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We study the existence of a periodic solution for some partial functional differential equa-
tions. We assume that the linear part is nondensely defined and satisfies the Hille-Yosida
condition. In the nonhomogeneous linear case, we prove the existence of a periodic solu-
tion under the existence of a bounded solution. In the nonlinear case, using a fixed-point
theorem concerning set-valued maps, we establish the existence of a periodic solution.

1. Introduction
Consider the partial functional differential equation

%x(t) = Ax(t)+L(t,x;) + G(t,x;), fort=0, (L1)

xo=¢ € C=C([-r,0};E),

where A : D(A) C E — E is a nondensely defined linear operator on a Banach space E.
Throughout this paper, we suppose that

(H;) A is a Hille-Yosida operator: there exist My > 1 and wy € R such that

(00:) Cp(4), RO = Mo forneN Asw,  (1.2)

/1 _ wo)n >
where p(A) is the resolvent set of A and R(A,A) = (A — A)~L.

C is the space of continuous functions from [—r,0] into E endowed with the uniform
norm topology, and for every t > 0, the history function x; € C is defined by

x(0) =x(t+0), for0e[-r,0]. (1.3)

L:R x C — E is continuous, linear with respect to the second argument and w-periodic
int; G: R x C — E is continuous and w-periodic in ¢.

When the operator A generates a strongly continuous semigroup on E, (1.1) has been
treated extensively by several authors; for more details, we refer to [14]. Recently in [1, 8],
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10  Periodic solutions for partial FDEs

the existence, the regularity of solutions, and the local stability have been treated when
A is nondensely defined and satisfies the Hille-Yosida condition. In this work, we will
deal with the existence of periodic solutions of (1.1) when A satisfies the Hille-Yosida
condition. The problem of finding periodic solutions is an important subject in the qual-
itative study of functional differential equations. The famous Massera’s theorem on two-
dimensional periodic ordinary differential equations [11] explains the relationship be-
tween the boundedness of solutions and periodic solutions. In [15], using Browder’s
fixed-point theorem, it has been proved that if the solutions of an n-dimensional peri-
odic ordinary differential equation are either uniformly bounded or uniformly ultimately
bounded, then the system has a periodic solution. In [5], the existence of a periodic solu-
tion has been established under the existence of a bounded solution for some inhomoge-
neous, linear functional differential equation in infinite dimensional space. In [10], using
Horn’s fixed-point theorem, the existence of periodic solutions for functional differential
equation with finite delay was established. Recently in [12], several criteria were obtained
to ensure the existence and uniqueness of a periodic solution for some inhomogeneous
linear partial functional differential equations with infinite delay. In [4], we developed
some results dealing with the existence of a periodic solution for (1.1) when A gener-
ates a strongly continuous semigroup on E. In [7], it was established that the existence
of bounded and ultimate bounded solutions of (1.1) implies the existence of periodic
solutions. The approach that was used was based on Horn’s fixed-point theorem. In this
paper, we generalize the results obtained in [4, 5, 11] for (1.1), where the operator A is
not necessarily densely defined but satisfies the Hille-Yosida condition. In Section 2, we
prove the existence of periodic solutions in the nonhomogeneous linear case under the
assumption that a bounded solution on R* exists. In Section 3, we study the nonlinear
case; our approach makes use of a fixed-point theorem for set-valued maps to obtain
sufficient conditions, ensuring the existence of a periodic solution for (1.1). Section 4 is
devoted to an example.

2. Inhomogeneous linear case

Definition 2.1 [1, 8]. A continuous function x : [—7,b] — E (b > 0) is called an integral
solution of (1.1) if
(i) Jo x(s)ds € D(A), for t € [0,b],

(ii) x(t) = @(0) + A [y x(s)ds+ [y L(s,x;)ds + J; G(s,x;)ds, for t € [0,b],

(iii) xo = .

It follows from the closedness of A that if x is an integral solution of (1.1), then x(¢) €
D(A), for t = 0. The following result dealing with the existence and the uniqueness of the
integral solution was established.

THEOREM 2.2 [1, 8]. Assume that (H,) holds and G is Lipschitz with respect to the second

argument. Then for all ¢ € C such that ¢(0) € D(A), (1.1) has a unique integral solution
on R*. Moreover, the integral solution depends continuously on the initial data.

Let Ao be the part of A in D(A) given by

Ap=A onD(Ay) = {xeD(A):Ax € D(A)}. (2.1)



R. Benkhalti and K. Ezzinbi 11

Then, from [2], A( generates a strongly continuous semigroup (Ty(#));~o on D(A). More-
over, from [13], if the integral solution of (1.1) exists, then it is given by this variation of
constant formula

X(f) = 1T0(t)¢(0) +1lim)— Jo To(t —s)By (L(s,xs) + G(s,x5))ds, t=0,

(2.2)
(P(t)7 te [_r)o])
where By = A(A — A)~L.
Consider the equation
d
ax(t) =Ax(t)+L(t,x¢) + f(t), fort=0, (2.3)

xo=¢ € C=C([-r,0;E),

where f is continuous and w-periodic in ¢, and suppose the hypothesis stated below.

(Hz) The semigroup (Ty(t))s=0 is compact on D(A), meaning that for ¢ > 0, the opera-
tor Ty(t) is compact on D(A).

THEOREM 2.3. Assume that (H,) and (H,) hold. Then the following are equivalent:

(i) there exists a ¢ € C such that (2.3) has a bounded integral solution defined on R*,
(ii) equation (2.3) has an w-periodic solution.

Let u be the bounded integral solution of (2.3) on R*, then the following two lemmas
are needed in the proof of Theorem 2.3.

LEMMA 2.4. {u(t):t = 0} is relatively compact in E and u is uniformly continuous. Conse-
quently, {u, : t > 0} is relatively compact in C.

Proof of Lemma 2.4. For simplicity, we equate F(t,¢) = L(t,¢) + f(t), and let ¢ >0 and
t > ¢. Then,

t—e t

u(t)=T0(t)u(0)+%£m . To(t—s)B;tF(s,us)ds+Alim To(t—s)ByF(s,us)ds.  (2.4)

— Jt—¢

It follows that

u(t) = To(s)[To(t— £)u(0) + lim OH To(t—e —s)BAF(s,uS)ds]

t

+%im To(t — s)ByF (s, us)ds, (2.5)
—oJt—¢
t

u(t) = Tg(s)u(t—£)+;im To(t — s)ByF (s, us)ds.
—ooJt—¢
The compactness property of the semigroup (Ty(t))s~0 and the boundedness of the solu-
tion u show that {To(e)u(t —¢€) : t > ¢} is relatively compact in E. Using the boundedness
of By and F, there exists a positive constant a such that

t
lim To(t — s)ByF (s, us)ds

—®Jt—¢

< ae. (2.6)

Hence, {u(t) : t = 0} is relatively compact in E.
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To show the uniform continuity of u, let t > 7 > 0. Then,

u(t) —u(t) = (To(t) — To(1))u(0) + lim Jt To(t — s)ByF (s, us)ds
. Ao do (2.7)
- Alim To(t — s)ByF (s, us)ds.
-0 Jo

Since

T

u(t) —u(r) = (To(t — 1) = I) To(1)u(0) + (To(t — ) —I) lim | To(t — s)BAF (s,us)ds

—Jo
+ lim t To(t — s)BrF (s, us)ds,
o (2.8)
we have
u(t) —u(r) = (To(t — 1) = Du(r) +;L1£10 : To(t — s)ByF (s, us)ds. (2.9)
Now the range of u is relatively compact, so
lim (Ty(h) ~1)§ =0, uniformlyin § € {u(t): = 0]. (2.10)
Consequently,
Jim [[(To(t = 7) = u(r)]| = 0. (2.11)
t>7
On the other hand, we have
tlifnjo }1}2 J: To(t — s)ByF (s, us)ds|| = 0. (2.12)
t>7
Therefore,
tli?30||u(t) —u(7)|| = 0. (2.13)
>7
Using a similar argument, one can also show that
tliTIl30||u(t) —u(t)|| = 0. (2.14)

t<t

From the uniform continuity of u, we determine that {u, : t > 0} is an equicontinuous
family of functions on [—7,0]; moreover, the range of u is relatively compact. Hence, by
Arzela-Ascoli theorem, we determine that {u; : ¢ > 0} is relatively compact in C. O

LEmMMA 2.5 [9]. Let X be a Banach space, let ® : X — X be a continuous linear operator,
let y € X be given, and let ® : X — X be given by ©x = Ox + y. Suppose that there exists
X0 € X such that {@"x, : n € N} is relatively compact. Then © has a fixed point.
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Proof of Theorem 2.3. As usual, define the Poincaré map P(¢) = x,(-,¢, f) on the phase
space Cp = {9 € C: ¢(0) € D(A)}, where x(+, ¢, f) is the integral solution of (2.3). Be-
cause of the uniqueness property, it is enough to show that P has a fixed point to get an
w-periodic solution of (2.3). Also, the uniqueness property of the solution with respect
to ¢ allows the Poincaré map P to be decomposed as

P(¢):xw(')(P10)+xw("0:f)7 (215)

where x,(+,,0) is the integral solution of (2.3) with f =0, and x,(+,0, f) is the integral
solution of (2.3) with ¢ = 0. Let u be the bounded solution of (2.3) on [0,+00) and uy = ¢.
Then, by Lemma 2.4,

{P"¢:n e N} = {uy,:neN} (2.16)

is relatively compact in Cp, and the mapping P has a fixed point in Cy using Lemma 2.5.
Hence, (2.3) has an w-periodic solution. O

3. Nonlinear case

Consider the nonlinear equation

%x(t) = Ax(t)+L(t,x;) + G(t,x;), fort=0, (3.1)

and assume the hypothesis stated below.
(Hs) G takes every bounded set into a bounded set.

Let B,, be the space of all continuous w-periodic functions from R* into E, endowed
with the uniform norm topology.

THEOREM 3.1. Assume that (H;), (H;), and (H3) hold. Further, assume that there exists a
positive p such that for any y € S, = {v € B, : ||v|l < p}, the equation

%x(t) = Ax(t) + L(t,x) + G(t,y1), fort e R, (3.2)

has an w-periodic integral solution in S,. Then, (3.1) has an integral w-periodic solution
on R,

For the proof, we need the following definition and theorem.

Definition 3.2 (see [16, Definition 9.3]). Let % : M — 2™ be a multivalued map, where M
is a subset of a Banach space and 2 is the power set of M.

(i) For D C M, the inverse image §~!(D) is the set of all x € M such that 4(x) N
D+ Q.

(i) The map % is called upper semicontinuous if §~!(D) is closed for all closed set D
in M.
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THEOREM 3.3 (see [16, Corollary 9.8]). LetG: M — 2M be a multivalued map, where M is
a nonempty convex set in the Banach space X such that

(1) the set 4(x) is nonempty, closed, and convex for all x € M,
(ii) the set ‘G(M) is relatively compact,
(iii) the map G : M — 2M is upper semicontinuous.
Then § has a fixed point in the sense that there exists x € M such that x € 9(x).

Proof of Theorem 3.1. Define the set-valued mapping §: S, — 2%, for y € S,, by

G(y) = jo €S, x(t) = To(t)x(0) +Alim Jt To(t — s)By(L(s,x5) + G(s, y5))ds, t > 0}.
-0 Jo
(3.3)

We will show that the mapping § satisfies the conditions of Theorem 3.3.

(i) Let y € Sp, x1,%2 € G(y), and A € [0,1]. Then, Ax; + (1 —A)x; € 9(y), which im-
plies that G(y) is convex. From the continuity of L and G, we obtain that §(y) is a closed
set.

(i) Let x € 4(S, ), then there exists y € S, such that

x(t) = To(t)x(0) +}im Jt To(t —s)By (L(s,x5) + G(s,y5))ds, t>0. (3.4)
~wJo

We first show that {x(¢) : x € G(S,)} is relatively compact in E. Let t >0 and & > 0 such
that t > e. Then,

t—e

x(t) = To(£)x(0) + To(e) lim | To(t — &= s)By(L(s,x:) + G(s, ys) ) ds

t (3.5)
+}im To(t —s)By (L(s,x5) + G(s, ys5) ) ds.
—o Ji—¢
From the boundedness of L, G and (H,), we deduce that
t—e
{T(e)llim To(t —&—$)By(L(s,x5) + G(s, y5) )ds: x E‘Q(Sp)} (3.6)
—00 J0

is relatively compact in E. On the other hand, for some positive constant b, we have

t

lim [ To(t = 9Bu(L(s%) + Gls.0)|

A= Jt—¢

ds<be, Vxe9b(S,). (3.7)

Hence, {x(t):x € %(Sp)} is relatively compact in E, for every t > 0, and by periodicity, we
also have that {x(0) : x € 4(S,)} is relatively compact in E. For the equicontinuity, one
has, fort > 7 >0,

%am Jt To(t — S)B/l (L(S)xs) + G(S’ys) )dS

[[x(8) = ()] = [ To(2) = To () |p +
(3.8)

T

+ H(To(t— 7) —I)}im To(r — s)By(L(s,x5) + G(s, y5) ) ds
~wJo
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The semigroup (To(f)) =0 is compact, so (To(t));=o is continuous in the uniform topology
whenever t > 0. Hence,

lim || To(t) = To(7)[| = 0. (3.9)

t—T1

By (Hs), we deduce that for some positive constant c,
t
L ||To(t —s)By(L(s,x5) + G(s,y5))||ds < c(t —7), uniformly forx,y €S,.  (3.10)

Since {x(t):x € 9(S,)} is relatively compact in E for every t > 0, {x(¢) — T(t)x(0) : x €
%(Sp)} is also relatively compact in E. Moreover, there exists a compact set K in E such
that

lim JT To(t = $)By(L(s,x5) + G(s,y5))ds € K,  Vx € 4(S,). (3.11)
0

A— o0
Consequently,
Ling (To(h) =1)E =0, uniformlyiné € K,

lim sup [|x(¢) —x(7)|| = 0. (3.12)

t— 4
ot ($)

Similarly, one can also prove that

lim sup ||x(t) —x(7)|| = 0. (3.13)

t—1 x€%(S
ter (Sp)

Therefore, 4(S,) is a family of uniformly bounded and equicontinuous w-periodic func-
tions. By the Arzela-Ascoli theorem, we deduce that %(S,) is relatively compact in B,,.

(iii) To prove that % is upper semicontinuous, it is enough to show that 4 is closed.
Let (y")u=0 and (z")n=0 be sequences, respectively, in S, and 4(S,) such that

y'—y, Z"—2z asn— o0,z"€9(y"), Vn=0. (3.14)
Then,
Z"(t) = To(t)z"(0) +}er°1° OtTO(t —$)By(L(s,2") + G(s,y7))ds, t=0. (3.15)
Letting 7 go to infinity and by a continuity argument, we obtain
z(t) = To(t)z(0) +}an° OtTo(t —$)By(L(s,25) + G(s,y5))ds, t=0. (3.16)
Hence, z € 4(y), which implies that % is closed. Now let D be a closed set in S, and take
a sequence (x,), C 9~ (D) such that x, — x as n — c0. Since x,, € §~1(D), it follows that

there exists y, € D such that y, € 9(x,). Moreover, 94(S,) is compact; thus, there exists
a subsequence (y,,), of (yn)n such that y;, — y as n — co. Therefore, 4 is closed and it
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follows that y € 9(x) and y € §~1(D). Consequently, G is upper semicontinuous. All the
assumptions of Theorem 3.3 hold. Hence, there exists x € S, such that x € §(x). Finally,
x is an w-periodic solution of (3.1) on R™. O

To prove that (3.2) has an w-periodic solution in S, it suffices, by Theorem 2.3, to
show that it has a solution which is bounded by p.

CoROLLARY 3.4. Assume that (H,), (H,), and (Hsz) hold. If there exists a positive p such
that forany y € S, = {v € B, : ||v|| < p}, the nonhomogeneous linear equation (3.2) has an
integral solution that is bounded by p. Then, (3.1) has an integral w-periodic solution on R*.

Proof. Let u be a bounded solution of (3.2) such that uy = ¢. Following the proof of [9,
Theorem 2.5], the map P has a fixed point which belongs to co{P"¢ : n > 0}, where co
denotes the closure of the convex hull. Let y be the fixed point of P and x(-,v, f) the
associated integral solution; by virtue of the continuous dependence on the initial data,
the solution x(-,y, f) is also bounded by p. O

4. Application

To apply the previous results, we consider the partial differential equation with delay:

0

aw(t,x) = a—2w(l‘,x)+b](l‘)w(t—r,x) +by(t)h(w(t—r,x))+g(t,x), t=>0, xe€[0,7],

ox?
w(t,0) =w(t,m) =0, t=0,
w(0,x) = ¢(0,x), 0¢€[-r,0], x€[0,m7],
(4.1)

where by,b; : R* — R are continuous and w-periodic, h: R — R is continuous such that
|h(x)| <klx|, x€R, (4.2)

g :R* x[0,7] = Ris continuous and w-periodic in t, and ¢ : [-r,0] X [0,7] — R is con-
tinuous. Let Y = C([0,7];R) and A the Laplacian operator on [0,7] with domain

D(A) = {z € C([0,n];R) : Az € C([0,7];R), z(0) = z(7) = 0}. (4.3)

Then, by [6], A satisfies the Hille-Yosida condition in Y; more precisely, one has

(0,400) Cp(A),  |IROLA)|| < % for A >0, (4.4)
Moreover,
D(A) = {z € C([0,7];R) : 2(0) = (1) = 0} = Co([0,7];R). (4.5)
Let Ag be the part of A in D(A) given by
D(A) = {z € Co([0,7];R) : Az € Co([0,7LiR)}, Aoz = Az (4.6)

Then, by [3], A generates a compact semigroup (To(t))s=0 on Co([0,7];R) such that

[|To(t)|| <e”’, t=0. (4.7)
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Let L,G: R x C([-1,0];Y) — Y be defined, for t € R*, 9 € C([-7,0];Y), and x € [0, 7],
by

(L(t,9)) (x) = bi(B)g(—7)(x),

(Gl10)) () = ba(D(p( 1)) +g(6,0) ()
Then, (4.1) takes the abstract form
%x(t) = Ax(t)+L(t,x;) + G(t,x;), fort=0. (4.9)
Hence, (H;), (H,), and (H3) are satisfied, and we have the following proposition.
PROPOSITION 4.1. Assume that there exists d € (0,1) such that
|bi(t)| + |ba(t) |k <1—d, forte[0,w]. (4.10)

Then, (4.9) has an w-periodic solution.

Proof. Let m = maxyc(o,],xclo,r] 1€(Hx)| and p = 1 +m/d. We claim that if y is a contin-
uous w-periodic function such that [|y|| < p, then for all ¢ with [[¢]l < p, the solution
x of

d

Ex(t) = Ax(t)+L(t,x:) + G(t,y;), fort=0,

(4.11)
xo=¢ € C([-r,0;Y),

satisfies |[x(¢)|| < p, for all t = 0. Proceeding by contradiction, suppose that there exists #;
such that [|x(#;) || > p and let

fo =inf{t >0:||x(1)|| > p}. (4.12)

By continuity, we get [|x(#))|l = p and there exists § > 0 such that [|x(¢)|| > p, for t €
(to,to + ). By using the variation of constant formula (2.2),

to

x(to) = To(to) @(0) +}im To(to — s)Ba(L(s,x5) + G(s,y5))ds, £=0. (4.13)
~oJo

By (4.8), we get that
[lx(to)ll < e™®p+ (([b1| + [b2|k)p+m) (1 —e7™), (4.14)
and by condition (4.10), we obtain
|lx(to)|| < p+ (m = pd) (1 — ™) (4.15)

or |[x(to)ll < p—d(1 —e ™), which gives that [|x(#y)|l < p. This contradicts the definition
of ty. Consequently, ||x(t)|| < p forall t = 0, and by Corollary 3.4, (4.9) has an w-periodic
solution in S,. O
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