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Periodically correlated autoregressive nonstationary processes of finite order are consid-
ered. The corresponding Yule-Walker equations are applied to derive the generating func-
tions of the covariance functions, what are called here the periodic covariance generating
functions. We also provide closed formulas for the spectral densities by using the peri-
odic covariance generating functions, which is a new technique in the spectral theory of
periodically correlated processes.
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1. Introduction

In this work, we will consider periodically correlated autoregressive processes of finite
order p ≥ 1 (PCAR(p)). The aim is to develop a technique for analytic evaluation of the
spectral densities. The work of Nematollahi and Soltani [6] treated the case of p = 1.
Their work exhibits the complexities in deriving closed forms for the spectral densities
even for p = 1. Moreover, it seems that their approach cannot even be extended for the
case of p > 1. Our approach, presented in this article, is new; it is based on employing
the periodic covariance generating function (PCGF), which is the generating function of
the covariance function. The PCGF for PCAR(p) has not yet been produced, to the best
of our knowledge. Of course the significance of generating functions has been frequently
realized in queueing, Markov chains, and most fields in engineering, but rarely in time
series. We will derive the PCGF by using Yule-Walker equations for PCAR(p). Through
some examples we will demonstrate the details of our method of deriving the PCGF.

The authors learned from a referee that Sakai [8] derived the formula for the spectral
density matrix of periodic ARMA processes. The spectral part of this work is an alterna-
tive to other methods, but it is new in deriving the spectral density of PCAR(p) processes.

This paper is organized as follows. Preliminaries are given in Section 2. The PCGF for
PCAR(p) is derived in Section 3. Closed forms for the spectral densities of PCAR(p) are
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established in Section 4. Some examples are also provided, including a new derivation for
the Nematollahi and Soltani [6] formula for the spectral density.

Concerning the literature on periodically correlated processes, periodically correlated
AR or ARMA processes, we refer the reader to the works of Miamee [4], Pourahmadi
and Salehi [7], Soltani and Parvardeh [10], and the references therein. For numerical
computation of autocovariance function of periodically correlated ARMA processes, see
Shao and Lund [9].

2. Preliminaries

A centered discrete-time second-order process X = {Xt, t ∈ Z}, Z is the set of integers, is
said to be a PCAR(p) series if it is generated by the following model:

Xt = c1(t)Xt−1 + c2(t)Xt−2 + ···+ cp(t)Xt−p +Zt, (2.1)

where ci(t), i = 1, . . . , p, are periodic functions in t with period T , and the process {Zt}
is periodic white noise PWN(0,σ2

t ,T), which means (i) EZt = 0, (ii) σ2
t+T = σ2

t > 0, and
(iii) EZtZs = 0, for t �= s. The smallest integer T satisfying (2.1) is called the period. Note
that if T = 1, (2.1) reduces to an ordinary AR model. In this work, we assume T ≥ 1 and
it stands for the period. The simplest way to justify the model in (2.1) is to apply the
connection between PC and multivariate stationary processes, Gladyshev [2]. Indeed, let
Yt = (Y 0

t ,Y 1
t , . . . ,YT−1

t ), where Yk
t = XtT+k, and Wt = (W0

t ,W1
t , . . . ,WT−1

t ), where Wk
t =

ZtT+k, t ∈ Z, k = 0, . . . ,T − 1. Then model (2.1) can be restated in the multivariate AR
model

Yt =Φ1Yt−1 + ···+Φp∗Yt−p∗ + Wt, (2.2)

where p∗ = [p/T], [x] denotes the smallest integer greater than or equal to x. The T ×T
coefficients Φi, i= 1, . . . , p∗, are given in [9]. Let Φ(z) := I−Φ1z−···−Φp∗zp

∗
be the

T-variate AR polynomial associated with the process {Yt, t ∈ Z}. It is well known that the
process Yt given by (2.2) uniquely exists and is stationary if det(Φ(z)) �= 0, for all complex
|z| ≤ 1 [9].

Let X = {Xt, t ∈ Z} be a zero-mean PCAR(p), and let R(t,s) = EXtXs denote the co-
variance function, then

R(t,s)= R(t+T ,s+T), (2.3)

for all s, t in Z. It follows from (2.3) that for each k, the function Rt(k) := R(t + k, t) is
periodic in t with period T , that is,

Rt(k)= Rt+T(k), t,k ∈ Z. (2.4)

It is plain to show that Rt(k), t=0, . . . ,T − 1, k∈Z, satisfy the following Yule-Walker-type,
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system of recursive relations:

p∑

i=0

ci(T −m)RT−(m+i)(i)=−σ2
m,

p∑

i=0

ci(T −m)RT−(m+i)(i− k)= 0, m= 0,1, . . . ,T − 1, k ≥ 1,

(2.5)

where σ2
m = EZ2

T−m and c0(s)=−1, s= 1,2, . . . ,T . Furthermore,

Rt(lT + v)= Rt+v
(− (l+ 1)T + (T − v)

)
, (2.6)

for l = 0,1, . . . and t,v = 0, . . . ,T − 1.

3. A method to evaluate Rt(k)

We apply the generating function method, see [3], for solving the system of recurrence
equations given by (2.5). Let us first introduce the following notations and conventions:

ai(k) := Ri(−k), i= 0, . . . ,T − 1, k = 0,1, . . . , (3.1)

�u� and �u�0 are the quotient and reminder in division of u by T , that is, u= �u�T + �u�0,

c0(s)=−1, s= 1,2, . . . ,T ,

Ai+rT , j(x)= Ai, j(x) :=
j∑

k=0

ai(k)xk, i= 0,1, . . . ,T − 1, r, j = 0,1, . . . ,
(3.2)

Ai+rT(x)= Ai(x) := Ai,∞(x), |x| ≤ 1, x ∈ C, where C denotes the set of complex numbers,

ei+rT(x)= ei(x)=:−
p−1∑

j=0

cj(i)x jAi− j,(p−1)− j(x), i= 0, . . . ,T − 1, r ∈ Z,

a(x)=

⎛
⎜⎜⎜⎜⎜⎜⎝

AT(x)

AT−1(x)
...

A1(x)

⎞
⎟⎟⎟⎟⎟⎟⎠

, e(x)=

⎛
⎜⎜⎜⎜⎜⎜⎝

eT(x)

eT−1(x)
...

e1(x)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Dij(x)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mj−i(x,T − i), i= 0,1, . . . ,T − 1, j = 0,1, . . . ,T − 1,

0≤ j− i≤ �p�0,

Nj−i(x,T − i), i= 0,1, . . . ,T − 1, j = �p�0 + 1, . . . ,2T − 2,

�p�0 + 1≤ j− i≤ T − 1,

0, otherwise,

(3.3)
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where Ml(x,s)=−∑�p�
u=0 cuT+l(s)xuT+l, for l = 0,1, . . . ,�p�0, and

Nl(x,s)=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−
�p�−1∑

u=0

cuT+l(s)xuT+l, l = �p�0 + 1, . . . ,T − 1, �p� > 0,

0, �p� = 0,

D(x)= [Dij(x)
]
, i= 0,1, . . . ,T − 1, j = 0,1, . . . ,2T − 2.

(3.4)

Our aim is to specify the periodic covariance generating functions (PCGFs) Ai(x), i=
0, . . . ,T − 1, then the coefficients ai(k), so Ri(k), can be easily determined. For solving the
system of equations in Theorems 3.2 and 3.9, as we will see in the following, we need to
know the vector e(x)= (eT(x),eT−1(x), . . . ,e1(x))′.

Lemma 3.1. The vector e(x) is specified by the coefficients {ai(k); k = 0, . . . , p− 1, i= 0, . . . ,
T − 1}, which can be obtained from solving the following system of equations:

p∑

i=0

ci(T −m)a�T−(m+�i�T)�0 (i)=−σ2
m,

k∑

i=0

ci(T −m)a�T−(m+i)�0 (k− i) +
p∑

i=k+1

ci(T −m)a�T−(m+i)+�i−k�0�0 (i− k)= 0,

(3.5)

for k = 1, . . . , p and m= 0, . . . ,T − 1.

Proof. It is clear that the vector e(x) is fully specified by {ai(k); k = 0, . . . , p − 1, i =
0, . . . ,T − 1}, which is the unique solution to the linear equations given above. By using
the first equation given by (2.5) and the fact that RT−(m+i)(i) = RT−m−�i�T(−i) for i ≥ 0,
we will obtain the first system of equations given above. The second system of equation
can be easily deduced by using the second equations given by (2.5) and the fact that
RT−(m+i)(i− k)= RT−(m+i)+�i−k�0 (k− i) for i > k. The proof is complete. �

Theorem 3.2. The periodic covariance generating functionsAi(x), i= 0, . . . ,T − 1, are given
by

B(x)a(x)= e(x), (3.6)

where B(x) is the T ×T matrix formed by first T columns of

S(x)=D(x)UT−1,2T−1UT−2,2T−2UT−3,2T−3 ···U1,T+1, (3.7)

and each U j,r is the matrix formed from a (2T − 1)× (2T − 1) identity matrix, I, in this
way that the jth column of U j,r is the sum of rth and jth columns of I, and other columns of
U j,r are the same as those of I.
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Proof. It easily follows from (2.5) that for m= 0,1, . . . ,T − 1,

p∑

i=0

ci(T −m)
∞∑

k=0

aT−(m+i)(k+ p− i)xk+p = 0. (3.8)

So the system of equations given above can be written as

p∑

i=0

ci(T −m)xiAT−i−m(x)=−eT−m(x), m= 0,1, . . . ,T − 1. (3.9)

Since Ai(x), i = 0,1, . . . ,T − 1, are periodic in i with period T , the system of equations
given above can also be written as follows:

D(x)ã(x)= e(x), (3.10)

where ã(x) = (AT(x),AT−1(x), . . . ,A1(x),AT(x), . . . ,A2(x))′. To obtain (3.6) from (3.10),
first form S(x) as in (3.7) and let B(x) be the matrix formed by first T columns of S(x).
Then it is easy to see that Ai(x), i= 0,1, . . . ,T − 1, satisfy the system of (3.6). �

Remark 3.3. According to the causality assumption, the covariance functions are well-
defined uniquely. Thus for each x, |x| ≤ 1, the system of equations in (3.6) possesses a
unique solution for a(x), giving that B(x) is invertible.

Example 3.4. Let X be a causal PCAR(1) process with period T = 1, with c1(t) = c and
σ2
t = σ2. In this case, the matrix B(x) reduces to

B(x)= 1− cx, (3.11)

so the model is causal if and only if |c| < 1. Also, it is easily shown that EX2
t = σ2/(1− c2)

and so

A(x)= σ2
(
1− c2

)
(1− cx)

, (3.12)

and hence

R(k)= σ2c|k|(
1− c2

) , (3.13)

for k ∈ Z. This is in adaptation with the usual stationary autoregressive models of order
one.

Example 3.5. Consider a causal PCAR(1) process with period T , T ≥ 2. Here ci(t) = 0,
i = 2, . . . , p. Let c(t) := c1(t). By using the method mentioned in Theorem 3.2, the
elements of the matrices D(x) = [Dij(x)]i=0,...,T−1, j=0,...,2T−2, B(x) = [Bij(x)]i, j=0,...,T−1,



6 Covariance generating functions and spectral densities of PCAR

B−1(x)= [B#
i j(x)]i, j=0,...,T−1, and e(x)= [ej(x)] j=0,...,T−1 are given by

Dij(x)=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, i= j,

−c(T − j + 1)x, i= j− 1,

0, otherwise,

Bij(x)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1, i= j,

−c(T − j + 1)x, i= j− 1,

−c(1), i= T − 1, j = 0,

0, otherwise,

B#
i j(x)= 1

1−
(∏T

z=1c(z)
)
xT

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, i= j,

j−1∏

z=i
c(T − z)x j−i, j > i,

(T−i∏

z=1

c(z)
j−1∏

z=0

c(T − z)

)
xT−(i− j), i > j,

(3.14)

ej(x) = Rj(0), j = 0, . . . ,T − 1, respectively. By applying Theorem 3.2 and after some al-
gebraic manipulations, we obtain

Rt(−lT + v)= [c(0)c(1)···c(T − 1)
]l−1[

c(t)c(t− 1)···(t−T + 1 + v)
]
Rt+v(0),

(3.15)

for t,v = 0,1, . . . ,T − 1, l = 0,1, . . . . Now if we take g(t− 1) := c(t), then

Rt(−lT + v)= [g(0)g(1)···g(T − 1)
]l−1[

g(t− 1)g(t− 2)···g(t−T + v)
]
Rt+v(0),

= [g̃(T − 1)
]l−1

g̃(T + t− 1)
[
g̃(t+ v− 1)

]−1
Rt+v(0),

(3.16)

where g̃(n) =∏n
j=0 g( j), which is the formula given in [6]. In the above equation, we

have only T unknown values Rj(0), j = 0, . . . ,T − 1, which are determined by Lemma 3.1
as follows:

a�T−m�0 (0)− c1(T −m)a�T−m�0 (1)= σ2
m,

a�T−m�0 (1)− c1(T −m)a�T−m−1�0 (0)= 0,
(3.17)
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for m= 0,1, . . . ,T − 1. After solving these equations, we conclude that

RT−i(0)= aT−i(0)= σ2
i + c2

1(T − i)σ2
i+1 + ···+ c2

1(T − i)···c2
1(−i+ 2)σ2

i+T−1

1− c2
1(T)···c2

1(1)
,

aT−i(1)= c2
1(T − i)σ2

i+1 + ···+ c2
1(T − i)···c2

1(−i+ 1)σ2
T+i

c1(T − i)
[
1− c2

1(T)···c2
1(1)

] ,

(3.18)

for i= 0, . . . ,T − 1.

Example 3.6. Let X be a causal PCAR(2) process with period T , T ≥ 3. In this case, the
equations in Lemma 3.1 reduces to

a�T−m�0 (0)− c1(T −m)a�T−m�0 (1)− c2(T −m)a�T−m�0 (2)= σ2
m,

a�T−m�0 (1)− c1(T −m)a�T−m−1�0 (0)− c2(T −m)a�T−m−1�0 (1)= 0,

a�T−m�0 (2)− c1(T −m)a�T−m−1�0 (1)− c2(T −m)a�T−m−2�0 (0)= 0,

(3.19)

for m= 0,1, . . . ,T − 1. From (3.8) we have

2∑

i=0

ci(T −m)
∞∑

k=0

aT−(m+i)(k+ 2− i)xk+2 = 0, m= 0,1, . . . ,T − 1. (3.20)

So

AT(x)− c1(T)xAT−1(x)− c2(T)x2AT−2(x)= eT(x),

AT−1(x)− c1(T − 1)xAT−2(x)− c2(T − 1)x2AT−3(x)= eT−1(x),

...

A1(x)− c1(1)xA0(x)− c2(1)x2A−1(x)= e1(x),

(3.21)

and the elements of the matrices D(x) and B(x) are given by

Dij(x)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1, i= j,

−c1(T − j + 1)x, i= j− 1,

−c2(T − j + 2)x2, 0i= j− 2,

0, otherwise,

i= 0, . . . ,T − 1, j = 0, . . . ,2T − 2,

Bij(x)=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, i= j,

−c1(T − j + 1)x, i= j− 1,

−c2(T − j + 2)x2, i= j− 2,

−c2(2)x2, j = 0, i= T − 2,

−c1(1)x, j = 0, i= T − 1,

−c2(1)x2, j = 1, i= T − 1,

0, otherwise.

(3.22)
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Now (3.6) can be solved for a(x) by using a mathematical software.

Example 3.7. Let X be a causal PCAR(2) with period T = 1 (stationary case), with c1(t)=
c1, c2(t)= c2. In this case, the formula (3.6) takes the simple form

A(x) := A1(x)= a(0) + a(1)x− c1xa(0)
1− c1x− c2x2

. (3.23)

The covariance generating function for AR(2) is defined in [1, Page 103] as

G(x)=
∞∑

k=−∞
a(k)xk,

(
a(k)= a(−k)

)

= σ2
(
1− c1x− c2x2

)(
1− c1/x− c2/x2

) .

(3.24)

Therefore, in our settings, G(x) and A(x) are related through

G(x)=A(x) +A
(

1
x

)
− a(0), (3.25)

where A(x)=∑∞
k=0 a(k)xk, and its closed form is given by (3.23). It can be readily verified

that A(x) in (3.23) and G(x) in (3.24) satisfy (3.25) in view of the following boundary
conditions:

a(0)− c1a(1)− c2a(2)= σ2,

a(1)− c1a(0)− c2a(1)= 0,

a(2)− c1a(1)− c2a(0)= 0.

(3.26)

In the following, we consider the simple case T = p = 2, which will clarify the proof of
Theorem 3.2.

Example 3.8. Let X be a PCAR(2) process with period T = 2, then from Lemma 3.1, for
m= 0,1, we have

a�2−m�0 (0)− c1(2−m)a�2−m�0 (1)− c2(2−m)a�2−m�0 (2)= σ2
m,

a�2−m�0 (1)− c1(2−m)a�1−m�0 (0)− c2(2−m)a�1−m�0 (1)= 0,

a�2−m�0 (2)− c1(2−m)a�1−m�0 (1)− c2(2−m)a�2−m�0 (0)= 0.

(3.27)
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It follows that

a0(0)= 1
H

[(− c2(1)c2(2) + c3
2(1)c2(2)− c2

2(1) + 1− 2c1(1)c1(2)c2(1)
)
σ2

0

+
(
c2(1)c2(2)c2

1(2) + c2
1(2)

)
σ2

1

]
,

a0(1)=− 1
H

[(− c2
1(1)c1(2)− c1(1)c2(2) + c2(2)c1(1)c2

2(1)
)
σ2

0

+
(
c1(2)c2

2(2) + c2(2)c1(1)c2
1(2)− c1(2)

)
σ2

1

]
,

a0(2)= 1
H

[(− c2
1(1)c2(1)c1(2) + c1(2)c1(1)− c1(2)c2

2(1)c1(1)− c2(1)c2
2(2)

+ c3
2(1)c2

2(2)− c2(2)c2
2(1) + c2(2)− 2c1(1)c1(2)c2(1)c2(2)

)
σ2

0

+
(
c2(1)c2

1(2) + c1(1)c3
1(2) + c2(2)c2

1(2)
)
σ2

1

]
,

a1(0)=− 1
H

[(− c2
1(1)− c2

1(1)c2(1)c2(2)
)
σ2

0

+
(
c2(1)c2(2)− c2(1)c3

2(2) + c2
2(2) + 2c1(2)c2(2)c1(1)− 1

)
σ2

1

]
,

a1(1)= 1
H

[(− c1(2)c2
1(1)c2(1) + c1(1)− c2

2(1)c1(1)
)
σ2

0

+
(
c2(1)c1(2)− c2

2(2)c2(1)c1(2) + c1(1)c2
1(2)

)
σ2

1

]
,

a1(2)=− 1
H

[(− c3
1(1)c1(2)− c2(1)c2

1(1)− c2(2)c2
1(1)

)
σ2

0

+
(
c2

2(1)c2(2)− c2(1)− c2
2(1)c3

2(2) + c2
2(2)c2(1) + c2(2)c2

1(1)c2
1(2)

+ 2c1(1)c1(2)c2(1)c2(2)− c1(1)c1(2) + c1(1)c2
2(2)c1(2)

)
σ2

1

]
,

(3.28)

where

H = (c2(1)c2(2)− 1
)[
c1(1)c1(2)− 1 + c2(1) + c2(2)− c2(1)c2(2)

]

× [c1(1)c1(2) + 1 + c2(1) + c2(2) + c2(1)c2(2)
]
.

(3.29)

The system of (3.8) reduces to

∞∑

k=0

a2(k+ 2)xk+2− c1(2)
∞∑

k=0

a1(k+ 1)xk+2− c2(2)
∞∑

k=0

a0(k)xk+2 = 0,

∞∑

k=0

a1(k+ 2)xk+2− c1(1)
∞∑

k=0

a0(k+ 1)xk+2− c2(1)
∞∑

k=0

a−1(k)xk+2 = 0.

(3.30)
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which can be written as

A2(x)− c1(2)xA1(x)− c2(2)x2A0(x)= a0(0) + a0(1)x− c1(2)a1(0)x,

A1(x)− c1(1)xA0(x)− c2(1)x2A−1(x)= a1(0) + a1(1)x− c1(1)a0(0)x.
(3.31)

Thus

D(x)=
⎛
⎝

1− c2(2)x2 −c1(2)x 0

0 1− c2(1)x2 −c1(1)x

⎞
⎠ ,

ã(x)=

⎛
⎜⎜⎜⎝

A2(x)

A1(x)

A2(x)

⎞
⎟⎟⎟⎠ , e(x)=

⎛
⎝
a0(0) + a0(1)x− c1(2)a1(0)x

a1(0) + a1(1)x− c1(1)a0(0)x

⎞
⎠ .

(3.32)

Now

S(x)=D(x)U1,3 =
⎛
⎝

1− c2(2)x2 −c1(2)x 0

−c1(1)x 1− c2(1)x2 −c1(1)x

⎞
⎠ , (3.33)

giving that

B(x)=
⎛
⎝

1− c2(2)x2 −c1(2)x

−c1(1)x 1− c2(1)x2

⎞
⎠ . (3.34)

Now by solving B(x)a(x)= e(x), where a(x)=
(
A2(x)
A1(x)

)
, we obtain that

A1(x)= �1(x)
�(x)

, A2(x)= �2(x)
�(x)

, (3.35)

where

�1(x)= c2(2)
(
c1(1)a0(0)− a1(1)

)
x3

+
(
c1(1)a0(1)− c1(1)c1(2)a1(0)− c2(2)a1(0)

)
x2 + a1(1)x+ a1(0),

�2(x)= c2(1)
(
c1(2)a1(0)− a0(1)

)
x3

+
(
c1(2)a1(1)− c1(2)c1(1)a0(0)− c2(1)a0(0)

)
x2 + a0(1)x+ a0(0),

�(x)= c2(1)c2(2)x4− (c1(1)c1(2) + c2(1) + c2(2)
)
x2 + 1,

(3.36)

where the a0(0), a0(1), a1(0), and a1(1) are given by (3.28).
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In the following, we will examine the structure of the PCGF {Al(x), l = 0, . . . ,T − 1}
in order to establish its relation with the spectral density of the process. Interestingly,

Al(x)=
T−1∑

j=0

A
j
l (x), l = 0, . . . ,T − 1, (3.37)

where

A
j
l (x)=

∞∑

k=0

Rl(−kT − j)xkT+ j , j, l = 0,1, . . . ,T − 1. (3.38)

Let us call A
j
l (x) the “ jth partition” of Al(x). For T = 2, these partitions can be specified

from the corresponding PCGF Al(x) through

A0
l (x)= Al(x) +Al(−x)

2
, A1

l (x)= Al(x)−Al(−x)
2

. (3.39)

It is not clear if this is the case for T > 2. Nevertheless, the following theorem indi-
cates that these partitions are solutions to T linear systems each consisting of T linear
equations.

Let us recall that based on our notation every u uniquely can be written as u= �u�T +
�u�0.

Theorem 3.9. The “ jth partition” of Al(x) is given by

p∑

l=0

cl(T −m)xlA
� j+p−l�0

T−(m+l) (x)= ej,T−m(x), m= 0,1, . . . ,T − 1, j = �T −m+ r�0,

(3.40)

for any r = 0,1, . . . ,T − 1, where

ej,T−m(x)=−
p∑

l=0

cl(T −m)xl
� j+p−l�−1∑

k=0

aT−(m+l)
(
kT + � j + p− l�0

)
xkT+� j+p−l�0 . (3.41)

Proof. . Similar to (3.8), we can write

p∑

l=0

∞∑

k=0

cl(T −m)aT−(m+l)
(
kT + � j + p− l�T + � j + p− l�0

)
xkT+� j+p�T+� j+p�0 = 0,

(3.42)

for m, j = 0, . . . ,T − 1, which leads to (3.40) after some algebraic simplifications. �
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Remark 3.10. Note that clearly the argument kT + � j + p− l�0 is nonnegative and takes
its maximum whenever k = � j + p− l�− 1. In this case, we have kT + � j + p− l�0 = (� j +
p − l� − 1)T + � j + p − l�0 = j + p − l − T , which is at most p − 1. So all ej,T−m(x) in
(3.41) are completely determined using Lemma 3.1.

The classification in equation (3.40) is crucial in finding the partitions. Indeed, since
Al+kT
�s+k′T�(x) = Al

�s�(x), for all k,k′ ∈ Z, the classification in (3.40) takes places, which en-
ables one to solve each system separately for any r = 0,1, . . . ,T − 1, as in Theorem 3.2.

4. A characterization for the spectral density matrix of a PCAR(p) process

The spectral density of a PC process was introduced in [2], if it exists, it is a Hermitian
nonnegative definite T ×T matrix of complex functions on [0,2π),

f(λ)= [ f jk(λ)
]
j,k=0,1,...,T−1, (4.1)

for which

Rt(τ)=
T−1∑

k=0

Bk(τ)exp
(

2πikt
T

)
,

Bk(τ)=
∫ 2π

0
eiτλ fk(λ)d(λ),

(4.2)

where fk(λ) and f jk(λ), j,k = 0,1, . . . ,T − 1, are related through

f jk(λ)= 1
T
fk− j

(
λ− 2π j

T

)
, j,k = 0,1, . . . ,T − 1, 0≤ λ < 2π. (4.3)

In this section, we characterize f(λ) of a PCAR(p) process. As we mentioned in
Section 2, corresponding to every PC process Xt, t ∈ Z, with period T , the T-dimensional
random sequence Yt = (Y 0

t ,Y 1
t , . . . ,YT−1

t ), where Yk
t = XtT+k, t ∈ Z, k = 0, . . . ,T − 1, is sta-

tionary in the wide sense, and from the causality, the spectral distribution matrix of the
process Yt has a uniformly continuous spectral density matrix h(λ)= [hjk(λ)] j,k=0,1,...,T−1.
Moreover,

hjk(λ)= 1
2π

∞∑

τ=−∞
Qjk(τ)e−iλτ , 0≤ λ < 2π, (4.4)

where Q(τ)= [Qjk(τ)] j,k=0,1,...,T−1 is the covariance matrix of Yt.

Lemma 4.1. The spectral density matrix h(λ) = [hjk(λ)] j,k=0,1,...,T−1 of the T-variate sta-
tionary process Yt is specified by

hjk(λ)= 1
2π

exp
(
− iλ(k− j)

T

)[
A
〈k− j〉−J〈k− j〉
k

(
eiλ/T

)
+A

〈 j−k〉
j

(
e−iλ/T

)]
, (4.5)
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for j,k = 0,1, . . . ,T − 1, 0≤ λ < 2π, where

〈s〉 =
⎧
⎪⎨
⎪⎩

s, s > 0,

s+T , s≤ 0,
Ju =

⎧
⎪⎨
⎪⎩

T , u= T ,

0, u �= T ,
(4.6)

and A
j
l are the partitions given in Theorem 3.9.

Proof. Note that for j,k = 0,1, . . . ,T − 1,

Qjk(τ)= EY
j
t+τY

k
t = EX(t+τ)T+ jXtT+k

= EXτT+ jXk = EXτT+ j−k+kXk = Rk(τT + j− k).
(4.7)

Consequently, for 0≤ λ < 2π and j ≤ k, we obtain that

hjk(λ)= 1
2π

∞∑

τ=−∞
Rk(τT + j− k)e−iλτ

= 1
2π

[ 0∑

τ=−∞
Rk(τT + j− k)e−iλτ +

∞∑

τ=1

Rk(τT + j− k)e−iλτ
]

= 1
2π

exp

(
− iλ(k− j)

T

)[
A
k− j
k

(
eiλ/T

)
+A

T+ j−k
j

(
e−iλ/T

)]
,

(4.8)

for j > k,

hjk(λ)= hk j(λ)= 1
2π

exp

(
− iλ(k− j)

T

)[
A

j−k
j

(
e−iλ/T

)
+A

T+k− j
k

(
eiλ/T

)]
. (4.9)

Using (4.8) and (4.9), we arrive at (4.5). �

The following theorem gives the spectral density matrix f(λ) in terms of the partitions
of PCGF {Al(x), l = 0, . . . ,T − 1}, which are completely determined in Theorem 3.9.

Theorem 4.2. The spectral density of a PCAR(p) process is a Hermitian nonnegative defi-
nite T ×T matrix of functions

f(λ)= [ f jk(λ)
]
j,k=0,1,...,T−1, 0 < λ≤ 2π, (4.10)
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where

f jk(λ)= 1
2πT2

T−1∑

v=0

T−1∑

l=0

exp
(
−2πi(vk− l j)

T

)[
A
〈v−l〉−J〈v−l〉
v

(
eiλ/T

)
+A〈l−v〉l

(
e−iλ/T

)]
.

(4.11)

Proof. It was proved by Gladyshev [2] that

f(λ)= 1
T

V(λ)h(λ)V−1(λ), (4.12)

where f(λ) is the spectral density matrix of the {Xt}, and V(λ) is a unitary matrix de-
pending on λ with elements

Ujk(λ)= T−1/2 exp
(

2πi jk− ikλ

T

)
. (4.13)

Note that V−1(λ)=V∗(λ), therefore

U−1
jk (λ)=Ujk(λ)= T−1/2 exp

(
i jλ− 2πi jk

T

)
. (4.14)

Consequently,

f jk(λ)= 1
T

T−1∑

v=0

T−1∑

l=0

Ujl(λ)hlv(λ)U−1
vk (λ)

= 1
2πT2

T−1∑

v=0

T−1∑

l=0

exp
(

2πi jl− ilλ

T

)
exp

(
− iλ(v− l)

T

)
exp

(
ivλ− 2πivk

T

)

×
[
A
〈v−l〉−J〈v−l〉
v

(
eiλ/T

)
+A〈l−v〉l

(
e−iλ/T

)]

= 1
2πT2

T−1∑

v=0

T−1∑

l=0

exp
(

2πi( jl− vk)
T

)[
A
〈v−l〉−J〈v−l〉
v

(
eiλ/T

)
+A〈l−v〉l

(
e−iλ/T

)]
.

(4.15)
�

In the following, we derive the spectral density matrix of PCAR(1), using (4.11).
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Example 4.3. Let p = 1, that is, PCAR(1) in Example 3.5. In this case, for any r = 0,1, . . . ,
T − 1, (3.40) reduces to

1∑

l=0

cl(T −m)xlA
� j+1−l�0

T−(m+l)(x)= ej,T−m(x), m= 0,1, . . . ,T − 1, j = �T −m+ r�0,

(4.16)

where

ej,T−m(x)=
⎧
⎨
⎩
aT−(r+1)(0), m= r + 1,

0, otherwise.
(4.17)

Also note that A��T−m+r�0+1�0
T−m (x)=A�T−m+r+1�0

T−m (x) reduces to

A�T−m+r+1�0
T−m (x)=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

AT−m+r+1
T−m (x), −(T − 2)≤−m+ r + 1≤ 0,

A−m+r+1
T−m (x), 0≤−m+ r + 1≤ T − 1,

A0
0(x), −m+ r + 1= T ,

(4.18)

for any r = 0, . . . ,T − 1. Thus the solution of (4.16) is

A�T−m+r+1�0
T−m (x)

= 1

1−
(∏T

z=1c(z)
)
xT

×

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c(T−r)···c(T)c(1)···c(T−m)xT−r+1−maT−(r+1)(0), −(T − 2)≤−m+r+1≤0,

c(T − r)···c(T −m)xr+1−maT−(r+1)(0), 0≤−m+ r + 1≤ T − 1,

aT−(r+1)(0), −m+ r + 1= T.
(4.19)

Therefore,

A
j
l (x)= 1

1− g̃(T − 1)xT

⎧
⎪⎨
⎪⎩

Cl,T+l− jRT+l− j(0)g̃(T − 1)x j , l < j,

Cl,l− jRl− j(0)x j , l ≥ j,
(4.20)

where g̃(l) is mentioned in Example 3.5 and Cjk = g̃( j− 1)/g̃(k− 1).
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Now, using (4.11), for j,k = 0, . . . ,T − 1, we have

f jk(λ)= 1
2πT2

{T−1∑

v=0

exp
(
− 2πiv(k− j)

T

)[
AT
v

(
e−iλ/T

)
+A0

v

(
eiλ/T

)]

+
T−1∑

v=0

T−1∑

l=v+1

exp
(

2πi( jl− vk)
T

)[
Al−v
l

(
e−iλ/T

)
+AT+v−l

v

(
eiλ/T

)]

+
T−1∑

v=0

v−1∑

l=0

exp
(

2πi( jl− vk)
T

)[
AT+l−v
l

(
e−iλ/T

)
+Av−l

v

(
eiλ/T

)]
}

= 1
2πT2

{T−1∑

v=0

exp
(
− 2πiv(k− j)

T

)[
AT
v

(
e−iλ/T

)
+A0

v

(
eiλ/T

)]

+
T−1∑

v=0

T−1∑

l=v+1

[
exp

(
2πi( jl− vk)

T

)(
Al−v
l

(
e−iλ/T

)

+AT+v−l
v

(
eiλ/T

))
+ exp

(
2πi( jv− lk)

T

)(
Al−v
l

(
eiλ/T

)

+AT+v−l
v

(
e−iλ/T

))]
}

= 1

2πT2
∣∣1− g̃(T − 1)eiλ

∣∣2

×
{
(
1− g̃2(T − 1)

)T−1∑

v=0

exp
(
− 2πiv(k− j)

T

)
Rv(0)

+
T−1∑

v=0

T−1∑

l=v+1

×
[
g̃(T − 1)

(
Cv,lRl(0)−Cl,vRv(0)

)

×
(

exp
(

2πi( jl− vk) + i(v− l+T)λ
T

)

+ exp
(

2πi(lk− jv)− i(v− l+T)λ
T

))

+
(
Cl,vRv(0)− g̃2(T − 1)Cv,lRl(0)

)

×
(

exp
(

2πi( jl− vk) + i(v− l)λ
T

)
+ exp

(
2πi(lk− jv)− i(v− l)λ

T

))]}
,

(4.21)

which is obtained in [6]. Note that {Ri(0), i = 0, . . . ,T − 1} are completely specified in
Example 3.5.
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