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1. Introduction

This paper is concerned with the existence of integral solutions for initial value problems
for first-order stochastic semilinear functional differential equations with nonlocal con-
ditions in Hilbert spaces. More precisely in Section 3, we consider first-order stochastic
semilinear functional differential equations of the form

y′(t)= Ay(t) + f
(
t, yt

)dw(t)
dt

, t ∈ J := [0,b],

y(t) +ht(y)= φ(t), t ∈ [−r,0],
(1.1)

where f : J × M̂2([−r,0],H)→H is a given function, A :D(A)⊂H →H is a nondensely
defined closed linear operator onH , the functionw(t) is a Hilbert space Q-valued Wiener
process, φ ∈ M̂2([−r,0],D(A)), 0 < r <∞, is a suitable initial random function indepen-
dent of w(t), h : M̂2([−r,0],D(A))→ D(A), H a real separable Hilbert space with inner
product 〈·,·〉 and norm | · |, and M̂2 is a class of H-valued stochastic processes that will
be specified later (see Section 2). Here yt(·) represents the history of stochastic processes
state from time t− r, up to the present time t. The nonlocal conditions were initiated by
Byszewski. We refer the readers to [4] and the references cited therein for motivation re-
garding the nonlocal initial conditions. The nonlocal condition can be applied in physics
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2 Stochastic functional differential equations

with better effect than the classical initial condition y(0)= y0. For example, ht(y) may be
given by

ht(y)=
p∑

i=1

ci y
(
ti + t

)
, t ∈ [−r,0], (1.2)

where ci, i= 1, . . . , p, are given constants and 0 < t1 < ··· < tp ≤ b. At time t = 0, we have

h0(y)=
p∑

i=1

ci y
(
ti
)
. (1.3)

Random differential and integral equations play an important role in characterizing
many social, physical, biological, and engineering problems; see, for instance, the mono-
graphs of Da Prato and Zabczyk [6] and Sobczyk [14]. For example, a stochastic model
for drug distribution in a biological system was described by Tsokos and Padgett [16] to
be a closed system with a simplified heat, one organ or capillary bed, and recirculation
of blood with a constant rate of flow, where the heart is considered as a mixing chamber
of constant volume. The basic theory concerning stochastic differential equations can be
found in the monographs of Bharucha-Reid [3], Da Prato and Zabczyk [6], and Tsokos
and Padgett [16]. For recent results, we refer to the papers of Liu [11], McKibben [12, 13],
and Taniguchi [15].

Recently, Balasubramaniam and Ntouyas [2] studied the semilinear stochastic evolu-
tion delay equations with nonlocal conditions, where A is a densely defined linear opera-
tor. Our goal here is to extend the results of Balasubramaniam and Ntouyas [2], where A
is nondensely defined. These results can be seen as a contribution to the literature.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used
throughout this paper.

Let K be another real separable Hilbert space and let w(t), t ≥ 0, be a K-valued Wiener
process with mean zero and covariance operator Q with trQ <∞ (trQ denotes the trace
of the operator Q) defined by

E
〈
w(t),g

〉〈
w(s),h

〉= (t∧ s)〈Qg,h〉 for every g,h∈ K , (2.1)

where 〈·,·〉 denotes the inner product and E stands for integration with respect to prob-
ability measure P. Let L(K ,H) denote the space of bounded linear operators from K into
H . For g1,g2 ∈ L(K ,H), we define 〈〈g1,g2〉〉 = tr(g1Qg

∗
2 ), where g∗2 is the adjoint of the

operator g2 and Q is the nuclear operator associated with the Brownian motion, where
Q ∈ L+

n(K), the space of positive nuclear operator in K . Let L(KQ,H) denote the comple-
tion of L(K ,H) with respect to the topology induced by the norm ‖ · ‖2, where ‖g‖2

2 =
〈〈g,g〉〉. Let (Ω,�,�t,P,H) be a complete probability space furnished with a complete
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family of right continuous increasing σ-algebras {�t, t ∈ [0,T]} satisfying �t ⊂�. Let
L2(Ω,�,�t,P,H) be a space of all square random variables with values inH that are mea-
surable with respect to {�t, t ∈ [0,b]}. Let M̂2([−r,b],H) denote the classes of H-valued
stochastic processes {ξ(t) : t ∈ [−r,b]} which are �t-adapted and have finite second mo-
ments, that is,

‖ξ‖M̂2
= sup

t∈[−r,b]

(
E
∣
∣ξ(t)

∣
∣2
)1/2

<∞. (2.2)

It is easy to verify that M̂2, furnished with the norm topology as defined above, is a Banach
space. White noise is usually regarded as informal time derivative w′(t) of Brownian mo-
tion or Wiener process w(t). In the Itô theory of stochastic integration, an integral with
respect to w′(t) is rewritten as one with respect to dw(t), that is,

∫ b

a
ψ(t)dw(t)=

∫ b

a
ψ(t)w′(t)dt. (2.3)

The Itô integral
∫ b
a ψ(t)dw(t) is defined for any process ψ(t) which satisfies the following

conditions:
(1) ψ is nonanticipating,

(2) almost all sample paths of ψ belong to L2([a,b]). Moreover,
∫ b
a ψ(t)dw(t)∈ L2(Ω)

if and only if ψ ∈ L2([a,b]×Ω). In fact the following equality holds:

E
∣
∣
∣
∣

∫ b

a
ψ(t)dw(t)

∣
∣
∣
∣

2

= E
∫ b

a

∣
∣ψ(t)

∣
∣2
dt. (2.4)

For more details on Brownian motion and white noise, we refer the reader to the books
of Hida [8] and Hida et al. [9].
B(H) denotes the Banach space of bounded linear operators fromH intoH with norm

‖N‖B(H) = sup
{∣∣N(y)

∣
∣ : |y| = 1

}
. (2.5)

Definition 2.1 (see [1]). Let E be a Banach space. An integrated semigroup is a family of
operators (S(t))t≥0 of bounded linear operators S(t) on E with the following properties:

(i) S(0)= 0;
(ii) t→ S(t) is strongly continuous;

(iii) S(s)S(t)= ∫ s0(S(t+ r)− S(r))dr, for all t,s≥ 0.

Definition 2.2 (see [10]). An operatorA is called a generator of an integrated semigroup if
there exists ω ∈R such that (ω,∞)⊂ ρ(A) (ρ(A) is the resolvent set of A) and there exists
a strongly continuous exponentially bounded family (S(t))t≥0 of bounded operators such
that S(0)= 0 and R(λ,A) := (λI −A)−1 = λ∫∞0 e−λtS(t)dt exists for all λ with λ > ω.

Proposition 2.3 (see [1]). Let A be the generator of an integrated semigroup (S(t))t≥0.
Then for all x ∈ E and t ≥ 0,

∫ t

0
S(s)xds∈D(A), S(t)x = A

∫ t

0
S(s)xds+ tx. (2.6)
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Definition 2.4 (see [10]). (i) An integrated semigroup (S(t))t≥0 is called locally Lipschitz
continuous if, for all τ > 0, there exists a constant L such that

∣
∣S(t)− S(s)

∣
∣≤ L|t− s|, t,s∈ [0,τ]. (2.7)

(ii) An integrated semigroup (S(t))t≥0 is called nondegenerate if S(t)x = 0, for all t ≥ 0,
implies that x = 0.

Definition 2.5. We say that the linear operator A satisfies the Hille-Yosida condition if
there exist M ≥ 0 and ω ∈R such that (ω,∞)⊂ ρ(A) and

sup
{

(λ−ω)n
∣
∣(λI −A)−n

∣
∣ : n∈N, λ > ω

}≤M. (2.8)

Theorem 2.6 (see [10]). The following assertions are equivalent:
(H0) A is the generator of a nondegenerate, locally Lipschitz continuous integrated semi-

group;
(H1) A satisfies the Hille-Yosida condition.

If A is the generator of an integrated semigroup (S(t))t≥0 which is locally Lipschitz,
then from [1], S(·)x is continuously differentiable if and only if x ∈D(A) and (S′(t))t≥0

is a C0 semigroup on D(A).

Definition 2.7. A map f : J × M̂2([−r,0],H)→H is said to be L2-Carathéodory if
(i) t �→ f (t,u) is measurable for each u∈ M̂2([−r,0],H);

(ii) u �→ f (t,u) is continuous for almost all t ∈ J ;
(iii) for each q > 0, there exists hq ∈ L1(J ,R+) such that

∣
∣ f (t,u)

∣
∣2 ≤ hq(t) ∀‖u‖2

M̂2
≤ q and for almost all t ∈ J. (2.9)

In what follows, we will assume that f is an L2-Carathéodory function.

3. Main result

The aim of this section is to study the existence of integral solutions for the nonlocal
problem (1.1).

Definition 3.1. For anyH-valued �0-measurable stochastic processes φ satisfying the con-
dition E‖φ(t)‖2 <∞ for every t ∈ [−r,0], an element y ∈ M̂2 is said to be an integral
solution of (1.1) if

(i) y(t) +ht(y)= φ(t), t ∈ [−r,0],
(ii)

∫ t
0 y(s)ds∈D(A), t ∈ J ,

(iii) y(t)= S′(t)[φ(0)−h0(y)] +A
∫ t

0 y(s)ds+
∫ t

0 f (s, ys)dw(s), t ∈ J .
From the definition it follows that y(t)∈D(A), t ≥ 0. Moreover, y satisfies the following
variation of constant formula:

y(t)= S′(t)[φ(0)−ht(y)
]

+
d

dt

∫ t

0
S(t− s) f (s, ys

)
dw(s), t ∈ J. (3.1)

We are now in a position to state and prove our existence result for the problem (1.1).
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Theorem 3.2. Assume (H1) and
(H2) w is an H-valued Wiener process defined on Hilbert space K ;
(H3) S′(t), t > 0, is compact and there exist M > 0, ω ∈R such that

∥
∥S′(t)

∥
∥2
B(H) ≤Meωt, t ≥ 0; (3.2)

(H4) the function h is continuous with respect to t and there exists a constant β > 0 such
that

∣
∣ht(u)

∣
∣2 ≤ β, u∈ M̂2

(
[−r,0],H

)
, (3.3)

and for each k > 0, the set

{
φ(0)−h0(y) : y ∈ M̂2

(
[−r,0],H

)
, ‖y‖M̂2

≤ k} (3.4)

is precompact in H ;
(H5) there exist a continuous nondecreasing functionψ : [0,∞)→ (0,∞) and p ∈ L1([0,b],

R+) such that

E
∣
∣ f (t,u)

∣
∣2 ≤ p(t)ψ

(
E‖u‖2

M̂2

)
for a.e. t ∈ [0,b] and each u∈ M̂2

(
[−r,0],D(A)

)
,

∫ b

0
p∗(s)ds <

∫∞

c

dx

x+ψ(x)
,

(3.5)

where p∗(t) =max(|ω|,2Mp(t)) and c = 4ME(|φ(0)|2 + β) are satisfied. Then the
problem (1.1) has at least one integral solution on [−r,b].

Proof. We transform the problem (1.1) into a fixed-point problem. Consider the operator
N : M̂2([−r,b],D(A))→ M̂2([−r,b],D(A)) defined by

N(y)(t) :=
⎧
⎪⎨

⎪⎩

φ(t)−ht(y) if t ∈ [−r,0],

S′(t)
[
φ(0)−h0(y)

]
+
d

dt

∫ t

0
S(t− s) f (s, ys

)
dw(s) if t ∈ [0,b].

(3.6)

Remark 3.3. It is clear that the fixed points of N are integral solutions to (1.1).

In order to use the Leray-Schauder alternative, we will obtain a priori estimates for the
solutions of the integral equation

y(t)= λ
[
S′(t)

[
φ(t)−h0(y)

]
+
d

dt

∫ t

0
S(t− s) f (s, ys

)
ds
]

, (3.7)

and y(t)= λ[φ(t)−ht(y)], t ∈ [−r,0], λ∈ (0,1). Hence

∣
∣y(t)

∣
∣2 = λ2

∣
∣
∣
∣S
′(t)

[
φ(0)−h0(y)

]
+
d

dt

∫ t

0
S(t− s) f (s, ys)dw(s)

∣
∣
∣
∣

2

≤ 2
∣
∣S′(t)

[
φ(0)−h0(y)

]∣∣2
+ 2
∣
∣
∣
∣
d

dt

∫ t

0
S(t− s) f (s, ys

)
dw(s)

∣
∣
∣
∣

2

.

(3.8)
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Thus by (H3), (H4), and (H5), we have

E
(∣
∣y(t)

∣
∣2
)
≤ 4MeωtE

(∣
∣φ(0)

∣
∣2

+β
)

+ 2Meωt
∫ t

0
e−ωs p(s)ψ

(
E
(∥
∥ys

∥
∥2
))
ds. (3.9)

We consider the function μ defined by

μ(t)= sup
{∣∣y(s)

∣
∣ : 0≤ s≤ t}, 0≤ t ≤ b. (3.10)

Let t∗ ∈ [0, t]⊂ [0,b] be such that μ(t)= |y(t∗)|. By the previous inequality, we have for
t ∈ [0,b],

e−ωtE
(
μ(t)2)≤ 4ME

(∣∣φ(0)
∣
∣2

+β
)

+ 2M
∫ t

0
e−ωs p(s)ψ

(
E
(
μ(s)2))ds. (3.11)

Let us take the right-hand side of the above inequality as v(t). Then we have

E
(
μ(t)2)≤ eωtv(t) ∀t ∈ [0,b],

c := v(0)= 4ME
(∣∣φ(0)

∣
∣2

+β
)
,

v′(t)= 2Me−ωt p(t)ψ
(
E
(
μ(t)2)) a.e. t ∈ [0,b].

(3.12)

Using the increasing character of ψ, we get

v′(t)≤ 2Me−ωt p(t)ψ
(
eωtv(t)

)
a.e. t ∈ [0,b]. (3.13)

We remark that

[
eωtv(t)

]′ = ωeωtv(t) + eωtv′(t)

≤ |ω|eωtv(t) + 2Mp(t)ψ
(
eωtv(t)

)

≤ p∗(t)
[
eωtv(t) +ψ

(
eωtv(t)

)]
.

(3.14)

Thus

∫ eωtv(t)

v(0)

dx

x+ψ(x)
≤
∫ b

0
p∗(s)ds <

∫∞

c

dx

x+ψ(x)
. (3.15)

From (H5), there exists a constant K∗ such that eωtv(t)≤ K∗, t ∈ [0,b], and there exists
M∗ such that ‖y‖M̂2

≤M∗.
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In the next steps, we will prove that N is continuous and completely continuous.
Step 1. N is continuous.

Let {yn} be a sequence such that yn→ y in M̂2([−r,b],D(A)). Then for each t ∈ [0,b],

∣
∣N

(
yn
)
(t)−N(y)(t)

∣
∣2

=
∣
∣
∣
∣S
′(t)

[
h0
(
yn
)−h0(y)

]
+
d

dt

∫ t

0
S(t− s)[ f (s, yns

)− f
(
s, ys

)]
dw(s)

∣
∣
∣
∣

2

≤ 2
∣
∣S′(t)

[
h0
(
yn
)−h0(y)

]∣∣2
+ 2
∣
∣
∣
∣
d

dt

∫ t

0
S(t− s)[ f (s, yns

)− f
(
s, ys

)]
dw(s)

∣
∣
∣
∣

2

≤ 2Meωt
∣
∣h0

(
yn
)−h0(y)

∣
∣2

+ 2
∣
∣
∣
∣
d

dt

∫ t

0
S(t− s)[ f (s, yns

)− f
(
s, ys

)]
dw(s)

∣
∣
∣
∣

2

≤ 2Meωt|h0
(
yn
)−h0(y)

∣
∣2

+ 2M
∣
∣
∣
∣

∫ t

0

∣
∣ f
(
s, yns

)− f
(
s, ys

)∣∣dw(s)
∣
∣
∣
∣

2

≤ 2Mmax
(
eωb,1

)∣∣h0
(
yn
)−h0(y)

∣
∣2

+2
∣
∣
∣
∣ lim
λ→∞

∫ t

0
S′(t−s)Bλ f

(
s, yns

)− f (s, ys
)
dw(s)

∣
∣
∣
∣

2

.

(3.16)

Then

E
(∣
∣N

(
yn
)
(t)−N(y)(t)

∣
∣2
)
≤ E

(
2Mmax

(
eωb,1

)∣∣h0
(
yn
)−h0(y)

∣
∣2
)

+E

(

2
∣
∣
∣
∣ lim
λ→∞

∫ t

0
S′(t− s)[ f (s, yns

)− f
(
s, ys

)]
dw(s)

∣
∣
∣
∣

2
)

≤ 2Mmax
(
eωb,1

)
E
(∣
∣h0

(
yn
)−h0(y)

∣
∣2
)

+ 2Mmax
(
e|ω|b,1

)
∫ b

0
E
(∣
∣ f
(
s, yns

)− f
(
s, ys

)∣∣2
)
ds.

(3.17)

Thus
∥
∥N

(
yn
)−N(y)

∥
∥
M̂2

≤
√

2Mmax
(
eωb,1

)
b
∣
∣h0

(
yn
)−h0(y)

∣
∣

+
√

2Mbmax
(
e|ω|b,1

)∥∥ f
(·, yn

)− f (·, y)
∥
∥
M̂2
−→ 0 as n−→∞.

(3.18)

Step 2. N maps bounded sets into bounded sets in M̂2([−r,b],H).
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Indeed, it is enough to show that there exists a positive constant � such that for each
y ∈�q = {y ∈ M̂2([−r,b],H) : ‖y‖2

M̂2
≤ q}, one has ‖N(y)‖M̂2

≤ �.

Let y ∈ Bq, then for each t ∈ [0,b], we have

|N(y)(t)|2 =
∣
∣
∣
∣S
′(t)

[
φ(0)−h0(y)

]
+
d

dt

∫ t

0
S(t− s) f (s, ys

)
dw(s)

∣
∣
∣
∣

2

≤ 2
∣
∣S′(t)

[
φ(0)−h0(y)

]∣∣2
+ 2
∣
∣
∣
∣
d

dt

∫ t

0
S(t− s) f (s, ys

)
dw(s)

∣
∣
∣
∣

2

≤ 4Mmax
(
eωb,1

)[∣∣h0(y)
∣
∣2

+
∣
∣φ(0)

∣
∣2
]

+ 2
∣
∣
∣
∣ lim
λ→∞

∫ t

0
S′(t− s)Bλ f

(
s, ys

)
dw(s)

∣
∣
∣
∣

2

.

(3.19)

Thus

∥
∥N(y)

∥
∥
M̂2
≤ 4Mmax

(
eωb,1

)
b
[∣
∣h0(y)

∣
∣2

+
∣
∣φ(0)

∣
∣2
]

+ 2Mbmax
(
e|ω|b,1

)∥∥hq
∥
∥
L2 := �.

(3.20)

Step 3. N maps bounded sets into equicontinuous sets in M̂2([−r,b],H).
Let t1, t2 ∈ J , t1 < t2, Bq be a bounded set of M̂2([−r,b],H) as in Step 2 and let y ∈ Bq.

Then

∣
∣N(y)

(
t1
)−N(y)

(
t2
)∣∣2=

∣
∣
∣
∣
[
S′
(
t2
)−S′(t1

)][
φ(0)−h0(y)

]
+ lim
λ→∞

∫ t2

t1
S′
(
t2−s

)
f
(
s, ys

)
dw(s)

+ lim
λ→∞

∫ t1

0

[
S′
(
t2− s

)− S′(t1− s
)]
f
(
s, ys

)
dw(s)

∣
∣
∣
∣

2

≤ 4
∣
∣S′
(
t2
)− S′(t1

)∣∣2
[∣
∣h0(y)

∣
∣2

+
∣
∣φ(0)

∣
∣2
]

+ 4
∣
∣
∣
∣ lim
λ→∞

∫ t2

t1
S′
(
t2− s

)
Bλ f

(
s, ys

)
dw(s)

∣
∣
∣
∣

2

+ 4
∣
∣
∣
∣ lim
λ→∞

∫ t1

0

[
S′
(
t2− s

)− S′(t1− s
)]
Bλ f

(
s, ys

)
dw(s)

∣
∣
∣
∣

2

.

(3.21)
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Hence

E
(∣
∣N(y)

(
t1
)−N(y)

(
t2
)∣∣2

)
≤ E

(
4
∣
∣S′
(
t2
)− S′(t1

)∣∣2
[∣
∣h0(y)

∣
∣2

+
∣
∣φ(0)

∣
∣2
])

+E

(

4
∣
∣
∣
∣ lim
λ→∞

∫ t2

t1
S′
(
t2− s

)
Bλ f

(
s, ys

)
dw(s)

∣
∣
∣
∣

2
)

+E

(

4
∣
∣
∣
∣ lim
λ→∞

∫ t1

0

[
S′
(
t2− s

)− S′(t1− s
)]
Bλ f

(
s, ys

)
dw(s)

∣
∣
∣
∣

2
)

≤ 4b
∣
∣S′
(
t2
)− S′(t1

)∣∣2
[∣
∣h0(y)

∣
∣2

+
∣
∣φ(0)

∣
∣2
]

+ 4b
∫ t2

t1

∣
∣S′
(
t2− s

)∣∣2
p(s)ψ

(
E(q)

)
ds

+ 4b
∫ t1

0

∣
∣S′
(
t2− s

)− S′(t1− s
)∣∣2

hq(s)ds.

(3.22)

The right-hand side tends to zero as t2 − t1 → 0. Now we will show that N�q(t) is
relatively compact for every t ∈ [0,b]. In the case where t = 0, we haveN�q(0)= {φ(0)−
h0(y)} which is precompact from (H4). Let 0 < t ≤ b and ε < t ≤ b. For y ∈�q,

Nε(y)(t)= S′(t)[φ(0)−h0(y)
]

+ lim
λ→∞

∫ t

t−ε
S′(t− s)Bλ f

(
s, ys

)
dw(s)

+ lim
λ→∞

S′(ε)
∫ t−ε

0
S′(t− ε− s)Bλ f

(
s, ys

)
dw(s).

(3.23)

Since S′(t) is a compact operator, the set Hε(t) = {Nε(y)(t) : y ∈�q} is precompact in
D(A) for every ε, 0 < ε < t. Moreover, for every y ∈�q, we have

∣
∣Nε(y)(t)−N(y)(t)

∣
∣2 ≤

∣
∣
∣
∣ lim
λ→∞

∫ t

t−ε
S′(t− s)Bλ f

(
s, ys

)
dw(s)

∣
∣
∣
∣

2

(3.24)

Then

E
(∣∣Nε(y)(t)−N(y)(t)

∣
∣2)≤ E

(∣
∣
∣
∣ lim
λ→∞

∫ t

t−ε
S′(t− s)Bλ f

(
s, ys

)
dw(s)

∣
∣
∣
∣

2
)

≤ b
∫ t

t−ε

∥
∥S′(t− s)∥∥2

B(H)hq(s)ds.

(3.25)

Therefore, there are precompact sets arbitrarily close to the set {Nε(y)(t) : y ∈ �q}.
Hence the set {Nε(y)(t) : y ∈�q} is precompact in D(A).
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The cases when t1, t2 < 0 or t1 < 0 < t2 are obvious.
Set

U = {z ∈ M̂2
(
[−r,b],H

)
: ‖y‖M̂2

<M∗ + 1
}
. (3.26)

From the choice of U , there is no y ∈ ∂U such that y = λN(y), for some λ∈ (0,1). As a
consequence of the nonlinear alternative of Leray-Schauder type [7], we deduce that N
has a fixed point y in U which is an integral solution of the problem (1.1). �

Remark 3.4. We can replace (H5) by the following condition.
(H5)∗ There exists a continuous nondecreasing function ψ : [0,∞)→ (0,∞), p ∈ L1([0,

b],R+), and nonnegative number M∗ > 0 such that

E
(∣
∣ f (t,u)

∣
∣2
)
≤ p(t)ψ

(
E‖u‖2

M̂2

)
for each u∈ M̂2

(
[−r,0],H

)
,

M∗
4ME

(∣
∣φ(0)

∣
∣2

+β
)

+ 2Mmax
(
e|ω|b,1

)
ψ(M∗)

∫ b
0 p(s)ds

> 1.
(3.27)

Then the step on a priori estimates will be modified as follows.
Let y be solution of the problem (1.1), then we have

∣
∣y(t)

∣
∣2 =

∣
∣
∣
∣S
′(t)

[
φ(0)−h0(y)

]
+
d

dt

∫ t

0
S(t− s) f (s, ys

)
dw(s)

∣
∣
∣
∣

2

≤ 2
∣
∣S′(t)

[
φ(0)−h0(y)

]∣∣2
+ 2
∣
∣
∣
∣
d

dt

∫ t

0
S(t− s) f (s, ys

)
dw(s)

∣
∣
∣
∣

2

≤ 4Mmax
(
eωb,1

)[∣∣φ(0)
∣
∣2

+
∣
∣h0(y)

∣
∣2
]

+ 2
∣
∣
∣
∣ lim
λ→∞

∫ t

0
S′(t− s)Bλ f

(
s, ys

)
∣
∣
∣
∣dw(s)2.

(3.28)

Thus using (H5)∗, instead of (H5), we have

E
(∣
∣y(t)

∣
∣2
)
≤ E

(
4Mmax

(
eωb,1

)[∣∣φ(0)
∣
∣2

+β
])

+E

(

2
∣
∣
∣
∣ lim
λ→∞

∫ t

0
S′(t− s)Bλ f

(
s, ys

)
dw(s)

∣
∣
∣
∣

2
)

≤ 4Mmax
(
eωb,1

)
E
(∣
∣φ(0)

∣
∣2

+β
)

+ 2Mmax
(
eωb,1

)
b
∫ t

0
e−ωsE

(∣
∣ f
(
s, ys

)∣∣2
)
ds

≤ 4Mmax
(
eωb,1

)
E
(∣
∣φ(0)

∣
∣2

+β
)

+ 2Mmax
(
eωb,1

)
∫ t

0
e−ωs p(s)ψ

(
E
(∥
∥ys

∥
∥2
))
ds.

(3.29)
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We consider the function μ defined by

μ(t)= sup
{∣∣y(s)

∣
∣ : 0≤ s≤ t}, 0≤ t ≤ b. (3.30)

Let t∗ ∈ [0, t]⊂ [0,b] be such that μ(t)= |y(t∗)|. By the previous inequality, we have for
t ∈ [0,b],

E
(
μ2(t)

)≤ 4Mmax
(
e|ω|b,1

)
E
(∣
∣φ(0)

∣
∣2

+β
)

+ 2Mmax
(
e|ω|b,1

)
∫ b

0
p(s)ψ

(
E
(
μ2(s)

))
ds.

(3.31)

Consequently,

‖y‖M̂2

4Mmax
(
e|ω|b,1

)
E
(∣∣φ(0)

∣
∣2

+β
)

+ 2Mψ
(‖y‖M̂2

)max
(
e|ω|b,1

)
∫ b

0
p(s)ds≤ 1. (3.32)

Then by (H5)∗, there exists M∗ such that ‖y‖M̂2
�=M∗.

Set

U = {y ∈ M̂2
(
[−r,b],R

)
: ‖y‖M̂2

<M∗
}

(3.33)

and proceed as in Theorem 3.2.

4. An example

To apply the previous result, we consider the following partial stochastic differential equa-
tion:

∂

∂t
u(t,x)=�u(t,x) + f

(
t,u(t− r,x)

)dw(t)
dt

, 0≤ t ≤ b, x ∈Ω,

u(t,x)= 0, 0≤ t ≤ b, x ∈ ∂Ω,

u(t,x) +ht(x)= v0(x) t ∈ [−r,0], x ∈Ω,

(4.1)

where Ω is a bounded open set of Rn with regular boundary ∂Ω, v0 ∈ C(Ω,Rn), f :
[0,b]×Rn → Rn is a given function, and � =∑n

k=1(∂2/∂x2
k). Consider E = C(Ω), the

Banach space of continuous function on Ω with values in Rn. Define the linear operator
A on E by

Az =�z in D(A)= {z ∈ C(Ω) : z = 0 on ∂Ω, �z ∈ C(Ω)
}
. (4.2)



12 Stochastic functional differential equations

Now, we have

D(A)= C0(Ω)= {v ∈ C(Ω) : v = 0 on ∂Ω
} �= C(Ω). (4.3)

It is well known from [5] that A is sectorial, (0,+∞)⊆ ρ(A), and for λ > 0,

∣
∣R(λ,�)

∣
∣≤ 1

λ
. (4.4)

It follows that A generates an integrated semigroup (S(t))t≥0 and that |S′(t)| ≤ e−μt for
t ≥ 0 for some constant μ > 0. The partial stochastic differential equation (4.1) can be
reformulated as the abstract semilinear stochastic differential equation (1.1) in E, where
F : [0,b]×D(A)→ E is the Nemyskii operator given by

F(t,u)(x)= f
(
t,u(t− r,x)

)
. (4.5)

If we assume that f is an L2-Carathéodory function satisfying (H5) and the conditions
(H1), (H4) are satisfied, then the integral solution of (1.1) exists by Theorem 3.2.
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