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The two-component kinetic model employing “fast” and “slow” metastable defects for the annealing behaviors in pin-type
hydrogenated-amorphous-silicon- (a-Si:H-) based solar cells is simulated using a normalized fill factor. Reported annealing data
on pin-type a-Si:H-based solar cells are revisited and fitted using the model to confirm its validity. It is verified that the two-
component model is suitable for fitting the various experimental phenomena. In addition, the activation energy for annealing
of the solar cells depends on the definition of the recovery time. From the thermally activated and high electric field annealing
behaviors, the plausible microscopic mechanism on the defect removal process is discussed.
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1. INTRODUCTION

In recent years, there has been an explosive, worldwide in-
crease in solar module market due to the global warming
and oil crisis. Because bulk crystalline silicon (c-Si) mod-
ules make up 90% of products, a severe shortage of c-Si
wafers has caused an increase in the cost of the bulk c-Si
solar modules. Thus, the increased cost of c-Si wafers cur-
rently threats the photovoltaic business. Thin-film Si solar
modules using hydrogenated-amorphous-silicon- (a-Si:H-)
based absorbers, meanwhile, become a promising alterna-
tive to the bulk c-Si solar modules, because of their remark-
ably low consumption of raw Si material (<1% of consump-
tion of bulk c-Si modules), large-scale deposition, and low-
temperature production. Furthermore, thin-film Si photo-
voltaic technology profits from the wide experience base of
the display industries [1].

However, the so-called “Staebler-Wronski effect (SWE)”
in a-Si:H-based films remains as a major obstacle to the
commercialization of thin-film Si solar modules. SWE is the
light-induced degradation arising from the photocreation of
dangling bonds (DBs) accomplished by the nonradiative re-
combination of photogenerated electron-hole pairs [2, 3].
Because it severely limits the conversion efficiency of a-Si:H-
based films, many researchers have investigated SWE during

the past 30 years. Despite extensive investigations, there is
no consensus on a microscopic mechanism that explains all
the experimental phenomena. Similarly, the recovery mecha-
nism for a-Si:H-based solar cells via thermal annealing [4, 5]
or intense illumination at high temperature with a strong re-
verse bias [6] is still controversial. The recovery kinetics via
thermal annealing is often interpreted by the stretched ex-
ponential (SE) kinetics [7, 8] wherein defect generation and
annealing in a-Si:H-based materials is a dispersive process
controlled by one type of metastable defect [9, 10]. How-
ever, several recent reports have provided experimental ev-
idence that a-Si:H-based materials possess “fast” and “slow”
metastable defects, and thus the total defect density cannot
uniquely determine the state for the a-Si:H-based solar cells
[11–14]. Yang and Chen suggested the existence of the fast
and slow metastable defects in a-Si:H solar cells via two-
step light soaking [11]; the cell subjected to an intense pre-
soaking exhibits a thermal annealing behavior at the initial
stage of 1-sun (AM 1.5, 100 mW/cm2) post-soaking, which
could be linked to annealing of the fast metastable defects.
Since these results are clearly contradictory to the conven-
tional SE kinetic model, the author suggested a new model
of recovery kinetics for pin-type a-Si:H-based solar cells em-
ploying the two-component (TC) metastable defect states
[15]. We selected the fill factor (FF) as a measure of the state
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for the a-Si:H-based solar cells due to the following reasons:
(i) FF is sensitive to the quality of the intrinsic absorber (i-
absorber); (ii) analytic equations relating FF to the collection
length and to the defect density (or electron spin density)
have been developed [16, 17]; and (iii) FF is the most de-
graded parameter against light-soaking in a-Si:H-based solar
cells [18] and is less sensitive to the measurement tempera-
ture and illumination intensity compared to the open-circuit
voltage and short-circuit current [4].

In this work, the TC model is simulated by varying its pa-
rameters. The model is also applied to experimental anneal-
ing data for the pin-type a-Si:H-based solar cells in order to
verify the validity of the TC model. Finally, the microscopic
mechanisms for the annealing behaviors of pin-type a-Si:H-
based solar cells are discussed.

2. MODELING AND SIMULATION

If uniform E is assumed in i-absorber of pin-type a-Si:H-
based solar cells, FF is governed by the carrier collection
length (lc):

lc = μτE = μτ

(
Vbi −Va

)

d
, (1)

where μ is the drift mobility, τ is the ambipolar carrier life-
time of photogenerated carriers, E is the internal electric filed
in the i-absorber, Vbi is the built-in potential in the solar
cell, Va is the biased voltage, and d is the thickness of the
i-absorber. Faughnan and Crandall [16] reported the follow-
ing empirical relation:

FF = C0 + A log
lc
d

, (2)

with C0 = 0.39 and A = 0.30 [17].
Because τ is reciprocally proportional to the defect den-

sity in the i-absorber (N), if μ is assumed to be constant [17],
then

FF ∼= C1 − A logN = C1 − K1 lnN , (3)

where C1 and K1 (= 0.30 log e = 0.13) are constants.
Accordingly, normalized FF (FFn) can be expressed as

FFn = FF(t)− FFd

FFi − FFd
= ln

(
N/Nd

)

ln
(
N0/Nd

) , (4)

where FF(t) is FF as a function of time, FFd is degraded FF
via light soaking, FFi is initial FF before light soaking, Nd is
the defect density in the degraded i-absorber, and N0 is the
initial defect density in the i-absorber [8].

If it is assumed that the TC model has fast and slow
metastable defect states (NF and NS), then N = N0 +NF +NS

and Nd = N0 +NdF +NdS. Furthermore, it is assumed that all
the defects stem from a common pool of ground states, and
there is otherwise no direct communication between the two

defect components under fixed annealing conditions. Thus,
the system of rate equations for both components can be de-
scribed as [11]

dNF

dt
= GF

(
NT −NF −NS

)− AFNF ,

dNS

dt
= GS

(
NT −NF −NS

)− ASNS,

(5)

where NT is the total number of states which can be con-
verted into defects, GF and GS are the respective constant de-
fect generation coefficients for the fast and slow metastable
defects, and AF and AS are the respective constant defect an-
nealing coefficients for the fast and slow metastable defects.
In the case of thermal annealing, we assume that GF = GS =
0 and AF � AS. Then, the rate equations for NF and NS can
be expressed as the following simple first-order approxima-
tions:

dNF

dt
= AFNF = −NF

τF
,

dNS

dt
= ASNS = −NS

τS
,

(6)

where τF and τS are time constants for the fast and slow
metastable defects. Accordingly, NF and NS can be given by

NF = NdF exp
(
− t

τF

)
,

NS = NdS exp
(
− t

τS

)
.

(7)

After replacement of N and Nd by (7), (4) becomes the
following kinetic equation:

FFn = ln
{
n
[
1 + α exp

(− t/τF
)

+ β exp
(− t/τS

)]}

lnn
, (8)

where n = N0/(N0 + NdF + NdS) = exp[(FFd − FFi)/K1]
from (3), α (= NdF/N0) is the ratio of the photocreated
fast metastable defect density to the initial defect density,
and β(= NdS/N0 = 1/n − 1 − α) is the photocreated slow
metastable defect density to the initial defect density. There-
fore, annealing behaviors can be simulated by fitting three
independent parameters, α, τF , and τS.

Figure 1 provides the simulated results as a function of
t using (8). As shown in the figure, four different recovery
rates are inspected with t: (i) initial fast rise when t < τF ,
(ii) moderate increase when τS < t < τS, (iii) fast increase
when t > τS, and (iv) slow increase in the last tail. Figure 1(a)
shows that the increase in τ increases with an increase in n.
The rate of the increase decreases with the increase in n when
t < τS. An increase in the fraction of the fast metastable defect
[α/(α + β)] leads to a fast recovery, as shown in Figure 1(b).
It is also found that τF is mainly responsible for the initial
rise, whereas τS affects the last tail as well as the region when
t > τS (see Figures 1(c) and 1(d)).
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Figure 1: Simulation of annealing behaviors using the TC kinetic model; (a) with variable n, and fixed parameters of α/(α + β) = 0.5,
τF = 5 minutes, and τS = 500 minutes, (b) with variable α/(α + β), and fixed parameters of n = 0.5, τF = 5 minutes, and τs = 500 minutes,
(c) with variable τF , and fixed parameters of n = 0.5, α/(α + β) = 0.5, and τs = 500 minutes, (d) with variable τS, and fixed parameters of
n = 0.5, α/(α + β) = 0.5, and τF = 5 minutes. The symbols are modeled data included to distinguish each other.

3. RESULTS AND DISCUSSION

Figure 2 depicts the simulated results using the TC kinetic
model for the experimental results with various thermal an-
nealing temperatures (TA) reported in [4]. The pin-type a-
Si:H solar cell was fabricated via a dc glow discharge tech-
nique with a structure of glass/transparent conducting oxide
(TCO)/hydrogenated p-type amorphous silicon-carbide (p-
a-SiC:H)/undiluted i-a-Si:H (∼520 nm)/n-type a-Si:H (n-a-
Si:H)/Ti/Ag. FFi and the initial efficiency are 0.70 and 9%,
respectively. In all measurements, the cell was degraded un-
der the 1-sun illumination at 40◦C for 64 hours. Thus, FFd

is always fixed at 0.55 (n = 0.32). With an increase in TA, τ
declines remarkably.

Figure 3 displays information on evaluated τ for the sim-
ulated data in Figure 2. Here, τi denotes the time for FF to
recover i% of its total degradation, that is, FFi − FFd. As
can be seen in Figure 3(a), τi is thermally activated, that is,
τi = v−1

o exp(Ea/kT), where vo is the attempt frequency, Ea
is the activation energy, k is Boltzmann’s constant, and T is
the absolute temperature. In [4], Bennett et al. demonstrated
that the annealing behavior for their pin-type a-Si:H solar
cells could be characterized a unique Ea of 1.2 eV. They se-
lected τ50 as a measure of τi. From Figure 3(b), however, it
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Figure 2: Recovery behaviors for the a-Si:H solar cell via thermal
annealing as a function of TA (from [4]). The symbols and dotted
lines denote experimental data and simulated data using the TC ki-
netic model, respectively.

should be noted that Ea for pin-type a-Si:H-based solar cells
depends on τi and the TC model present a gradual decrease in
Ea and vo with an increase in i. These phenomena are mainly
caused by the existence of the fast and slow metastable defects
in the TC model.

Figure 4 compares the simulated results using the TC
model for the experimental results reported in [6]. The
pin-type solar cell was fabricated at ∼200◦C via a plasma-
enhanced chemical vapor deposition (PECVD) technique
[5] with a structure of glass/SnO2/p-a-SiC:H/H2-diluted i-a-
Si:H (∼300 nm)/n-a-Si:H/ZnO/Al. At the open-circuit, the
cell was degraded under the 50-sun illumination at 60◦C for
30 minutes. Hence, n is always fixed at 0.43 by keeping FFi

and FFd at 0.67 and 0.56, respectively. Then, the experimen-
tal recovery behaviors were inspected under 50-sun illumina-
tion with different Va. It was found that FF for the pin-type
H2-diluted a-Si:H solar cell recovered more rapidly under in-
tense irradiation at TA = 70◦C with an increase in reversed
Va. τF and τS for the TC model all gradually decrease with
the increase in reversed Va, thus indicating the high electric
filed induced fast recovery. The reduced τ is mainly due to
the decrease in τS. It is clear that the TC model fits the exper-
imental data well in the initial rise and last tail. Furthermore,
the reported different recovery kinetics from identical FFd,
which depend on the illumination intensity [11] or tempera-
ture [4] during the light-induced degradation, prove that the
photocreation of DBs, that is, Nd−N0, is composed of differ-
ent kinds of defects.

The author have developed hydrogenated protocrys-
talline Si (pc-Si:H) multilayer absorbers [18]. The pc-Si:H
material is a highly H2-diluted a-Si:H material existing just

Table 1: Fitting parameters used in Figure 5.

n α/(α + β) τF (min) τS (min)

undiluted a-Si:H 0.39 0.82 3.7 214.6

pc-Si:H multilayer 0.57 0.84 3.3 59.5

below the threshold of the a-Si:H-to-μc-Si:H transition. Us-
ing a photoassisted chemical vapor deposition (photo-CVD)
technique, we prepared alternately H2-diluted i-pc-Si:H mul-
tilayers by modulating the mass flow control of the hydrogen
dilution ratio (H2/SiH4), and thereby i-pc-Si:H has the re-
peatedly layered structure of low H2-diluted a-Si:H sublay-
ers and highly H2-diluted sublayers. The highly H2-diluted
sublayers possess isolated nanosized Si (nc-Si) grains em-
bedded in a-Si:H matrix [19]. The i-pc-Si:H multilayers ex-
hibit a fast light-induced metastability with a low degrada-
tion. Consequently, highly stabilized solar cells (stabilized ef-
ficiency = 9.0%) were achieved without using any back re-
flector [20, 21]. The pc-Si:H multilayer solar cells exhibit
a very fast annealing behavior during 1-sun post-soaking,
compared to a-Si:H solar cells [22], which is the clear evi-
dence of the two-component metastable defects in the pc-
Si:H multilayers. Figure 5 shows the fitted results using the
TC model for the experimental recovery behaviors in an
undiluted a-Si:H solar cell and a pc-Si:H multilayer solar cell
in [8]. The pin-type solar cells were fabricated at 250◦C via a
photoassisted chemical vapor deposition (photo-CVD) tech-
nique with a structure of glass/SnO2/p-a-SiC:H/p-μc-Si:H/i-
absorber (∼550 nm)/n-μc-Si:H/Al. The initial efficiency for
the undiluted a-Si:H and pc-Si:H multilayer solar cells are
10.6 and 8.9%, and FFi values are 0.73 and 0.69, respectively.
The solar cells were degraded under the 1-sun illumination
at 48◦C for 20 hours. After light soaking, the pc-Si:H multi-
layer cell stabilized with n = 0.57, while the undiluted a-Si:H
cell is still in degrading state with n = 0.39. The fitting pa-
rameters of the cells are listed in Table 1. Thermal annealing
is performed in a vacuum chamber. The pc-Si:H multilayer
cell exhibits the rapider recovery than the undiluted a-Si:H
cell.

From the fast metastability and annealing behaviors of
pc-Si:H multilayer solar cells, the vertically regular distri-
bution of the isolated nc-Si grains [21] and the improved
medium-range-order in the a-Si:H matrix [23] are consid-
ered to localize the photocreation near the grain boundary
regions [19], and thereby suppress the photocreation of slow
metastable defects in the pc-Si:H multilayers. From the visi-
ble photoluminescence (PL) peak measured at room temper-
ature, the isolated nc-Si grains tend to act as radiative recom-
bination centers of captured carriers, which may contribute
to the good stability [14].

Because the pc-Si:H multilayer has a slightly wider opti-
cal band gap (effective band gap > 1.7 eV) than conventional
a-Si:H layers (∼1.7 eV), the pc-Si:H multilayer solar cell is
promising as a top cell for a high-efficiency tandem cell [23].
The pc-Si:H multilayer/μc-Si:H (∼1.1 eV) double-junction
tandem structure opened the possibility of a significantly
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Figure 4: Annealing for the H2-diluted a-Si:H solar cell under intense (50-sun) illumination at TA = 70◦C (from [6]); (a) recovery behaviors
with different Va and (b) τ30 and τ90 versus Va. The symbols and dotted lines denote experimental data and simulated data using the TC
kinetic model, respectively.

high-stabilized efficiency due to a low-degradation ratio
[24].

The photocreation of DBs in an a-Si:H matrix can occur
with a value of Ea [25] that is lower than Ea for light-induced
long range H diffusion (0.9 eV) [26]. Hence, the breaking of
strong Si−H bonds (∼3 eV), proposed by Branz in the hy-

drogen collision model [27], cannot be easily accomplished
by the nonradiative recombination of electron-hole pairs. In-
stead, the breaking of weak Si−Si bonds due to nonradiative
recombination of electron-hole pairs is considered today as a
plausible origin of SWE [28, 29]. Recently, Powell et al. [29]
proposed the creation of two metastable HSiDB (complex of
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Figure 5: Comparison of the recovery behavior via thermal annealing between the undiluted a-Si:H and pc-Si:H multilayer solar cells (from
[8]); (a) TA = 108◦C and (b) TA = 133◦C. The symbols and dotted lines denote experimental data and simulated data using the TC kinetic
model, respectively.

a DB and an Si−H bond, where H locates in a tetrahedral-
like site (Td), not a bond-centered site) defects; an H atom
from a neighboring doubly hydrogenated weak Si−Si bond
(HSiSiH) switches to a Td site of the broken Si−Si bond and
the other H from HSiSiH is also located in the energetically
suitable Td site. This model is reasonable because the spatial
separation between H in the Td site and DB is in agreement
with the observed values of 4-5 Å by electron spin resonance
(ESR) measurements [30]. On the other hand, it has been re-
ported that annealing of DBs in a-Si:H films, which are pho-
tocreated at moderate temperature, has a similar value of Ea
(1.1-1.2 eV) [31] to that for long range H diffusion (1.5 eV)
[32]. This supports the supposition that long range H diffu-
sion plays an important role in annealing of metastable de-
fects. Thus, the hydrogen collision model is valid in the case
of annealing and Ea can be interpreted as the energy for the
thermal emission of H from a Td site. In addition, vo cor-
responds with the phonon frequency of Si−H bonds [29]
and with the thermal emission process. However, it is diffi-
cult to define unique Ea and vo for τ, because it varies with
τi (see Figure 3(b)). Nevertheless, E in a solar cell is expected
to lower the energy barrier for long range H diffusion [6].
From Figure 4, it can be concluded that the intense illumina-
tion at a high temperature also thermally emits mobile H by
breaking Si−H bonds, and leads to high electric field induced
annealing for the solar cells.

In the previous report [15], the author proposed the
following mechanism for the recovery kinetics in pin-type
a-Si:H-based solar cells based on the TC model: (i) mo-
bile H is thermally emitted from a metastable HSiDB de-
fect by breaking the Si−H bond. As reflected in Figure 2,
the elevated TA increases the thermal emission rate of mo-

bile H [32]; (ii) emission of bonded H is followed by weak
Si−Si bond reconstruction. Meanwhile, mobile H migrates
through the lattice [33, 34] and is subsequently captured at
another weak Si−Si bond, which eventually forms an HSiDB
defect. It should be noted that E in i-absorber assists the mi-
gration of mobile H to a shallower site, which is reflected
in Figure 4; and (iii) thermal emission and recapturing pro-
cesses of mobile H proceed until it is captured at the DB site
of a metastable HSiDB defect, resulting in the annealing of
two defects. Consequently, for the annealing process to re-
form the a-Si:H matrix, a considerable energy is required
and many H atoms are involved. However, an internal field
formed in solar cells can reduce the required energy for the
annealing process. It should be noted that the classification
between the fast and slow metastable defects is mainly deter-
mined by their activation energy and capture cross-section
[14]. This classification is only relative and is dependent on
the annealing conditions, that is, elevated TA or Va can in-
crease α.

4. CONCLUSIONS

The author simulated the TC model in order to understand
the effect of each parameter on the annealing kinetics in pin-
type a-Si:H-based solar cells. This model displays that Ea de-
pends on the definition of the recovery time. It is verified that
the TC model fits the various experimental data. Thus, the
TC model can be deemed useful for limiting the number of
mechanisms responsible for annealing the photocreated de-
fects in a-Si:H. From the thermally activated and high electric
field induced nature of annealing behaviors, the plausible mi-
croscopic mechanism on the DB defect removal related to the
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thermal emission of mobile H from Td sites and long range
H diffusion was discussed.
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