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It has been suggested that probabilistic approaches would provide more realistic estimates for human intake dose from exposure
to soil contaminants than the commonly-used standard deterministic method. The objective of this study was to compare intake
dose estimated by these methods for noncarcinogens and carcinogens in soil from 21 contaminated sites in Pennsylvania, USA.
Intake doses by the principal human exposure routes for these contaminants were estimated by the standard deterministic method
using fixed input parameter values, and by two emergent probabilistic methods. The probabilistic methods were based (a) on
distribution functions for all input parameters, or (b) on some combination of these functions and fixed parameter values. Intake
doses were then taken as the 90th, 95th, or 99.9th percentile of the generated cumulative output distribution and compared
with the commonly-used deterministic estimates over all contaminant/site combinations. For all exposure routes, the 90th and
95th percentile intake dose estimates were not markedly different from the deterministic values or from each other. The opposite
was generally the case for the 99.9th percentile estimates. These results did not indicate clear and definitive advantages in using
probabilistic methods over the deterministic method for estimating human intake dose from exposure to soil contaminants.

Copyright © 2008 A. E. Olsen and N. Persaud. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. Introduction

In industrialized countries with strong enforcement of
environmental laws and regulations, many manufacturing
facilities have been abandoned or idled because of real or
perceived soil contamination. These facilities are usually in
urban areas, and costly governmental and private programs
have sought to stimulate their redevelopment in order to
regenerate jobs that have been lost due to their closure.
Facilities with economical potential for redevelopment are
called brownfields [1]. The soil contamination associated
with brownfields creates legal liabilities for potential redevel-
opers. This liability can eliminate the possibility of obtaining
bank loans for the redevelopment of the facility. The financial
cost and risk of investing in brownfields are therefore a
direct function of the risk for deleterious health effects to
the surrounding community from potential exposure to
contaminants at the site [1]. The first step in assessing
this risk is to estimate intake dose by the principal human
exposure routes for contaminants present at the brownfield.

The intake dose is then combined with established toxicity
values to determine the human health risk for a given soil
contaminant. Greater health risk will mean higher costs of
soil cleanup and lower likelihood of reinvestment in these
properties [1].

The algorithms for estimating intake dose require data
on the type and concentration of the contaminant together
with many exposure input parameters [1]. Currently, most
algorithms use some fixed upper-percentile value (usually
the 95th percentile) obtained from statistical analysis of
the observed concentrations for a given soil contaminant,
together with fixed standard recommended values for expo-
sure input parameters such as intake rates, exposure time,
exposure duration, and body weight [2]. To obviate any
possibility of endangering public health and welfare the
fixed input parameters are often chosen as the maximum
(or minimum as appropriate) over the range of possible
values to ensure “erring on the side of safety” [3]. This
upper-percentile level of contamination and these fixed
exposure input parameters are then used in the algorithms
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to determine a single estimate of the intake dose. This
approach to estimating the intake dose for human health risk
assessment is termed as deterministic.

Variability and uncertainty are always associated not only
with the observed contaminant levels but also with the expo-
sure input parameters and toxicity values, and these are not
accounted for in the deterministic risk assessment approach
[2]. Bogen [4], Burmaster and Anderson [5], and USEPA
[6] have strongly suggested that the deterministic approach
overestimates the intake dose, and that probabilistic-based
approaches would provide more realistic estimates.

Probabilistic-based methodologies use probability den-
sity distribution functions for the observed contaminant
levels and exposure factors instead of fixed values. Unlike the
deterministic approach that provides only a single estimate of
the intake dose, probabilistic-based methodologies generate
a cumulative distribution of intake doses that would better
account for variability and uncertainty. An intake dose value
in the 90th to 99.9th percentiles of this distribution is then
used for further risk assessment [6]. A study by Smith [7]
indicated that the deterministic approach would give similar
intake dose estimates as the 95th percentile of the intake
dose distribution obtained by such a probabilistic-based
approach.

In the probabilistic-based approach, the cumulative
intake dose distribution is generated using Monte Carlo
simulations. Once the appropriate probability distribution
functions for the input variables have been developed, values
are selected at random from these distributions. These are
then used as input into the algorithms to calculate a single
value of the intake dose as is done for the deterministic
approach [8]. This process is then repeated thousands of
times to develop a cumulative distribution of intake doses.

This Monte Carlo-based probabilistic methodology
allows for sensitivity analysis to determine which input
parameters would have the least impact on the intake dose
estimate of a simulation. Pearson’s r or Spearman’s p can
be used to test for sensitivity of the intake dose estimates to
each parameter [9, 10]. The nonsignificant input parameters
can then be treated as deterministic variables. This hybrid
methodology, between the purely Monte Carlo and deter-
ministic approaches, reduces the number of distributions
that must be developed and the number of Monte Carlo
simulations that must be performed.

Clearly the need exists to investigate the applicability
and advantage of using Monte Carlo-based probabilistic
methodologies to better capture variability and uncertainty
in brownfields risk assessments vis-a-vis the standard deter-
ministic approach. It is possible that the Monte Carlo-
based methodologies may not produce significantly different
intake dose estimates compared to the deterministic method.
However, if it can be shown that Monte Carlo-based
risk assessments can better capture the uncertainty and
variability inherent to the risk assessment process, it will have
far-reaching financial implications for brownfield cleanup
and redevelopment.

The primary objective of this study was to compare
intake dose estimates for the principal human exposure
routes obtained by the deterministic and Monte Carlo-based
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probabilistic methodologies using measured soil levels of
noncarcinogens and carcinogens at a number of randomly-
chosen brownfield sites.

2. Materials and Methods

A reliable set of brownfield contaminant data was developed
using the Pennsylvania Department of Environmental Pro-
tection (PADEP) Land Recycling Program list of brownfields
for which site investigations were completed. The list at
the end of 2000 contained 633 such completed brownfields.
These 633 sites were sorted into four groups based on
whether the site was closed to background, statewide generic
standards, site-specific, or industrial standards. Only the
sites that were closed to statewide health, site-specific, and
industrial standards were used in this study. From this
reduced list, 30 sites were selected at random. A formal
request was make to PADEP to gain full access to the files
on these 30 sites. Ten of these sites did not have sufficient
data or the PADEP could not find the files. One site (Exxon
SGH Specialty Products) was listed as one facility but had
two separate site investigations. Each of these was treated
separately, giving a total of 21 brownfield datasets used in this
study.

Measured contaminant levels in the soil at these sites
were used to estimate exposure concentrations in the air
and groundwater. The concentrations were calculated using
the procedures provided in the “Soil Screening Guidance:
Technical Background Document” [11]. These procedures use
several assumptions that simplify the underlying soil/air and
soil/water mass transfer models [11] and reduce the need
for large quantities of site-specific data that are often not
available.

The calculation of exposure concentrations for the
inhalation route is divided into two possible mechanisms:
inhalation of vapors for volatile contaminants and inhalation
of contaminants adsorbed onto suspended soil particles for
nonvolatile contaminants. The concentration of contami-
nant in the air for volatile and nonvolatile contaminants
is calculated using the volatilization factor (VF) or the
particulate emission factor (PEF), respectively. Both the VF
and PEF are based on two models: one that estimates vapor
or particulate emissions from the soil and one that estimates
subsequent atmospheric dispersion [11].

For the deterministic approach, the single upper-percen-
tile soil, air, and groundwater exposure concentrations were
calculated using Land’s method as outlined “Supplemental
Guidance to RAGS: Calculating the Concentration Term” [12].
Land’s formula uses the mean (x) and standard deviation (sy)
of nlog-transformed sample data points to calculate the 95th
percentile upper confidence level (UCLg95) of the sample
data as [12]
sxho.os ] (1)
Vn=171

where hg s is the h-statistic for confidence level 0.95 [12].
The h-statistic is a unique symmetric unbiased estimator for
the central moment of a distribution [13].

UCLg95 = exp |:§+ Sy +
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When there is high standard deviation or low sample size,
Land’s formula provides extremely high estimates for the
UCLg.95. In those cases, the maximum detected or modeled
concentration was used for the upper percentile value [12].
Where the value of the sample concentration was reported
as nondetect or below the detection limit, the sample was
treated as coming from a noncontaminated area and was
removed from further consideration [14].

The deterministic intake dose estimates for individual
contaminants were calculated in accordance with the proce-
dures outlined in “Risk Assessment Guidance for Superfund
Volume I: Human Health Evaluation Manual (Part A)” Chap-
ters 6, 7, and 8 [2]. Exposure parameters were taken from
“The Exposure Assessment Handbook” and “USEPA Region
III Risk-Based Concentration Table: Technical Background
Information” [15].

The Monte Carlo-based and hybrid Monte Carlo/
deterministic-based intake dose distributions for individual
contaminants were calculated using @Risk 4.0, Advanced
Risk Analysis for Spreadsheets (Palisade Corporation, New-
field, NY, USA), a Monte Carlo simulator that is a plug-in
to EXCEL (Microsoft Corporation, Redmond, Wash, USA).
Recommended probability density functions for the input
parameters were obtained from the “Support Document for
the Development of Generic Numerical Standards and Risk
Assessment Procedures” issued by the Ohio Environmental
Protection Agency (Columbus, Ohio 43215, USA) [16], and
from Finley et al. [17]. @Risk 4.0 calls specific function
routines to generate the type of distribution specified for
a given input parameter to be used in the Monte-Carlo
simulation.

The @Risk 4.0 best fit function was used to fit probability
density functions to the observed soil concentration data
values. The goodness of fit was determined using the Chi-
Squared Statistic, the Kolmogorov-Smirnov statistic, and
the Anderson-Darling statistic. Only the normal, lognormal,
uniform, and triangular distributions were fitted to the soil
concentration data. Ten thousand iterations of the Monte
Carlo and Monte Carlo/deterministic simulations were run
using Latin hypercube sampling to ensure convergence for
the tails of the output distribution of intake doses. The
results were then used to calculate the 90th, 95th, and 99.9th
percentiles of the intake dose distribution.

Sensitivity analysis was performed using the Monte Carlo
simulations to determine which of the parameters could
be treated as deterministic. The sensitivity analysis tool in
@Risk 4.0 was used to perform the sensitivity analysis.
Multivariate stepwise regression was used to determine the
R-squared values. The parameters with the lowest R-squared
values were then treated as deterministic values in the Monte
Carlo/deterministic simulations.

Seven sets of intake doses were estimated and compared.
These were the deterministic estimates and the 90th, 95th,
and 99.9th percentiles of the estimated output distributions
from the Monte Carlo and the Monte-Carlo/deterministic
methods. These estimated intake dose levels were laid out
according to a randomized complete block design where
each contaminant/site combination was a block and each
estimating method was a treatment. A one-way analysis of
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variance (ANOVA) was performed for this design and the
treatment means of the intake dose levels were compared for
significant differences using Tukey’s LSD. Other designs with
2-way ANOVA for the intake dose estimates were possible.
However, analyzing the intake dose estimates in this manner
allowed us (a) to examine overall trends in the relative
performance of the 7 estimation methods over varying
contaminants, sites, and exposure routes, and (b) to use
the mean intake dose averaged across all contaminant/site
combinations for each method as a single response variable
for comparison of the 7 methods. All statistical analyses were
performed using SAS (SAS Institute, Cary, NC 27513, USA).

Analyses of variance were performed for estimated
noncarcinogenic intake dose levels corresponding to 69
contaminant/site combinations for the soil ingestion, soil
dermal absorption, and groundwater ingestion exposure
routes as listed in Table 1. Analysis of the noncarcinogenic
inhalation intake dose levels was done for 45 contami-
nant/site combinations as listed in Table 1.

Intake dose levels of carcinogens for 30 contaminant/site
combinations were estimated for the soil ingestion, dermal
absorption, and groundwater ingestion exposure routes and
were analyzed as for the noncarcinogens. These are listed in
Table 2.

It should be noted that since USEPA lists methylene
chloride to be only a probable human carcinogen it was
treated as both a noncarcinogen and carcinogen and appears
as a contaminant in both Tables 1 and 2.

3. Results and Discussion

For convenience, in the following discussion we designated
the intake dose estimation methods as deterministic (DET),
the Monte Carlo probabilistic (MC), and the Monte Carlo
probabilistic/deterministic (MCD). In addition, we attached
90, 95, or 99.9 to MC or MCD as appropriate to indicate
that the intake dose for each contaminant/site combination
using the probabilistic methods was taken as the 90th, 95th or
the 99.9th percentile of the estimated cumulative intake dose
distribution. The mean intake dose (MID) and the standard
error of the mean resulting from the analysis of variance
were used to demonstrate differences between the 7 intake
dose estimation methodologies for the noncarcinogens and
carcinogens by each human exposure route (see Tables 1 and
2).

Figure 1 shows the MID by the soil ingestion exposure
route for noncarcinogens. The deterministic MID estimate
was not significantly different from those for the MC 90 and
MC 95 or the MCD 90 and MCD 95 treatments. However,
the 99.9th percentile MID estimates for the MC and MCD
methods were significantly different from the deterministic
value. For all percentile levels of the MCD method, there
were no significant differences in the MID estimates as
compared to the corresponding MC generated values. In
summary, inclusion of deterministic values in the MCD
estimation of the intake dose did not significantly influence
the outcome compared to the MC method.

Figure 2 shows the MID estimates for the dermal absorp-
tion exposure route. The MID estimates by this exposure



Scholarly Research Exchange

TaBLE 1: Contaminant/site combinations and exposure routes for which intake dose for noncarcinogens was estimated.

Contaminant No. of sites Soil ingestion Dermal absorption Inhalation Groundwater ingestion
Naphthalene 10 X X X X
Ethylbenzene 7 X X X X
Methylene chloride 7 X X X X
Phenathrene 7 X X — X
Toluene 6 X X X X
Arsenic 6 X X — X
Acetone 5 X X X X
Barium 5 X X X X
Chromium 5 X X X X
Fluoranthene 5 X X — X
Xylene 5 X X — X
Totals 69 69 69 45 69

TaBLE 2: Contaminant/site combinations and exposure routes for which intake dose for carcinogens was estimated.

Contaminant No. of sites

Soil ingestion

Dermal absorption Groundwater ingestion

Arsenic 6 X
Benzo|a]anthracene

Chrysene
Methylene chloride
Totals 30 30
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FiGurk 1: Estimated mean intake dose (MID) by the soil ingestion
exposure route for the noncarcinogens. Values not annotated with
the same letter are significantly different at P < .05. Bars represent
the standard error of the mean.

route are an order of magnitude greater than those for the
direct soil ingestion route. The pattern of the response to the
various estimation methods is very similar to that in Figure 1.
The MID estimate calculated using the deterministic method
was not significantly different from those generated by the
MC 90 and MC 95 or the MCD method at the 90th, 95th, and
99.9th percentiles. However, the MID estimate for the MC
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FIGURE 2: Estimated mean intake dose (MID) by the dermal
exposure route for the noncarcinogens. Values not annotated with
the same letter are significantly different at P < .05. Bars represent
the standard error of the mean.

99.9 method was significantly different from the value for the
deterministic method. For all percentile levels of the MCD
method, there were no significant differences in the MID
estimates compared to the corresponding values generated
by the MC method.

Figure 3 shows the MID estimate for the inhalation expo-
sure route. These MID estimates were, respectively, 3 and 2
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FIGURE 3: Estimated mean intake dose (MID) by the inhalation
exposure route for the noncarcinogens. Values not annotated with
the same letter are significantly different at P < .05. Bars represent
the standard error of the mean.

orders of magnitude higher than those for noncarcinogens
administered by the soil ingestion and dermal exposure
routes. However, the pattern of the response of the MID
estimates to the different methods is quite similar to those
of the other two routes. The MID estimate calculated by the
deterministic method was significantly different only when
compared to the MC 99.9 and MCD 99.9 methods.

The MID estimates by the ingestion-of-groundwater
exposure route for noncarcinogens are shown in Figure 4.
These values were almost the same as for the inhalation expo-
sure route except that the MID estimate of the deterministic
method was 4 times greater. As for the inhalation exposure
route, the deterministic MID estimate was significantly
different from those generated by the MC and the MCD
methods at the 90th and 95th but not for the 99.9th
percentiles. These latter MID estimates were not significantly
different from each other.

Regardless of the exposure route, the MID estimates for
noncarcinogens showed a similar response pattern for the
different estimation methods. As would be expected, the
MID estimates for all the probabilistic methods increased
nonlinearly as the cutoff limits on the output probability
distribution for the intake dose were raised from the 90th to
the 95th and 99.9th percentiles. For all the exposure routes,
the MC 99.9 and MCD 99.9 methods gave the highest MID
estimates.

Figure 5 shows the MID estimates for the carcinogens
by the soil ingestion exposure route. Similar results are
presented in Figures 6 and 7 for the dermal and groundwater
ingestion exposure routes. As pointed out earlier, results
for the inhalation exposure route for carcinogens were
not generated since the available data set did not contain
enough contaminant/site combinations and toxicity values
for carcinogens were unavailable to adequately perform the
analyses. As shown in Figures 5 to 7, the MID estimates
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FIGURE 4: Estimated mean intake dose (MID) by the ingestion-
of-groundwater exposure route for the noncarcinogens. Values not
annotated with the same letter are significantly different at P < .05.
Bars represent the standard error of the mean.
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FIGURE 5: Estimated mean intake dose (MID) by the soil ingestion
exposure route for the carcinogens. Values not annotated with the
same letter are significantly different at P < .05. Bars represent the
standard error of the mean.

are 1 or 2 orders of magnitude lower than those for
noncarcinogens for a given exposure route. This is because
the measured levels for carcinogens were relatively lower
than those for noncarcinogens at all the 21 brownfields sites.
Additionally, for carcinogens, the averaging time is taken as
70 years, which is greater than the exposure duration. For
noncarcinogens, it is the same as the exposure duration.

The MID estimates for carcinogens by the various
methods follow the overall pattern shown in the results for
noncarcinogens. The highest MID estimates were obtained
with the MC 99.9 and MCD 99.9 methods, although, unlike
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FIGURE 6: Estimated mean intake dose (MID) by the dermal
exposure route for the carcinogens. Values not annotated with the
same letter are significantly different at P < .05. Bars represent the
standard error of the mean.

the results for noncarcinogens, the latter were consistently
lower than the former. As for noncarcinogens, the MID
estimates for the carcinogens increased nonlinearly as the
cutoff limits on the output intake dose distribution were
raised to the higher percentiles. However, as shown in Figures
5 and 6, these increases were much steeper than those
for noncarcinogens except for the groundwater ingestion
route (see Figure 7). This would indicate that the tails of
the output intake dose distributions by the MC and MCD
methods were much steeper than the corresponding ones
for the noncarcinogens. This is probably caused by the
lower variability in the measured concentrations for the
carcinogens.

Taken together, the results presented in Figures 1 though
7 were consistent with the findings of Smith [7]. The
MID estimates obtained by the deterministic method for
carcinogens and noncarcinogens for each exposure route
were generally little different from those generated by the
probabilistic methods except at the 99.9th percentile cutoff
on the output intake dose distribution. We observed that
several, but not all, of the fixed input parameter values used
in the deterministic computations fell in the upper tails of
their probability density distributions used in the Monte-
Carlo simulations. Therefore, this finding would not appear
to support the idea introduced by Bogen [4] that intake dose
is overestimated if many upper-bound values of the input
parameters are used in the deterministic method. On the
other hand, other input parameter values that were closer to
the mean of the distribution (such as body weight) would
tend to offset such possible overestimation of the intake dose
using the deterministic approach.

The results in Figures 1 through 7 clearly show that
for both carcinogens and noncarcinogens the MC and the
MCD methods would tend to produce the same intake doses
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FiGUure 7: Estimated mean intake dose (MID) by the ingestion-
of-groundwater exposure route for the carcinogens. Values not
annotated with the same letter are significantly different at P < .05.
Bars represent the standard error of the mean.

and risk estimates regardless of the exposure route. This is
not surprising since using deterministic values in the Monte
Carlo approach for the least sensitive input variables, as
determined by sensitivity analyses, would not be expected
to significantly impact the generated cumulative intake dose
distribution.

4. Summary and Conclusion

Variability and uncertainty are intrinsic to each input
parameter of the intake dose algorithms used for estimating
human health risk from exposure to soil contaminants [3, 6,
8, 18]. Using fixed input parameters that represent maximum
(or minimum) values over their range to calculate intake
dose is the most common approach to “erring on the side
of safety” in environmental exposure assessment [3]. The
deterministic procedure is simple, accessible, and computa-
tionally straightforward [6]. In addition, the computation
can be done in reverse to provide soil concentration levels
for a specified exposure dose or risk, and used to screen site
contaminant levels to decide if they should be considered for
further investigation [18]. On the other hand, it has been
suggested that using many extreme values could result in
inflated and unrealistic exposure dose estimates [4, 18, 19].
Probabilistic exposure assessment makes use of the same
basic algorithms but makes use of probability distribution
of the input parameters instead of fixed values. This makes
possible generating an output cumulative probability distri-
bution of intake doses. Monte Carlo techniques are most
frequently used to develop the input parameter probability
distributions [18]. However, Monte Carlo-based exposure
assessment is computationally more complicated and time
consuming requiring thousands of iterations to stabilize the
tails of the output exposure probability distribution. This
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makes quality control and calculation checking more difficult
than for the deterministic procedure. These drawbacks of the
Monte Carlo-based approach can be partially overcome by
applying sensitivity analysis to reduce the number of input
probability distributions if their simulated impact on the
output distribution is found to be inconsequential.

The results of this study in their entirety showed that
use of Monte Carlo-based probabilistic methods to estimate
intake dose at the low to moderate cutoff levels (90th
and 95th percentiles) of the output cumulative distribu-
tion would not provide significantly different estimates
as compared to the traditional fixed-parameter method.
Taken together, these results indicated that there might be
little advantage to choose probabilistic methods over the
deterministic method for intake dose estimation and risk
assessment for brownfield redevelopment.
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