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We study the existence of a periodic solution for some partial functional differential equa-
tions. We assume that the linear part is nondensely defined and satisfies the Hille-Yosida
condition. In the nonhomogeneous linear case, we prove the existence of a periodic solu-
tion under the existence of a bounded solution. In the nonlinear case, using a fixed-point
theorem concerning set-valued maps, we establish the existence of a periodic solution.

1. Introduction

Consider the partial functional differential equation

d

dt
x(t)= Ax(t) +L

(
t,xt

)
+G

(
t,xt

)
, for t ≥ 0,

x0 = ϕ∈ C = C
(
[−r,0];E

)
,

(1.1)

where A : D(A) ⊂ E → E is a nondensely defined linear operator on a Banach space E.
Throughout this paper, we suppose that

(H1) A is a Hille-Yosida operator: there exist M0 ≥ 1 and ω0 ∈R such that

(
ω0,∞)⊂ ρ(A),

∥∥R(λ,A)n
∥∥≤ M0(

λ−ω0
)n , for n∈N, λ > ω0, (1.2)

where ρ(A) is the resolvent set of A and R(λ,A)= (λ−A)−1.

C is the space of continuous functions from [−r,0] into E endowed with the uniform
norm topology, and for every t ≥ 0, the history function xt ∈ C is defined by

xt(θ)= x(t+ θ), for θ ∈ [−r,0]. (1.3)

L : R×C→ E is continuous, linear with respect to the second argument and ω-periodic
in t; G : R×C→ E is continuous and ω-periodic in t.

When the operator A generates a strongly continuous semigroup on E, (1.1) has been
treated extensively by several authors; for more details, we refer to [14]. Recently in [1, 8],
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the existence, the regularity of solutions, and the local stability have been treated when
A is nondensely defined and satisfies the Hille-Yosida condition. In this work, we will
deal with the existence of periodic solutions of (1.1) when A satisfies the Hille-Yosida
condition. The problem of finding periodic solutions is an important subject in the qual-
itative study of functional differential equations. The famous Massera’s theorem on two-
dimensional periodic ordinary differential equations [11] explains the relationship be-
tween the boundedness of solutions and periodic solutions. In [15], using Browder’s
fixed-point theorem, it has been proved that if the solutions of an n-dimensional peri-
odic ordinary differential equation are either uniformly bounded or uniformly ultimately
bounded, then the system has a periodic solution. In [5], the existence of a periodic solu-
tion has been established under the existence of a bounded solution for some inhomoge-
neous, linear functional differential equation in infinite dimensional space. In [10], using
Horn’s fixed-point theorem, the existence of periodic solutions for functional differential
equation with finite delay was established. Recently in [12], several criteria were obtained
to ensure the existence and uniqueness of a periodic solution for some inhomogeneous
linear partial functional differential equations with infinite delay. In [4], we developed
some results dealing with the existence of a periodic solution for (1.1) when A gener-
ates a strongly continuous semigroup on E. In [7], it was established that the existence
of bounded and ultimate bounded solutions of (1.1) implies the existence of periodic
solutions. The approach that was used was based on Horn’s fixed-point theorem. In this
paper, we generalize the results obtained in [4, 5, 11] for (1.1), where the operator A is
not necessarily densely defined but satisfies the Hille-Yosida condition. In Section 2, we
prove the existence of periodic solutions in the nonhomogeneous linear case under the
assumption that a bounded solution on R+ exists. In Section 3, we study the nonlinear
case; our approach makes use of a fixed-point theorem for set-valued maps to obtain
sufficient conditions, ensuring the existence of a periodic solution for (1.1). Section 4 is
devoted to an example.

2. Inhomogeneous linear case

Definition 2.1 [1, 8]. A continuous function x : [−r,b]→ E (b > 0) is called an integral
solution of (1.1) if

(i)
∫ t

0 x(s)ds∈D(A), for t ∈ [0,b],
(ii) x(t)= ϕ(0) +A

∫ t
0 x(s)ds+

∫ t
0 L(s,xs)ds+

∫ t
0 G(s,xs)ds, for t ∈ [0,b],

(iii) x0 = ϕ.

It follows from the closedness of A that if x is an integral solution of (1.1), then x(t)∈
D(A), for t ≥ 0. The following result dealing with the existence and the uniqueness of the
integral solution was established.

Theorem 2.2 [1, 8]. Assume that (H1) holds and G is Lipschitz with respect to the second
argument. Then for all ϕ ∈ C such that ϕ(0) ∈ D(A), (1.1) has a unique integral solution
on R+. Moreover, the integral solution depends continuously on the initial data.

Let A0 be the part of A in D(A) given by

A0 =A on D
(
A0
)= {x ∈D(A) :Ax ∈D(A)

}
. (2.1)
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Then, from [2],A0 generates a strongly continuous semigroup (T0(t))t≥0 onD(A). More-
over, from [13], if the integral solution of (1.1) exists, then it is given by this variation of
constant formula

x(t)=


T0(t)ϕ(0) + limλ→∞

∫ t
0
T0(t− s)Bλ

(
L
(
s,xs

)
+G

(
s,xs

))
ds, t ≥ 0,

ϕ(t), t ∈ [−r,0],
(2.2)

where Bλ = λ(λ−A)−1.
Consider the equation

d

dt
x(t)=Ax(t) +L

(
t,xt

)
+ f (t), for t ≥ 0,

x0 = ϕ∈ C = C
(
[−r,0];E

)
,

(2.3)

where f is continuous and ω-periodic in t, and suppose the hypothesis stated below.

(H2) The semigroup (T0(t))t≥0 is compact on D(A), meaning that for t > 0, the opera-
tor T0(t) is compact on D(A).

Theorem 2.3. Assume that (H1) and (H2) hold. Then the following are equivalent:

(i) there exists a ϕ∈ C such that (2.3) has a bounded integral solution defined on R+,
(ii) equation (2.3) has an ω-periodic solution.

Let u be the bounded integral solution of (2.3) on R+, then the following two lemmas
are needed in the proof of Theorem 2.3.

Lemma 2.4. {u(t) : t ≥ 0} is relatively compact in E and u is uniformly continuous. Conse-
quently, {ut : t ≥ 0} is relatively compact in C.

Proof of Lemma 2.4. For simplicity, we equate F(t,ϕ) = L(t,ϕ) + f (t), and let ε > 0 and
t > ε. Then,

u(t)=T0(t)u(0)+ lim
λ→∞

∫ t−ε
0

T0(t−s)BλF
(
s,us

)
ds+ lim

λ→∞

∫ t
t−ε
T0(t−s)BλF

(
s,us

)
ds. (2.4)

It follows that

u(t)= T0(ε)
[
T0(t− ε)u(0) + lim

λ→∞

∫ t−ε
0

T0(t− ε− s)BλF
(
s,us

)
ds
]

+ lim
λ→∞

∫ t
t−ε
T0(t− s)BλF

(
s,us

)
ds,

u(t)= T0(ε)u(t− ε) + lim
λ→∞

∫ t
t−ε
T0(t− s)BλF

(
s,us

)
ds.

(2.5)

The compactness property of the semigroup (T0(t))t≥0 and the boundedness of the solu-
tion u show that {T0(ε)u(t− ε) : t > ε} is relatively compact in E. Using the boundedness
of Bλ and F, there exists a positive constant a such that

∥∥∥∥ lim
λ→∞

∫ t
t−ε
T0(t− s)BλF

(
s,us

)
ds
∥∥∥∥≤ aε. (2.6)

Hence, {u(t) : t ≥ 0} is relatively compact in E.
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To show the uniform continuity of u, let t > τ > 0. Then,

u(t)−u(τ)= (T0(t)−T0(τ)
)
u(0) + lim

λ→∞

∫ t
0
T0(t− s)BλF

(
s,us

)
ds

− lim
λ→∞

∫ τ
0
T0(τ − s)BλF

(
s,us

)
ds.

(2.7)

Since

u(t)−u(τ)= (T0(t− τ)− I)T0(τ)u(0) +
(
T0(t− τ)− I) lim

λ→∞

∫ τ
0
T0(τ− s)BλF

(
s,us

)
ds

+ lim
λ→∞

∫ t
τ
T0(t− s)BλF

(
s,us

)
ds,

(2.8)

we have

u(t)−u(τ)= (T0(t− τ)− I)u(τ) + lim
λ→∞

∫ t
τ
T0(t− s)BλF

(
s,us

)
ds. (2.9)

Now the range of u is relatively compact, so

lim
h→0

(
T0(h)− I)ξ = 0, uniformly in ξ ∈ {u(t) : t ≥ 0

}
. (2.10)

Consequently,

lim
t−τ→0
t>τ

∥∥(T0(t− τ)− I)u(τ)
∥∥= 0. (2.11)

On the other hand, we have

lim
t−τ→0
t>τ

∥∥∥∥ lim
λ→∞

∫ t
τ
T0(t− s)BλF

(
s,us

)
ds
∥∥∥∥= 0. (2.12)

Therefore,

lim
t−τ→0
t>τ

∥∥u(t)−u(τ)
∥∥= 0. (2.13)

Using a similar argument, one can also show that

lim
t−τ→0
t<τ

∥∥u(t)−u(τ)
∥∥= 0. (2.14)

From the uniform continuity of u, we determine that {ut : t ≥ 0} is an equicontinuous
family of functions on [−r,0]; moreover, the range of u is relatively compact. Hence, by
Arzèla-Ascoli theorem, we determine that {ut : t ≥ 0} is relatively compact in C. �

Lemma 2.5 [9]. Let X be a Banach space, let Φ : X → X be a continuous linear operator,
let y ∈ X be given, and let Θ : X → X be given by Θx =Φx + y. Suppose that there exists
x0 ∈ X such that {Θnx0 : n∈N} is relatively compact. Then Θ has a fixed point.
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Proof of Theorem 2.3. As usual, define the Poincaré map P(ϕ)= xω(·,ϕ, f ) on the phase
space C0 = {ϕ ∈ C : ϕ(0) ∈ D(A)}, where x(·,ϕ, f ) is the integral solution of (2.3). Be-
cause of the uniqueness property, it is enough to show that P has a fixed point to get an
ω-periodic solution of (2.3). Also, the uniqueness property of the solution with respect
to ϕ allows the Poincaré map P to be decomposed as

P(ϕ)= xω(·,ϕ,0) + xω(·,0, f ), (2.15)

where xω(·,ϕ,0) is the integral solution of (2.3) with f = 0, and xω(·,0, f ) is the integral
solution of (2.3) with ϕ= 0. Let u be the bounded solution of (2.3) on [0,+∞) and u0 = ϕ.
Then, by Lemma 2.4,

{
Pnϕ : n∈N

}= {unω : n∈N
}

(2.16)

is relatively compact in C0, and the mapping P has a fixed point in C0 using Lemma 2.5.
Hence, (2.3) has an ω-periodic solution. �

3. Nonlinear case

Consider the nonlinear equation

d

dt
x(t)=Ax(t) +L

(
t,xt

)
+G

(
t,xt

)
, for t ≥ 0, (3.1)

and assume the hypothesis stated below.

(H3) G takes every bounded set into a bounded set.

Let Bω be the space of all continuous ω-periodic functions from R+ into E, endowed
with the uniform norm topology.

Theorem 3.1. Assume that (H1), (H2), and (H3) hold. Further, assume that there exists a
positive ρ such that for any y ∈ Sρ = {v ∈ Bω : ‖v‖ ≤ ρ}, the equation

d

dt
x(t)= Ax(t) +L

(
t,xt

)
+G

(
t, yt

)
, for t ∈R

+, (3.2)

has an ω-periodic integral solution in Sρ. Then, (3.1) has an integral ω-periodic solution
on R+.

For the proof, we need the following definition and theorem.

Definition 3.2 (see [16, Definition 9.3]). Let � :M→ 2M be a multivalued map, where M
is a subset of a Banach space and 2M is the power set of M.

(i) For D ⊂M, the inverse image �−1(D) is the set of all x ∈M such that �(x)∩
D 	= ∅.

(ii) The map � is called upper semicontinuous if �−1(D) is closed for all closed set D
in M.
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Theorem 3.3 (see [16, Corollary 9.8]). Let � :M→ 2M be a multivalued map, where M is
a nonempty convex set in the Banach space X such that

(i) the set �(x) is nonempty, closed, and convex for all x ∈M,
(ii) the set �(M) is relatively compact,

(iii) the map � :M→ 2M is upper semicontinuous.

Then � has a fixed point in the sense that there exists x ∈M such that x ∈�(x).

Proof of Theorem 3.1. Define the set-valued mapping � : Sρ → 2Sρ , for y ∈ Sρ, by

�(y)=
{
x ∈ Sρ : x(t)= T0(t)x(0) + lim

λ→∞

∫ t
0
T0(t− s)Bλ

(
L
(
s,xs

)
+G

(
s, ys

))
ds, t ≥ 0

}
.

(3.3)

We will show that the mapping � satisfies the conditions of Theorem 3.3.
(i) Let y ∈ Sρ, x1,x2 ∈ �(y), and λ ∈ [0,1]. Then, λx1 + (1− λ)x2 ∈ �(y), which im-

plies that �(y) is convex. From the continuity of L and G, we obtain that �(y) is a closed
set.

(ii) Let x ∈�(Sρ), then there exists y ∈ Sρ such that

x(t)= T0(t)x(0) + lim
λ→∞

∫ t
0
T0(t− s)Bλ

(
L
(
s,xs

)
+G

(
s, ys

))
ds, t ≥ 0. (3.4)

We first show that {x(t) : x ∈ �(Sρ)} is relatively compact in E. Let t > 0 and ε > 0 such
that t > ε. Then,

x(t)= T0(t)x(0) +T0(ε) lim
λ→∞

∫ t−ε
0

T0(t− ε− s)Bλ
(
L
(
s,xs

)
+G

(
s, ys

))
ds

+ lim
λ→∞

∫ t
t−ε
T0(t− s)Bλ

(
L
(
s,xs

)
+G

(
s, ys

))
ds.

(3.5)

From the boundedness of L, G and (H2), we deduce that

{
T(ε) lim

λ→∞

∫ t−ε
0

T0(t− ε− s)Bλ
(
L
(
s,xs

)
+G

(
s, ys

))
ds : x ∈�

(
Sρ
)}

(3.6)

is relatively compact in E. On the other hand, for some positive constant b, we have

∥∥∥∥ lim
λ→∞

∫ t
t−ε
T0(t− s)Bλ

(
L
(
s,xs

)
+G

(
s, ys

))∥∥∥∥ds≤ bε, ∀x ∈�
(
Sρ
)
. (3.7)

Hence, {x(t) : x ∈�(Sρ)} is relatively compact in E, for every t > 0, and by periodicity, we
also have that {x(0) : x ∈ �(Sρ)} is relatively compact in E. For the equicontinuity, one
has, for t > τ > 0,

∥∥x(t)− x(τ)
∥∥≤ ∥∥T0(t)−T0(τ)

∥∥ρ+
∥∥∥∥ lim
λ→∞

∫ t
τ
T0(t− s)Bλ

(
L
(
s,xs

)
+G

(
s, ys

))
ds
∥∥∥∥

+
∥∥∥∥(T0(t− τ)− I) lim

λ→∞

∫ τ
0
T0(τ − s)Bλ

(
L
(
s,xs

)
+G

(
s, ys

))
ds
∥∥∥∥.

(3.8)
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The semigroup (T0(t))t≥0 is compact, so (T0(t))t≥0 is continuous in the uniform topology
whenever t > 0. Hence,

lim
t→τ
∥∥T0(t)−T0(τ)

∥∥= 0. (3.9)

By (H3), we deduce that for some positive constant c,

∫ t
τ

∥∥T0(t− s)Bλ
(
L
(
s,xs

)
+G

(
s, ys

))∥∥ds≤ c(t− τ), uniformly for x, y ∈ Sρ. (3.10)

Since {x(t) : x ∈ �(Sρ)} is relatively compact in E for every t ≥ 0, {x(t)−T(t)x(0) : x ∈
�(Sρ)} is also relatively compact in E. Moreover, there exists a compact set K in E such
that

lim
λ→∞

∫ τ
0
T0(τ− s)Bλ

(
L
(
s,xs

)
+G

(
s, ys

))
ds∈ K , ∀x ∈�

(
Sρ
)
. (3.11)

Consequently,

lim
h→0

(
T0(h)− I)ξ = 0, uniformly in ξ ∈ K ,

lim
t→τ
t>τ

sup
x∈�(Sρ)

∥∥x(t)− x(τ)
∥∥= 0. (3.12)

Similarly, one can also prove that

lim
t→τ
t<τ

sup
x∈�(Sρ )

∥∥x(t)− x(τ)
∥∥= 0. (3.13)

Therefore, �(Sρ) is a family of uniformly bounded and equicontinuous ω-periodic func-
tions. By the Arzèla-Ascoli theorem, we deduce that �(Sρ) is relatively compact in Bω.

(iii) To prove that � is upper semicontinuous, it is enough to show that � is closed.
Let (yn)n≥0 and (zn)n≥0 be sequences, respectively, in Sρ and �(Sρ) such that

yn −→ y, zn −→ z as n−→∞, zn ∈�
(
yn
)
, ∀n≥ 0. (3.14)

Then,

zn(t)= T0(t)zn(0) + lim
λ→∞

∫ t
0
T0(t− s)Bλ

(
L
(
s,zns

)
+G

(
s, yns

))
ds, t ≥ 0. (3.15)

Letting n go to infinity and by a continuity argument, we obtain

z(t)= T0(t)z(0) + lim
λ→∞

∫ t
0
T0(t− s)Bλ

(
L
(
s,zs
)

+G
(
s, ys

))
ds, t ≥ 0. (3.16)

Hence, z ∈ �(y), which implies that � is closed. Now let D be a closed set in Sρ and take
a sequence (xn)n ⊂ �−1(D) such that xn→ x as n→∞. Since xn ∈ �−1(D), it follows that
there exists yn ∈ D such that yn ∈ �(xn). Moreover, �(Sρ) is compact; thus, there exists
a subsequence (y′n)n of (yn)n such that y′n → y as n→∞. Therefore, � is closed and it
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follows that y ∈�(x) and y ∈�−1(D). Consequently, � is upper semicontinuous. All the
assumptions of Theorem 3.3 hold. Hence, there exists x ∈ Sρ such that x ∈ �(x). Finally,
x is an ω-periodic solution of (3.1) on R+. �

To prove that (3.2) has an ω-periodic solution in Sρ, it suffices, by Theorem 2.3, to
show that it has a solution which is bounded by ρ.

Corollary 3.4. Assume that (H1), (H2), and (H3) hold. If there exists a positive ρ such
that for any y ∈ Sρ = {v ∈ Bω : ‖v‖ ≤ ρ}, the nonhomogeneous linear equation (3.2) has an
integral solution that is bounded by ρ. Then, (3.1) has an integral ω-periodic solution on R+.

Proof. Let u be a bounded solution of (3.2) such that u0 = ϕ. Following the proof of [9,
Theorem 2.5], the map P has a fixed point which belongs to co{Pnϕ : n ≥ 0}, where co
denotes the closure of the convex hull. Let ψ be the fixed point of P and x(·,ψ, f ) the
associated integral solution; by virtue of the continuous dependence on the initial data,
the solution x(·,ψ, f ) is also bounded by ρ. �

4. Application

To apply the previous results, we consider the partial differential equation with delay:

∂

∂t
w(t,x)= ∂2

∂x2
w(t,x)+b1(t)w(t−r,x) + b2(t)h

(
w(t−r,x)

)
+g(t,x), t≥0, x∈[0,π],

w(t,0)=w(t,π)= 0, t ≥ 0,

w(θ,x)= φ(θ,x), θ ∈ [−r,0], x ∈ [0,π],
(4.1)

where b1,b2 : R+ →R are continuous and ω-periodic, h : R→R is continuous such that
∣∣h(x)

∣∣≤ k|x|, x ∈R, (4.2)

g : R+× [0,π]→R is continuous and ω-periodic in t, and φ : [−r,0]× [0,π]→R is con-
tinuous. Let Y = C([0,π];R) and ∆ the Laplacian operator on [0,π] with domain

D(∆)= {z ∈ C([0,π];R
)

: ∆z ∈ C([0,π];R
)
, z(0)= z(π)= 0

}
. (4.3)

Then, by [6], ∆ satisfies the Hille-Yosida condition in Y ; more precisely, one has

(0,+∞)⊂ ρ(∆),
∥∥R(λ,∆)

∥∥≤ 1
λ

, for λ > 0. (4.4)

Moreover,

D(∆)= {z ∈ C([0,π];R
)

: z(0)= z(π)= 0
}= C0

(
[0,π];R

)
. (4.5)

Let ∆0 be the part of ∆ in D(∆) given by

D
(
∆0
)= {z ∈ C0

(
[0,π];R

)
: ∆z ∈ C0

(
[0,π];R

)}
, ∆0z = ∆z. (4.6)

Then, by [3], ∆0 generates a compact semigroup (T0(t))t≥0 on C0([0,π];R) such that
∥∥T0(t)

∥∥≤ e−t, t ≥ 0. (4.7)
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Let L,G : R×C([−r,0];Y)→ Y be defined, for t ∈R+, ϕ∈ C([−r,0];Y), and x ∈ [0,π],
by

(
L(t,ϕ)

)
(x)= b1(t)ϕ(−r)(x),(

G(t,ϕ)
)
(x)= b2(t)h

(
ϕ(−r)(x)

)
+ g(t,x).

(4.8)

Then, (4.1) takes the abstract form

d

dt
x(t)= ∆x(t) +L

(
t,xt

)
+G

(
t,xt

)
, for t ≥ 0. (4.9)

Hence, (H1), (H2), and (H3) are satisfied, and we have the following proposition.

Proposition 4.1. Assume that there exists d ∈ (0,1) such that

∣∣b1(t)
∣∣+

∣∣b2(t)
∣∣k ≤ 1−d, for t ∈ [0,ω]. (4.10)

Then, (4.9) has an ω-periodic solution.

Proof. Let m=maxt∈[0,ω],x∈[0,π] |g(t,x)| and ρ = 1 +m/d. We claim that if y is a contin-
uous ω-periodic function such that ‖y‖ ≤ ρ, then for all ϕ with ‖ϕ‖ < ρ, the solution
x of

d

dt
x(t)= ∆x(t) +L

(
t,xt

)
+G

(
t, yt

)
, for t ≥ 0,

x0 = ϕ∈ C
(
[−r,0];Y

)
,

(4.11)

satisfies ‖x(t)‖ ≤ ρ, for all t ≥ 0. Proceeding by contradiction, suppose that there exists t1
such that ‖x(t1)‖ > ρ and let

t0 = inf
{
t > 0 :

∥∥x(t)
∥∥ > ρ}. (4.12)

By continuity, we get ‖x(t0)‖ = ρ and there exists δ > 0 such that ‖x(t)‖ > ρ, for t ∈
(t0, t0 + δ). By using the variation of constant formula (2.2),

x
(
t0
)= T0

(
t0
)
ϕ(0) + lim

λ→∞

∫ t0
0
T0
(
t0− s

)
Bλ
(
L
(
s,xs

)
+G

(
s, ys

))
ds, t ≥ 0. (4.13)

By (4.8), we get that

∥∥x(t0)∥∥≤ e−t0ρ+
((∣∣b1

∣∣+
∣∣b2
∣∣k)ρ+m

)(
1− e−t0), (4.14)

and by condition (4.10), we obtain

∥∥x(t0)∥∥≤ ρ+ (m− ρd)
(
1− e−t0) (4.15)

or ‖x(t0)‖ ≤ ρ− d(1− e−t0 ), which gives that ‖x(t0)‖ < ρ. This contradicts the definition
of t0. Consequently, ‖x(t)‖ ≤ ρ for all t ≥ 0, and by Corollary 3.4, (4.9) has an ω-periodic
solution in Sρ. �
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