, and assume all the nodes in F

are arranged according to their x-coordinates i.e.

P21½f i� , P21½f j� if i , j:
As illustrated in Fig. 3, we add additional nodes, source

s and sink t and additional edges of capacity 1 which

connect fixed nodes and source/sink. We assume every net

is 2-pin net and represent two opposite directed edges as a

single undirected edge. For some k ð1 # k # jFjÞ; every

fixed node fi ð1 # i # kÞ is connected to s via edge ks,fil
and every fixed node fj ðk , j # jFjÞ to t via edge kf j; tl as

shown in Fig. 3.

A min-cut is a bipartitioning ðAk;A�kÞ of G0 with s [ Ak;
t [ A�k such that the cutsize cðAk;A�kÞ ¼

P
u[Ak ;v[A�k

cku; vl
is minimized, where cku; vl is the capacity of edge ku; vl:

Figure 4 shows the algorithm relaxed placement (RP).

In the algorithm, the set Left is used to keep the mobile

nodes of the current min-cut. We change directed edges

between fixed nodes and source/sink one by one from the

left to right. At step i, a new set of mobile to be placed with

fixed node fi is identified and added to the set Left.

The efficiency of the algorithm is improved by

maintaining residual capacities from one step to the

next. As a result we are able to avoid re-computation of

many augmenting paths.

Figure 5 illustrates an example of the set New after

executing one iteration from the state shown in. Mobile

nodes u and v become new members of New after

modifying connectivity of the fixed node w.

The correctness of the algorithm is given by the

following theorem and proof sketch (see Ref. [14] for a

more detailed presentation).

Theorem 1 The algorithm RP finds an optimal relaxed

placement.

Proof Sketch: For simplicity, assume w.l.o.g. that all nets

have only two pins. First, a simple argument shows that

there always exists a solution to the LP in which all mobile

nodes are coincident with fixed nodes (as in the case of the

placement produced by our network flow algorithm); call

such a solution a binned solution (each mobile node

belongs to a bin defined by a fixed node); any mobile node

not coincident with a fixed node is unbinned. We can

transform an unbinned optimal placement into a binned

one as follows. Let v* be a maximal set of one or more

coincident unbinned nodes where no other unbinned nodes

are placed between it and some fixed node fi. The number

of edges connecting to v* from the left must equal that on

the right—otherwise, moving e units in one direction

would reduce the wire length violating the optimality

assumption. Thus, v* can be moved freely to fi without

increasing the wire length. This process is repeated until

all nodes are binned.

Now what remains to be shown is that the binned

placement found by the network flow algorithm is optimal.

This follows almost directly from the construction.

Consider the cut formed at the ith step of the algorithm.

The result is a partition ðAi; �AiÞ where f 1; . . .; f i [ Ai and

f iþ1; . . .; f jFj [ �Ai: The resulting cutsize cðAi; �AiÞ is the

number of wires which pass between fi and fiþ1. Since the

cut is minimum, there can be no other linear placement

with fewer than cðAi; �AiÞ wires between fi and fiþ1. Since

the algorithm achieves this lower-bound between each fi

FIGURE 2 An example of an optimal relaxed placement, which is
induced by the sub-circuit shown in Fig. 1. Net 3 is not shown in the
placement since its wire length becomes 0. The total wire length is 14.

FIGURE 3 An example of a min-cut.

†ftp://ftp.es.ele.tue.nl/pub/lp_solve.
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and fiþ1, we conclude that the overall wire length must be

minimum. A

As an aside, we note that such a binned placement is not

necessarily the best in the sense that it may be more

difficult to effectively legalize than other optimal

solutions. Thus, techniques for finding optimal relaxed

placements with more even distribution are worth studying

(e.g. via finding equivalent cuts and exploiting node

mobility).

We use standard constructions [15,16] to model the

hypergraph as a directed graph G̃. The hypergraph to

digraph construction is illustrated in Fig. 6 and is

summarized as follows.

. Every 2-pin net ei ¼ {u; v} in G is associated with two

directed edges ku; vl and kv; ul in G̃ with each having

capacity 1.

. Every multi-pin net ei in G introduces two dummy

nodes a,b with an edge ka; bl with capacity 1 and

directed edges ku; al and kb; ul for every u [ ei with

capacity 1.

In Fig. 7 we show an example of an optimal relaxed

placement which is found by the algorithm RP and

induced by the sub-circuit shown in Fig. 1. Note that the

two optimal relaxed placements—one is shown in Fig. 2

and the other in Fig. 7—have the same cost.

Empirical results have shown remarkable speedups

versus the LP-solver. For example, an instance with 5000

mobile nodes and roughly 1000 fixed nodes can be solved

in less than 8 seconds on a 167 MHz Sun Ultra-Sparc 1

while the LP-solver takes about 55 min.

Placement Legalization

A central problem in relaxation-based methods is the

resolution of cell overlaps or legalization. A relaxed

placement may result in empty spaces and overlapping

nodes that should be resolved to get a physically feasible

placement.

Our legalization scheme is quite simple. We use a force

value to get a relative order among coincident nodes. Let

Sð# MÞ be a set of coincident nodes and ni a set of nets

adjacent to node i. Suppose the position for each node in S

in the relaxed placement is xs. Let le be the left extreme

end of a net e and Li be a subset of ni such that Li ¼

{eje [ ni and le , xs}: Similarly, let re be the right

extreme end of a net e and Ri be a subset of ni such that

Ri ¼ {eje [ ni and re . xs}: Then, the force value di for

node i in S is computed as di ¼ jRij2 jLij: Figure 8shows

an example of force values when jSj ¼ 4:
Using the force values, we decide the relative order of

nodes in S, e.g. the greater force value a node has the

greater x-coordinate will be assigned to it. For the nodes

having the same force value we randomly rearrange them.

After determining the relative order of nodes in S, we

place them at the position of the associated fixed node

while moving other nodes keeping their relative order.

FIGURE 4 The algorithm Relaxed Placement (RP). All the current residual capacities are kept for next iteration in the loop.

FIGURE 5 A new min-cut after executing one iteration of RP from the
state shown in. Mobile nodes u and v become members of “New”.
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Figure 9 shows the corresponding legalized placements

induced by the relaxed placement which is obtained by the

RP algorithm as shown in Fig. 7.

DYNAMIC CLUSTERING

Effective methods for escaping local optima are essential

in most successful local search schemes. We propose a

simple dynamic clustering technique for precisely this

purpose. We will use the notion of local optima somewhat

loosely to indicate a solution which has not improved

significantly in a “long time”. To the best of our

knowledge, this intimate relationship between clusters and

local optima has not previously been studied in the

literature.

Our clustering technique was motivated by an effort to

characterize local optima in the linear placement problem

via a simple visualization tool we call a displacement

graph. Suppose Pg is a relatively good placement and Pb a

mediocre one. Also assume that each has converged to

local optima. If we consider Pg as a reference placement,

displacement of Pb for each location i with respect to Pg is

defined as

D½i� ¼ P21
g ½Pb½i��2 i:

Figure 10 shows an example of displacement. A

positive value indicates that the cell at that position in Pg is

placed to the left in Pb; a negative value to the right.

Figure 11 shows a small range of displacement graph so

details can be seen where we plot i versus D[i ]. It is

striking how we can easily identify “plateaus” in the plot

with sharp transitions between plateaus. A plateau

indicates that the bad placement seems to correctly

group many cells into the right clusters, but that these

clusters are not correctly placed in the global scheme of

things. This seems to be a signature of a local optimum—

i.e. it appears that almost any neighborhood structure

would have a hard time uncovering this global structure.

This has led us to a dynamic clustering technique for

escaping local optima.

Suppose a placement is converged to a local optima. We

know that the placement might have good clusters which

correspond to plateaus in a displacement graph (versus

some hypothetical “good” solution). The goal will be to

identify these plateaus dynamically. If this can be done,

FIGURE 6 Net modeling.

FIGURE 7 An example of an optimal relaxed placement found by the
algorithm RP. This is induced by the sub-circuit shown in Fig. 1. Net 3 is
not shown in the placement since its wire length becomes 0. The total
wire length is 14. FIGURE 8 An example of force values for coincident nodes.
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we will have an effective tool for escaping local optima.

Said another way, improvement in solution quality in the

clustered circuit’s search space becomes more likely as is

shown experimentally later in this section. Of course,

since a good reference placement is not available to help

us identify plateaus as clusters, we must resort to other

schemes to heuristically estimate cluster boundaries. A

simple conjecture is that there is a correlation between

transitions in wiring density (number of wires) in the bad

placement and the edges of plateaus. Our experiments

indicate some truth to this conjecture and such a heuristic

has become the basis for our clustering strategy described

next.

Figure 12 shows a portion of the correlation between the

edges of plateaus and their corresponding density values

which supports the conjecture. Almost every edges of

plateaus match with the locally low values in density. Of

course, it is unreasonable to expect complete correlation

but density values do appear to be a good first order guide.

The fact that the clustering strategy is imperfect (as is, we

argue, any similar clustering strategy), is offset by the

dynamic nature of the clustering strategy—we repeatedly

cluster and flatten always based on the current placement.

We derive clusters from the current placement P as

follows: given two parameters L and U, and the current

placement P, scanning P from the left to the right it

clusters a block of nodes using the density values such that

each block size is between L and U and the boundary of

the next block is the point at which the density value is the

smallest among d½pþ L�· · ·d½pþ U�; where d[i ] is the

density value of position i and p is the boundary position

of the previous cluster.

Using the clustering algorithm we generate a clustered

circuit and a clustered placement Pc based on P. Each cell

in the clustered circuit is considered to have unit-size.

Given Pc, the relaxation based local search algorithm of

“Relaxation-based local search” section is applied until

convergence criteria is met and then it is flattened. While

flattening Pc, each clustered node is examined to see

whether the reversed order may result in a better solution,

and if so, the block of clustered node is placed in reverse

order in the flat placement.

Note that since the clustering strategy is dynamic and

clustering is always based on the current solution, one clus-

tered circuit is different from previous and subsequent

clusterings of the netlist.

Figure 13 illustrates the effectiveness of the technique

in escaping local optima. The figure shows a snapshot of a

run of the algorithm (CPU time versus wire length). Up to

the first transition point (a near local optimum) the

placement was optimized in flat mode. At this point, we

cluster the circuit and continue the run on the clustered

circuit. Wire length in the graph always gives the wire

length of the flat placement implied by the clustered

placement. After clustering, the result shows a sharp

reduction in wire length. When there seems no significant

improvement on clustered circuit, we flatten it and

continue to optimize the flat circuit. This cycle is repeated

and shows the remarkable effectiveness of the dynamic

clustering strategy.

OVERALL ALGORITHM

In Fig. 14, we show the overall procedure of our

relaxation-based local search algorithm with dynamic

clustering, RBLS/C. The algorithm can be summarized as

follows. First, an initial placement is generated. We then

repeatedly cluster and flatten the circuit, performing local

search on both flat and clustered solutions. This is done

until some convergence criteria are met. Throughout the

algorithm, there is also some freedom in assigning the

control variables (e.g. sub-circuit size for RBLS and target

cluster size).

We use several control variables to enable the algorithm

to find high quality solution more efficiently. Values for

them are changed based on either the circuit size, solution

quality, the number of iterations, or the netlist type (flat or

clustered).

The control variables m and mc are used to determine

the sub-circuit size of flat and clustered netlists,

respectively. Initial size of a sub-circuit (i0 and i1 are

used for each type) is proportional to the circuit size and it

FIGURE 9 An example of a legalized placement induced by the relaxed placement which is shown in Fig. 7. The force value for each coincident node
is shown on the shoulder. The legalized placement has wire length of 18 resulting in 10% improvement.

FIGURE 10 An example of displacement.
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is gradually decreased to a lower bound of 10. Imax and

Imax, c are used for the maximum number of moves in the

local search algorithm without improvement for flat and

clustered circuits, respectively. Those values are mono-

tonically increasing by setting a . 1: As solution quality

improves, experiments show that selecting smaller sub-

circuits and giving more chances to explore neighbors is

more effective. L and U are used to determine a target

block size for clustering. The average block size in

clustered circuits is dynamically changed by varying L and

U. L increases up to v in the first phase and decreases to 1

in next phase. We alternate increasing and decreasing

phases. By this way we have more chances to find globally

right locations for different clusters on different

placements.

EXPERIMENTAL RESULTS

We have implemented the RBLS/C algorithm and tested it

on a standard set of benchmarks on a 167 MHz Sun Ultra-

Sparc 1.

As described, there are a number of control parameters

to the RBLS/C algorithm. While the strategy for

initializing these values is not central to our contributions,

for completeness, we describe our current strategy in the

following. The strategy is based on experimental

experience and intuition. The strategy may evolve over

time as we gain more insight into their effects;

nevertheless, the current approach does seem reasonable.

For the initial sub-circuit size we set i0 to 0:8* jVj and i1 to

0:02* jVj: We set g to approximately 0.25–0.3 and d to

0.4–0.6. We use 10 as a lower bound on both m and mc.

We set i2—the initial value for Imax—to 5. We set a to 3,

i.e. for a clustered circuit the local search algorithm will

allow three times as many consecutive failed moves

before exiting. This strategy seems effective since the

CPU time required to visit a neighbor in the clustered

circuit is generally much less than in the flat circuit.

Further, since the wire-length improvement per move in

the clustered circuit tends to be greater than in the flat

circuit, the benefit of increasing Imax in this way seems to

outweigh the additional CPU time. L is initially assigned 2

via i3. By setting m ¼ 2 it is doubled up to v, which is

usually assigned 128, in increasing phase and cut by half

in deceasing phase per each loop. To determine the upper

bound on cluster size U, we set b to 1.5–2.0. When we set

b to a number .2.0, the range of each block size of course

becomes wider. Since one block is considered as a unit-

size cell in clustered circuit a wider range of cluster sizes

results in more error in the wire length calculation (vs. the

induced flat placement). For this reason, we maintain a

fairly narrow range of acceptable cluster sizes. We set e to

1:0 £ 1025:
Lastly, to construct the initial placement we use the

Max-Adjacency Ordering method [17]. For certain

circuits (e.g. s35932) the initial placement obtained by

this method is highly influential on the final solution

quality while for most others the initial placement had

little influence on the final solution quality. The influence

of initial placement on final solution quality is a topic of

on-going research.

We have run experiments on the same set of circuits

tested with Sato’s Simulated Quenching method (SQ) [2]

FIGURE 11 Displacement graph obtained from two local optima placements for circuit s38584. Mediocre solution has wire length of 1,756,332, while
good reference placement has wire length of 1,253,972.
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and the hybrid spectral method (SLPC2) of [1]. Using the

RBLS/C technique, new best-known result for every

benchmark circuit have been found. Table Isummarized

the results. We also show the best results obtained by the

RBLS technique only (without clustering) in the table. As

the table shows, the effect of the clustering technique is

large, particularly for the two large circuits, s38584 and

s38417. Since Ref. [2] used a different version of s1423

we do not compare our result for s1423 with that of the SQ

method.

To show CPU time, we made 10 runs for each test case

and showed the best and worst results with the average

running time in Table II. The CPU time to get a reasonable

solution for the larger circuits (s38584 and s38417) seems

promising: typically less than 2 h is required. For

comparison, [2] reports about 8 h on a comparable

machine for s38417.

We also compare the RBLS/C technique with the CLP

technique in [3] on the same set of circuits. As did in [3],

we also made 100 runs for each test circuit and show the

FIGURE 12 An example to show the correlation between the edges of plateaus and their corresponding density values in a placement for circuit
s38584.
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FIGURE 13 Effect of Dynamic Clustering. The figure shows part of a run for circuit s15850 where we toggle between flat and cluster mode. Before
clustering, optimization of the flat placement has nearly converged.

FIGURE 14 Overall procedure of the RBLS/C algorithm.
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relative wire length compared to the LESS technique [18].

In Tables III and IV, we show the results on circuits. The

solutions obtained by RBLS/C technique are very

comparable to those by CLP technique except for one

circuit, CKT7. For the circuit CKT7, the wire length by

RBLS/C is about 15% worse on average than that by CLP

method.

CONCLUSIONS

Through a case-study of the linear placement problem,

this paper provides new perspectives on each of three

fundamental techniques in CAD/VLSI—constraint relax-

ation, local search, and clustering.

First, we propose a local search mechanism in which the

neighborhood operator itself is based on constraint

relaxation techniques popular in analytical placement.

The result is a sophisticated neighborhood operator which

enables very directed solution space exploration. The

operator is based on a linear programming relaxation of

the problem. We have devised an efficient algorithm to

solve the linear programming formulation using network-

flow techniques. The overall result is an optimization

technique which explores the solution space with a more

analytical and global view of the problem while

maintaining the desirable features of the local search

paradigm.

TABLE I Best results compared with SLPC2 [1] and SQ [2] methods

Ckts Nodes Nets
Wire length (%) Improv. over

SLPC2 SQ RBLS RBLS/C SLPC2 SQ

s1423 619 538 9254 – 8776 8373 9.5 –
s9234 5866 5844 248,999 220,374 232,026 199,574 19.8 9.5
s13207 8772 8651 465,214 380,908 437,190 351,614 24.4 7.7
s15850 10,470 10,383 591,372 432,277 485,257 415,589 29.7 3.9
S35932 18,148 17,828 871,937 774,414 760,016 752,618 13.7 2.8
S38584 20,995 20,717 1,325,547 1,275,551 1,489,131 1,238,139 6.6 2.9
S38417 23,949 23,843 1,487,277 1,254,195 1,591,574 1,158,677 22.1 7.6

Average 18.0 5.7

TABLE II Best and worst results with average CPU time among 10 runs
for each test case

Wire length

Ckts Best Worst Avg. CPU time (min)

S1423 8726 9564 0.4
S9234 207,928 223,876 22.5
S13207 385,249 473,342 17.4
S15850 452,488 495,277 22.2
S35932 771,412 778,268 21.7
S38584 1,282,056 1,374,314 94.4
S38417 1,218,494 1,511,268 110.5

TABLE IV Results compared with CLP [3] on large circuits

CLP RBLS/C

Ckts Nodes Nets LESS [18] Min Mean Max Std Min Mean Max Std

CKT1 60 75 608 1.00 1.02 1.04 0.01 1.00 1.00 1.02 0.007
CKT2 183 165 1230 1.00 1.04 1.18 0.04 1.00 1.01 1.05 0.010
CKT3 200 300 9119 0.99 1.01 1.04 0.01 0.99 0.99 1.02 0.005
CKT4 286 307 4031 0.88 0.93 1.02 0.03 0.89 0.94 0.99 0.024
CKT5 469 451 6346 0.90 0.94 1.04 0.02 0.90 0.91 0.91 0.001
CKT6 800 684 34,640 0.97 1.04 1.18 0.04 0.96 0.97 0.98 0.002
CKT7 3060 3123 156,300 0.71 0.76 0.86 0.04 0.78 0.87 0.93 0.045

TABLE III Results compared with CLP [3] on smaller circuits

CLP RBLS/C

Ckts Nodes Nets LESS [18] Min Mean Max Std Min Mean Max Std

Fig. 1.2 5 131 243 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
Fig. 1.4 5 31 43 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
Fig. 9a 6 50 78 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
Fig. 8 9 21 50 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
Data III 15 18 65 1.00 1.00 1.00 0.00 1.00 1.00 1.00 0.00
Data V 29 37 220 0.99 1.00 1.06 0.01 0.95 0.96 1.01 0.02
Data VI 48 48 337 0.99 1.01 1.06 0.01 0.99 1.00 1.01 0.00
Fig. 10 85 96 1009 0.99 1.02 1.10 0.02 0.98 1.02 1.11 0.03
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Second, we present a new dynamic clustering strategy

for escaping local optima. The strategy is motivated by the

studies which characterize local optima in the linear

placement problem and their relation to circuit clusters.

We have devised a simple visualization tool—the

displacement graph—for characterizing the differences

between two placements. By this tool, we have shown that

a local optima typically have successfully found many

appropriate clusters of cells, but that these clusters are not

globally placed correctly. A local search algorithm

working on the flat netlist is unlikely to uncover this

structure and as a result it is usually very difficult to

improve such solutions. However, via our dynamic

clustering strategy based on the current linear placement,

such global structure can often be revealed, allowing us to

escape the local optima.

The experimental results prove the effectiveness of our

RBLS/C algorithm, which incorporates both the relax-

ation-based local search and the dynamic clustering

techniques, by generating new best known results using

less CPU-time for each circuit on which Sato [2] and Li

et al. [1] have tested.

A natural progression of this work is to adapt the

techniques to the 2D case. An interesting visualization

question is what is the 2D analogy of the displacement

graph? Since there are 4 dimensions to consider (x, y, Dx

and Dy ), creative use of color may be necessary to reveal

2D clustering information. More in-depth study of

clustering techniques—including hierarchical is also a

possibility. Finally, we also are generalizing the

techniques for the timing-driven placement problem.
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