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of a photonic crystal waveguide are made of different Kerr nonlinear dielectric media. In second study, an off-channel feature
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systems to forms of electromagnetic-induced transparency and modifications of waveguide dispersion relations is discussed.
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1. INTRODUCTION

Recently there has been a renewed interest in resonant fea-
tures in optical systems [1–4]. Some of this comes from
proposals of mechanisms for the generation of slow light
and for the establishment of conditions associated with
electromagnetic-induced transparency [1, 2]. Here the align-
ment of different frequency resonances in an optical medium
is used to set the dispersion relation of slow optical modes
or to contribute to an effective dielectric constant of the
medium as a whole. Properties of the system are manipulated
by light of one frequency to affect the propagation of optical
modes of a second frequency. Another focus of the study of
resonances has been on applications in photonic crystal sys-
tems for multiplexing optical modes of different frequencies
from photonic crystal waveguides [3, 4], for the generation of
intense localized electromagnetic fields with which to investi-
gate nonlinear dielectric properties [5–11], or for the modu-
lation of guided modes at one frequency by those of another
[12, 13]. The design of systems for these later applications
is based on the resonant interaction of guided modes with
modes bound and localized on off-channel impurity features
[3–17], and the entire system is composed of linear dielectric
media [3, 4] or could have Kerr nonlinear media [6, 7, 13, 14]

on the off-channel features. A common aspect in the above
examples is the transfer at resonant scattering of significant
amounts of energy from optical or guided modes to excited
states of atoms in a medium or to off-channel features in sys-
tems of photonic crystal waveguides. In this paper we will
extend the studies of resonant scattering of photonic crystal
waveguide modes to treat new types of multiple off-channel
features composed of Kerr media sites. New waveguide trans-
mission effects will be shown to arise, mediated by multi-
ple scattering resonances of waveguide modes due to their
interactions with multiple frequency bound modes on off-
channel features. Some discussion of resonant photonic crys-
tal waveguide systems that exhibit a type of induced trans-
parency will be given as well as suggestions made of meth-
ods for the modification of waveguide dispersion relations
through resonant interactions.

The reader is reminded that a photonic crystal is a pe-
riodic array of dielectric media [18–35] having electromag-
netic modes that are Bloch waves with a frequency spec-
trum separated into a series of pass and stop bands. Prop-
agating modes only exist at pass band frequencies and no
modes propagate through the photonic crystal at stop band
frequencies. Impurities are introduced into the system by
changing the dielectric material within a localized region of
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the photonic crystal. For properly chosen impurity materials,
bound electromagnetic modes are localized at stop band fre-
quencies about the impurity media. Generalizing the ideas of
impurity features, more complex structures, exhibiting a va-
riety of different properties, can be created within photonic
crystals. For example, a waveguide is formed in a photonic
crystal by embedding an infinite line of translationally in-
variant media in the photonic crystal lattice so that it binds
modes at stop band frequencies. These guided modes propa-
gate along the channel formed by the line of changed dielec-
tric media.

In the following, waveguides and impurities are treated
for two-dimensional photonic crystals [21, 22, 36–40], de-
signed as a system of parallel axis dielectric cylinders that
are arrayed on a square lattice. The electromagnetic modes
of interest propagate in the plane of the Bravais lattice with
electric field vectors polarized parallel to the cylinder axes.
Systems of this type have been a focus of much experimen-
tal and theoretical efforts [18–40] employing a wide variety
of approaches. The theoretical approach used in this paper
is based on a difference equation formulation for fields in
the waveguide channels and off-channel features of a two-
dimensional waveguide [36–40]. The difference equations
are obtained from an exact integral equation formulation
for the fields and have been used in a number of stud-
ies on waveguides and impurities in which numerical re-
sults (illustrating some of the behaviors found in networks
of photonic crystal waveguides and impurity features) have
been generated for a particular realization of the square lat-
tice system described in [6, 37, 38]. Alternative approaches
are numerical computer simulations, and the reader is re-
ferred to the well-known literature for a discussion of these
[18–40].

In the present paper the focus is on the resonant inter-
action of waveguide modes with modes on off-channel fea-
tures. This was first studied for linear dielectric media by
Noda et al. [3, 4] with the objective of using the resonant
interaction between waveguide modes and localized bound
modes on a single off-channel site to download energy from
the waveguide. Here energy is removed from the photonic
crystal waveguide at the off-channel single impurity site and
then taken from the photonic crystal as a whole. The cou-
pling between the guided mode and the off-channel site is
weak so that guided modes with frequencies off-resonance
are not affected by the off-channel site. The characteristic fre-
quency of the impurity mode on the off-channel site is set by
the size and dielectric constant of the site so that by plac-
ing different impurity sites at intervals along the waveguide
channel an efficient means of multiplexing from the waveg-
uide channel is achieved. Both experimental and theoretical
(computer simulation) studies were presented by Noda et al.
for systems formed entirely of linear dielectric media, and
good agreement between simulation and experimental data
was found. Following these studies, a great number of simu-
lation studies on the same and similar types of resonant sys-
tems formed of linear dielectric media were made [41–46].
(Note: We only list some representative works, many more
can be found in the literature.)

Later extensions of the theoretical studies to treat waveg-
uides interacting with off-channel sites formed of Kerr non-
linear media were made by Cowan and Young [14] and
by McGurn [7, 13]. These involve analytical methods. The
transmission coefficient of a single waveguide mode scatter-
ing from Kerr off-channel features was shown to exhibit op-
tical bistability properties arising from the nonlinearity of
the off-channel site. Specifically, multiple valued solutions
for the transmission exist, and the transmission observed in
the system depends on its history of electromagnetic inter-
actions. The optical bistability is similar to the transmission
bistability found for light at normal incidence on a slab of
Kerr medium [47–53]. In the work of McGurn [7] consid-
erations were carried to more complex off-channel features
than single site impurities. These included multiple sites sup-
porting resonantly excited intrinsic localized modes, and sin-
gle and multiple sites connecting to a second semi-infinite
waveguide. In addition, considerations of the interaction of
two modes at different frequencies with some of the off-
channel Kerr features were made in [13]. Here the field de-
pendence of the dielectric properties of the Kerr media allows
two different frequency waveguide modes to interact with
one another by a field modulation of the nonlinear dielec-
tric material [12, 13]. The modulation is enhanced in fre-
quency regions at which localized modes on the off-channel
features are resonantly excited by one or both of the waveg-
uide modes. As a result one mode can be used to switch on or
off the other mode’s propagation in the channel or to impress
an amplitude modulation on the other. In addition, recently
there has been some experimental studies on related systems
involving interactions mediated by Kerr nonlinear media of
guided modes at two different frequencies [12].

The present paper is an extension of the work on non-
linear off-channel features to treat the interaction of guided
modes with multiple localized off-channel modes. The mul-
tiple localized modes occur at different frequencies but are
taken to be close together in frequency so that a guided mode
experiences coherent scattering arising from its simultaneous
interaction with the resulting closely spaced multiple reso-
nances. In one study guided modes weakly interact with dif-
ferent single site features on opposite sides of the waveguide
channel. In a second, guided modes weakly interact with an
off-channel feature that can support multiple bound modes
occurring at different frequencies. In some cases multiple res-
onant interactions with bound localized modes lead to a type
of effect in the guided mode transmission coefficient that is
reminiscent of electromagnetic-induced transparency. Reso-
nant scattering effects also can modify the dispersion relation
of light in the waveguide.

The order of this paper is as follows: in Section 2 a brief
description of the difference equation approach is given and
numerical values of the parameters used in this paper are ex-
plained. In Section 3 the problem of a waveguide weakly in-
teracting with two single off-channel Kerr sites on opposite
sides of a waveguide is discussed. The problem of a waveguide
weakly interacting with an off-channel Kerr feature com-
posed of two sites is also treated. The off-channel sites are
shown to support multiple localized bound state modes at
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different frequencies that can be tuned to exhibit a variety of
resonant effects. A number of analytic and numerical results
illustrate the bistability properties of the fields and trans-
mission coefficients and resonant effects in the system. In
Section 4 some discussions of waveguides weakly interacting
with periodic off-channel features are given and conclusions
are presented.

2. BRIEF REVIEW OF DIFFERENCE EQUATIONS
FOR WAVEGUIDE MODES

We consider a two-dimensional photonic crystal composed
of parallel axis dielectric cylinders arrayed on a square lattice
of lattice constant, a0 [36–38]. Electromagnetic modes prop-
agate in the plane of the square lattice with electric fields po-
larized parallel to the cylinder axes. With this polarization the
electric field modes are Bloch waves satisfying a Helmholtz
equation for the periodic dielectric constant of the photonic
crystal.

Impurities and waveguides are introduced into the pho-
tonic crystal by changing the dielectric properties of the pho-
tonic crystal. The changes in the dielectric of the photonic
crystal, ε(�r‖), as a function of position are specified by the
function of position δε(�r‖) so that the total dielectric of the
system is ε(�r‖) + δε(�r‖). For an impurity or waveguide mode
with a frequency ω in the stop band of the photonic crystal
[37–39],

E
(
�r‖
) =

∫

d2r′‖G
(
�r‖, �r′‖ | ω

)
δε
(�r′‖

)ω2

c2
E
(�r′‖

)
(1)

is an exact integral equation whose solutions are the impu-
rity mode fields, E(�r‖). Equation (1) is obtained from the
Helmholtz equation for the total dielectric ε(�r‖)+δε(�r‖), and
G(�r‖, �r′‖|ω) is the Green function of the Helmholtz equation
describing the propagation of electromagnetic modes in the
bulk of the photonic crystal. In general δε(�r‖) is taken to be
a type of step function in space that is nonzero only in the
region of the replacement materials. In regions of linear di-
electric impurity material it is a constant denoted as δε00. A
convenient way of looking into (1) is to consider it as an inte-
gral equation eigenvalue problem for the eigenvectors E(�r‖)
and eigenvalues δε00. Specifying ω in a stop band of the pho-
tonic crystal gives the values of δε00 needed to support im-
purity modes at that frequency and the wave functions of the
impurity modes.

Equation (1) can also be used to study Kerr nonlin-
ear impurity media. For these materials δε(�r‖) = δε00(1 +
λ|E(�r‖)|2) so that the impurity or waveguide media depends
on the intensity of the applied electric field [39, 40]. The re-
sulting problem is no longer a simple eigenvalue problem,
but a problem in which E(�r‖) and δε00 must be solved for
self-consistently at a given value of ω specified in a stop band
of the photonic crystal.

We will be interested in impurities and waveguides
formed by cylinder replacement in the photonic crystal. The
replacement cylinders are made in whole or in part of a dif-
ferent type of dielectric media from the cylinders in the bulk
photonic crystal. For certain types of cylinder replacements,

(1) for the waveguide modes reduces to a set of difference
equations. For example, this occurs when the field, E(�r‖),
changes slowly over the region of nonzero δε(�r‖) in each
separate replacement cylinder along the waveguide channel.
The resulting difference equations, obtained from (1), for a
waveguide along the x-axis of a square lattice photonic crys-
tal are then [6, 7, 36, 37]

En,0 = γ
[
aEn,0 + b

(
En+1,0 + En−1,0

)]
. (2)

Here the replacement cylinder sites along the x-axis are la-
beled (n, 0), for an infinite set of consecutive integers n, and
En,0 is the field in the (n, 0) site. The factor γ is proportional
to the dielectric contrast δε00, and the couplings a and b are
obtained from (1) as averages of the Green functions over the
same replacement channel site and between closest neighbor-
ing replacement channel sites, respectively. The couplings a
and b depend on the frequency ω and the geometric proper-
ties of the bulk photonic crystal. As a simple example, note
that substituting a plane wave form En,0 ∝ eikn in (2) gives
the dispersion [37]

1 = γ[a + 2b cos k] (3)

relating a, b, γ, and k for an infinite waveguide. The reader
is referred to [6, 7, 36–40] for a detailed discussion of δε00,
γ, a, and b. (Here we just note that γ = ∫

d2r‖δε(�r‖),
a = ∫ d2r‖G(0,�r‖)δε(�r‖)/γ, and b = ∫ d2r‖G(awî,�r‖)δε(�r‖)/γ
where the integrals are taken over a primitive lattice cell of
the waveguide, i.e., located at the origin of coordinates and
aw in the lattice constant of the waveguide.) For the case of a
Kerr nonlinear interaction (1) gives the nonlinear difference
equations

En,0 = γ
{
a
(
1 + λ

∣
∣En,0

∣
∣2)

En,0

+ b
[(

1 + λ
∣∣En+1,0

∣∣2)
En+1,0

+
(
1 + λ

∣∣En−1,0
∣∣2)

En−1,0
]}
.

(4)

These reduce in the limit that λ = 0 to (2) for the waveguide
of linear media.

In the solutions given later, a and b are evaluated at a
frequency, ω, in the stop band of a specific realization of a
square lattice photonic crystal studied elsewhere [7, 37, 38].
The numerical values of a, b, and ω are taken from [7, 37,
38] for the particular bulk photonic crystal that was used in
the studies presented in [6, 7, 36–40]. These have frequency
ωa0/2πc = 0.440 with wavenumber k = 2.5 and the relevant
parameters of a and b for our considerations give the ratio
b/a = 0.0869. This ratio is all that is needed to generate the
data presented later in the figures of this paper. The reader
is referred to the above cited works (and in particular [7, 37,
38]) for the details of the photonic crystal geometry and the
generation of the numerical values of the a’s and b’s.

3. MULTIPLE OFF-CHANNEL FEATURES
AND OFF-CHANNEL FEATURES WITH
MULTIPLE RESONANCES

In this section problems involving the resonant interaction of
waveguide modes with localized modes bound on multiple
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off-channel features formed of Kerr nonlinear media and
the resonant transmission of guided modes as they scatter
from multiple off-channel bound modes are treated. These
are generalizations of the problem treated in [7] of a guided
mode interacting with a single off-channel site of Kerr non-
linear media and the problem treated in [13] of two guided
modes at different frequencies interacting with a single off-
channel site of Kerr nonlinear media. In the following, com-
parisons are made of our present results with those from the
earlier studies. The off-channel features in these studies are
all taken to be weakly interacting with the waveguide modes.
They are weakly interacting in the sense that the off-channel
features are far enough from the waveguide channel that the
modes in the channel only interact with those on the off-
channel features at a scattering resonance between the two
modes. When the system is outside of the small parameter
space that gives resonant scattering, there is little or no inter-
action between the waveguide modes and the modes on the
off-channel features.

3.1. Multiple off-channel features

The first system consists of a waveguide of linear dielectric
media that weakly interacts with two different off-channel
single sites formed from Kerr nonlinear media. The two Kerr
sites are of different media so that each site supports its own
localized bound mode, and the two modes occur at different
frequencies. The two off-channel sites are on opposite sides
of the waveguide channel and weakly interact with the same
waveguide channel site. For a schematic of the system, the
reader is referred to Figure 1(a).

The difference equations for the system in Figure 1(a) are
obtained from (1) and (2). Along the bulk of the waveguide
channel [7]

En,0 = γ
[
aEn,0 + b

(
En+1,0 + En−1,0

)]
(5)

for |n| > 0, and the (0, 0) channel site is weakly coupled to
the two off-channel Kerr sites so that

E0,0 = γ
[
aE0,0 + b

(
E1,0 + E−1,0

)]

+ c
[
γp
(
1 + λ

∣
∣E0,m

∣
∣2)

E0,m + γ′p
(
1 + λ

∣
∣E0,−m

∣
∣2)

E0,−m
]
.

(6)

In (6), the off-channel sites are at (0,m) and (0,−m) for m
a positive integer, c describes the weak coupling of the off-
channel sites to the waveguide, and γp and γ′p denote the γ
values in (4) for the two different Kerr nonlinear sites. (Note
that the notation γ, γp, and γ′p is introduced to distinguish
between the values of these parameters in the linear dielectric
media of the waveguide (2) and the Kerr nonlinear dielectric
media of the two different off-channel sites (4).) For the Kerr
sites at (0,m) and (0,−m)

E0,m = γpa
(
1 + λ

∣∣E0,m
∣∣2)

E0,m + γcE0,0, (7)

E0,−m = γ′pa
(
1 + λ

∣
∣E0,−m

∣
∣2)

E0,−m + γcE0,0. (8)

The transmission coefficient of a guided mode incident
from infinity onto the Kerr features is calculated using the

(a) (b)

(c)

Figure 1: Schematic plots. (a) A straight infinitely long waveguide
of linear dielectric media (closed circles) and two off-channel Kerr
impurities (open circles). The two off-channel sites can be of dif-
ferent Kerr media. (b) A straight infinitely long waveguide of lin-
ear dielectric media (closed circles) and a cluster of two off-channel
Kerr impurity sites (open circles). The two off-channel sites are of
different media. (c) The basis of a periodic waveguide. The closed
circles form the main waveguide channel of linear dielectric media
and the open circles represent off-channel Kerr sites. In the absence
of the off-channel sites the resulting waveguide would be infinite
and uniform with the lattice constant of the channel sites equal to
the nearest neighbor separation of the closed circles. Note that in all
figures only the waveguide channel and off-channel impurity sites
are shown. The dielectric cylinders forming the bulk of the pho-
tonic crystal are not shown. See [7, 37] for more details regarding
the geometry of the systems used to provide the numerical illustra-
tions of the theory presented in this paper.

methods in [7]. The transmission coefficient, T , is given by

T = 4 sin2 k

4 sin2 k +
[
(c/b)

(
1 + 2(b/a) cos k

)(
r − γc + r1 − γc

)]2 ,

(9)

where r is a solution of

0 = λ|t|2|r|2r +
(

1− 1
γpa

)
r +

γc

γpa
(10)

and r1 is a solution of

0 = λ|t|2∣∣r1
∣∣2
r1 +

(
1− 1

γ′pa

)
r1 +

γc

γ′pa
. (11)

Here k is the wavenumber of the guided mode for a plane
wave form En,0 ∝ eikn in the waveguide channel, t is the am-
plitude of the transmitted wave, and from (3) γa = 1/(1 +
2(b/a) cos k) for the linear media waveguide. In the limit that
γ′p = 0 (9) through (11) reduce to the solution given in (7) of
[7] for a single off-channel Kerr site.

Figure 2 presents results for the guided mode transmis-
sion in the system of Figure 1(a). To facilitate a comparison
with the results from [7] for a single off-channel site, the pa-
rameters a, b, c, t, and λ were taken from [7]. A focus of our
presentation is on the variety and types of behavior the sys-
tem can display. The values of the parameters a and b were
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Figure 2: Plot of the transmission coefficient of the guided mode versus γp/γ. (a) The system of a waveguide weakly interacting with a single
off-channel site (i.e., the system in Figure 1(a) with the lower open circle absent). (b) The system in Figure 1(a) for γ′p/γ = 0.830. (c) The
system in Figure 1(a) for γ′p/γ = 0.845. (d) The system in Figure 1(a) for γ′p/γ = 0.870. The two branches of the bistable transmission are
indicated by different line styles.

quoted in Section 2, the parameter c is such that c/a = 0.02,
and λ|t|2 = 0.00025. In Figure 2(a) results are shown from
[7] for the case in which only one off-channel site is present.
The plot shows the transmission coefficient of a guided mode
with ωa0/2πc = 0.440 and k = 2.5 plotted versus γp/γ,
where the equations of the system are obtained from (5)
through (7) above, taking γ′p = 0. The nonlinearity of the
off-channel site most affects the system when the transmis-
sion coefficient departs significantly from unity. As seen in
the plot, the resonant scattering of the guided mode with the
bound state mode occurs in the linear limit at γp/γ ≈ 0.861,
and below this resonance the system exhibits bistability. In
Figure 2(b) results are shown for the transmission coeffi-
cient versus γp/γ for the case in which the off-channel site
at (0,−m), described by γ′p, is set to γ′p/γ = 0.830. This is
below the resonance at γp/γ ≈ 0.861. For this parameteriza-
tion the field on the (0,−m) site has three solutions, and the
solution used to make the plot is that with the smallest ab-

solute field magnitude. This corresponds to the curve closest
to unity in Figure 2(a). The presence of the small field on
the (0,−m) site mainly affects the left branch of the guided
mode transmission coefficient, sliding it down on the plot
so that it crosses over the curve forming the right branch of
the transmission coefficient. In Figure 2(c) results are shown
for the system in Figure 2(b), but now for the case in which
γ′p/γ = 0.845. This ratio of γ′p/γ is below and closer to the
resonance at γp/γ ≈ 0.861 and the mode associated with the
off-channel site is on the same branch of modal solutions as
that in Figure 2(b). As a consequence of the increased prox-
imity of the two resonances the transmission is enhanced to
unity at γp/γ = 0.877. In Figure 2(d) results are shown for the
system as in Figure 2(b) for the case in which γ′p/γ = 0.870.
This is above the resonance feature at γp/γ = 0.861. Now
the field on the (0,−m) site has only one solution. The ef-
fects of the (0,−m) site are observed in both branches of
the transmission coefficient curves. While the right branch
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of the curve is shifted downward, it is interesting to see that
the left branch is both shifted and distorted in such a manner
that the transmission of the guided mode is enhanced toward
unity near γp/γ = 0.849. The interaction of the two nonlin-
ear resonances leads to an enhancement of the guided mode
transmission in selected regions near its resonant interaction
with the (0,m) site. This is an example of two resonances in
the system that act collectively to enhance the over all trans-
mission of a guided mode along the waveguide.

3.2. Single off-channel features that support multiple
localized bound modes

Next consider an off-channel feature that supports two local-
ized bound state modes at different frequencies. The feature
consists of two neighboring sites formed of different impu-
rity media, and there is a weak interaction with the waveg-
uide leading to resonant scattering of guided modes with the
multiple set of modes (i.e., at different frequencies) on the
off-channel feature. The reader is referred to Figure 1(b) for
a schematic representation of the system.

The bulk of the waveguide is again described by (5), but
at the (0, 0) channel site in place of (6) we have

E0,0 = γ
[
aE0,0 + b

(
E1,0 + E−1,0

)]
+ γpc

(
1 + λ

∣
∣E0,m

∣
∣2)

E0,m.
(12)

In addition (7) and (8) are replaced by

E0,m = γpa
(
1 + λ

∣
∣Eo,m

∣
∣2)

E0,m + γcE0,0

+ γ′pb
(
1 + λ′

∣∣E0,m+1
∣∣2)

E0,m+1,
(13)

E0,m+1 = γ′pa
(
1 + λ′

∣
∣E0,m+1

∣
∣2)

E0,m+1

+ γpb
(
1 + λ

∣
∣E0,m

∣
∣2)

E0,m

(14)

for the two off-channel sites at (0,m) and (0,m + 1).
A simplification can be made in (12) through (14) by tak-

ing λ′ = 0. This removes the nonlinearity from the (0,m+ 1)
site while retaining the nonlinearity on the (0,m) site. It
does not affect the qualitative behaviors observed in the re-
sults presented below. In the following, the focus will be on
the nonlinear resonance at the (0,m) site as affected by the
(0,m + 1) site, composed of different media from (0,m) and
the rest of the photonic crystal waveguide. Solving (5) and
(12) through (14) in this limit for a guided mode incident
from infinity onto the off-channel features, the transmission
coefficient of the guided mode is given by

T = 4 sin2 k

4 sin2 k +
[
(c/b)

(
1 + 2(b/a) cos k

)
(1/ f )(r − γc)

]2 ,

(15)

where

f = 1 +
γ′pγpb2

γpa
(
1− γ′pa

) . (16)
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Figure 3: Plot of the transmission coefficient of the guided mode
versus γp/γ for the system in Figure 1(b). Curves labeled (i) are from
Figure 2(b) in [7] and (ii) are for γ′p = γ.

Here k is the wavenumber of the guide mode, and r is a solu-
tion of

0 = λ|t|2|r|2r +
(

1− 1
γpa f

)
r +

γc

γpa f
, (17)

where t is the amplitude of the transmitted part of the guided
mode. Notice that in the case that f = 1 (15) through (17)
reduce to the single site limit discussed in [7]. From (16) it is
seen that f differs significantly from one only near the reso-
nance conditions of the (0,m+ 1) site, that is, for γ′pa ≈ 1. In
the limit that f diverges at this resonance, the transmission
coefficient becomes unity. An additional interesting limit oc-
curs at γ′pa = 1/[1− b2/a2]. Here f = 0 so that T = 0.

In Figure 3, results are presented for the transmission co-
efficient versus γp/γ for λ|t|2 = 0.00025, k = 2.5, c/a = 0.02,
and λ′|t|2 = 0. This illustrates the behavior of the transmis-
sion coefficient in the presence of modes modified by the im-
purity material on the (0,m + 1) site. One set of curves are
the results in Figure 2(b) of [7] for the transmission of the
guided mode when there is only one off-channel site, that
is, only the (0,m) site. The other curves are for the case in
which there is a second off-channel site present with γ′p = γ.
The presence of the second site is seen, in this instance, to
shift the resonance upward. A general idea of the effects of
γ′p on the resonant transmission of the guided modes can be
obtained by plotting the values of γp/γ at which the guided
mode is fifty percent transmitted versus γ′p/γ. This occurs for
two values of γp/γ (one above and one below the resonance)
and gives an idea as to the shift of the resonance with chang-
ing γ′p/γ. In Figure 4(a) a plot of these values is shown, where
the upper values are indicated by x’s and the lower values by
+’s. At γ′p/γ = 0.861 (i.e., γ′pa = 1) a single off-channel site at
(0,m + 1) itself supports a bound state. The presence of this
is observed in the plot as a type of asymptotic resonant be-
havior near γ′p/γ = 0.861. Figure 4(b) shows the values of f
versus γ′p/γ associated with the plot in Figure 4(a). Again the
neighborhood of γ′p/γ = 0.861 displays a γ′pa = 1 resonance
in f .
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Figure 4: (a) Plot of γp/γ versus γ′p/γ showing for each γ′p/γ the two solutions of γp/γ at which the transmission is 50%. The upper solution
is denoted by x and the lower solution by +. (b) Plot of f versus γ′p/γ.

4. PERIODIC SYSTEMS AND CONCLUSIONS

The above results can be generalized to treat waveguides with
periodic off-channel features. Consider a single off-channel
site weakly coupled to a waveguide of linear dielectric media
and replicated at fixed intervals along the waveguide chan-
nel. A schematic of the basis of the periodic system is given
in Figure 1(c) and consists of n waveguide channel sites and
one off-channel Kerr site. The bulk of the waveguide chan-
nel is described by (2) excepted at the periodically occurring
coupling sites of the off-channel features, labeled ln+1 where
l runs over consecutive integers. At these sites

Eln+1,0 = γ
[
aEln+1,0 + b

(
Eln+2,0 + Eln,0

)]

+ γpc
(
1 + λ

∣
∣Eln+1,m

∣
∣2)

Eln+1,m,

Eln+1,m = γpa
(
1 + λ

∣
∣Eln+1,m

∣
∣2)

Eln+1,m + γcEln+1,0.

(18)

Here m is an integer labeling the vertical position of the off-
channel sites, and the other notation is as in the previous sec-
tions. Upon removing the off-channel site, then, the system
reverts to the infinite waveguide described by (2).

We look for solutions of the difference equations in the
form of Bloch waves of wave vector k such that the Kerr
dielectric is constant throughout the periodicity of the lat-
tice. Labeling the field amplitudes at the black basis sites in
Figure 1(c) from left to right as d1,d2, . . . ,dn, and the off-
channel Kerr site by e we find

dj = Gj(k,ω)
c

a

(
e − γcd1

)
, (19)

0 = γpaλ|e|2e +
(
γpa− 1

)
e + γcd1, (20)

where j = 1, 2, 3, . . . ,n. These equations determine the site
amplitudes e and dj and the values of γp for which solutions
exist for specified γ, k, and ω. In (19)

Gp(k,ω) = 1
n

n∑

r=1

ei(p−1)(k+2πr/n)

1− γa− 2γb cos(k + 2πr/n)
, (21)

where k = 2πs/Nn for s an integer is the wave vector of the
Bloch wave, and N is the number of primitive lattice cells in
the system. The ω dependence of Gp(k,ω) enters through the
ω dependence of a and b.

In the linear limit (i.e., λ = 0), (19) through (21) are eas-
ily treated. The values of γp needed to support waves with
wave vector k and frequency ω for a specified γ are obtained
from the algebraic conditions for a solution of (19) and (20)
and are given by

γpa =
[

1 +
c

a
γcG1(k,ω)

]−1

. (22)

Upon setting ω in a stop band and choosing k and γ, (22)
gives γp for a Bloch waveguide mode propagating along the
periodic waveguide. It is interesting to note from (21) and
(22) that the properties of the system are particularly suscep-
tible to changes in γ for γ near the poles of the terms com-
prising the sum over n in (21). In these regions small changes
in the system parameters show up as large modulations of the
Bloch modes in the waveguide.

A similar analysis to that for the linear media system can
be made for the fully nonlinear equations. In this analysis the
field amplitude on the off-channel site, e, is determined as a
solution of

λ|e|2e = − 1
γpa

[
γpa−

(
1 +

c2

a
γG1(k,ω)

)−1]
e. (23)

This again determines γp for solutions of e and dj in (19)
and (20) to exist with given k, ω, and γ. In the region of weak
nonlinearity the nonlinear solutions can be treated as pertur-
bations of the linear media limit. These are of particular in-
terest for γ near the above discussed poles. Near these poles
it is possible to tune the modal dispersion relations by ad-
justing the field intensity of the Block modes. The change in
dielectric due to the Kerr field dependences of the dielectric
media shows up as a change in the effective value of γ.
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Figure 5: Plot of the system in Figure 2(a) for the case in which
λ = 0, that is, an off-channel site of linear dielectric media.

In conclusion, a theory is presented illustrating some
of the effects that can be developed in guided mode trans-
missions in which the guided modes interact with multiple
off-channel localized modes occurring at different frequen-
cies. The off-channel features are of Kerr nonlinear media
so that the effects are complicated due to the nonlinearity of
the interacting systems. Small shifts in the bound modes are
found, in certain circumstances, to enhance the transmission
of the guided modes within the waveguide channel. This is a
form of induced transparency through the interaction of the
guided mode with multiple resonances in the system. In the
case where an off-channel feature binds multiple modes, the
guided mode transmission resonance can be tuned by vary-
ing the proximity of the multiple modes. Periodic arrays of
off-channel features formed of Kerr nonlinear media can be
used to adjust the dispersion relations of waveguide modes.
These adjustments arise from the field dependent dielectric
properties of the off-channel sites which can give strong en-
hancements near the poles in (21).

The theory that we have used in our studies is based on
a difference equations formulation which is essentially exact
within the limits discussed in Section 2. Alternative method-
ologies for treating photonic crystals and photonic crystal
waveguides are (1) finite-difference time-domain computer
simulations which write Maxwell’s equations in terms of dif-
ference equations in space and time, solving the resulting set
of equations by computer [54–56], (2) transfer matrix for-
mulations which solve the electrodynamic boundary value
equations using matrix techniques [57], and (3) finite ele-
ment boundary methods which are based on the numerical
application of variational principles [58]. These later meth-
ods (i.e., listed 1, 2, 3 above) are numerical in implemen-
tation and thus are subject to numerical errors. Examples
of their use can be found in many of the papers cited in
Section 1.

The results of the difference equation method used in this
paper are generally found to be in qualitative agreement with
results based on alternative simulation methodologies, when

applied to similar geometries of photonic crystal waveguides
interacting with off-channel impurity features. (Note that
often only a qualitative comparison can be made between
results from two different methods because the regions of
validity of the different methods are different.) For exam-
ple, in the case of a waveguide interacting with a single off-
channel impurity site formed of linear dielectric media (i.e.,
the λ = 0 limit of the results in Figure 2(a)) a single dip is ob-
served in the transmission at resonance. A plot of the trans-
mission of the system in Figure 2(a) for λ = 0 is shown in
Figure 5. The single dip in transmission in Figure 5 is qual-
itatively the same as the transmission dip observed by Noda
et al. in their computer simulation data presented in [3, 4]
for an off-channel linear media dielectric impurity inter-
acting with photonic crystal waveguide modes propagating
in a photonic crystal slab. The origins of the effects in the
two similar systems is the same, that is, resonant scattering
of the guided mode with the mode bound to the impurity
site. The geometric parameters in the two systems are dif-
ferent (one is a two-dimensional photonic crystal and the
other is a photonic crystal slab), but the two-dimensional
patterning in the two systems is found to display similar
types of resonant effects. (Note: It is emphasized that the
two-dimensional photonic crystal formed of infinite dielec-
tric cylinders is different from the photonic crystal slab stud-
ied by Noda et al. The photonic crystal slab, which is often
studied by experimentalists, can have lossy guided and de-
fect modes [59]. In spite of this the off-channel resonant ef-
fects have been observed both theoretically and experimen-
tally in the photonic crystal slab geometry [3, 4] and are sim-
ilar to those found in the two-dimensional photonic crys-
tal formed of infinite cylinders.) Likewise, for the modes of
the photonic crystal waveguide interacting with a single Kerr
nonlinear media off-channel impurity site, that is, the system
studied in Figure 2(a). The qualitative bistability (i.e., region
of multiple solutions for the transmission coefficients) ex-
hibited in the transmission versus γp/γ in Figure 2(a) is the
same as that found in the results for the transmission pre-
sented in the work of Cowen and Young [14] and more re-
cently in some studies of mechanical systems [60] and other
optical systems [61–63]. The origins of the bistability in these
three different nonlinear systems with similar geometries is
the same, that is, resonant interactions and nonlinearity. As
an example of another generalized optical system, the work
of Miroshnichenko et al. [62] treated the transmission of
waveguide modes past a single site of Kerr nonlinear me-
dia in which the single site has interactions with many sites
along the waveguide channel. This system generalizes the
Kerr single site problems in which the Kerr site interacts with
only a single site on the waveguide. As one of the proper-
ties treated in the paper, a Fano resonance in the transmis-
sion and a region of bistable transmission are exhibited by
the system that are qualitatively similar to those observed in
[7, 14], and Figure 2(a). These comparisons lead us to con-
clude that the results for the systems presented in this pa-
per will be not only useful for the systems studied in this
paper but generalize to similar optical and mechanical sys-
tems that will be treated in the future by the other methods
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discussed above. We hope that this paper will stimulate such
studies.

It is interesting also to note that there have been some
recent experiments on systems consisting of waveguides in-
teracting with Kerr nonlinear site impurities [12, 64]. In the
experiments in [12] the Kerr impurity is located within the
waveguide channel, and it is used to cause the interaction of
waveguide modes with two different frequencies. This allows
the two modes to affect each others transmission down the
waveguide. In [64] the system again involves the interaction
of modes with two different frequencies but is not based on
photonic crystal technology. It is hoped that with the suc-
cessful experiments on the systems in [12, 64] and the results
presented in this paper will encourage people to experimen-
tally study the systems proposed in this paper.
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