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Platinum drugs continue to be major chemotherapy drugs for cancer treatment. Nevertheless, acquired or intrinsic resistance to
these compounds is common in human tumors. One important mechanism for this resistance is the avoidance of cells entering
the apoptotic pathway. Nuclear factor-kappa B (NF-kappa B, NF-«B) is a pleiotropic transcription factor key in determining the
death threshold of human cells. This factor is important in the final response of cells to platinum drugs, as exemplified by in vitro
and in vivo models showing that inhibition of NF-«B sensitizes cancer cells to the effects of these drugs. New approaches focusing
on the inhibition of NF-«B could help to minimize or even eliminate intrinsic or acquired resistance to platinum drugs.
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1. INTRODUCTION

Cis-diaminedichloroplatinum (II), first known as Peyrone’
salt, was synthesized in 1844 by the Italian doctor, Michele
Peyrone [1]. Fifty years later, Alfred Werner “the Father of
Coordination Chemistry” elucidated its structure [2]. This
inorganic compound now known as cisplatin or CDDP is a
neutral complex, Pt (NH;3),Cl,, with a central platinum atom
(Pt), two chloride atoms (Cl-), and two molecules of am-
monia (see Figure 1). In 1965, American chemist Rosenberg
et al., in Michigan State University, found that electrolysis
with platinum electrodes inhibits the growth of Escherichia
coli bacteria. This research group determined that platinum
oxidized by electrolysis to Pt*? reacts with sodium chloride
and ammonium salts in the bacterial growth media, forming
cisplatin [3]. Due to the ability of cisplatin to inhibit cell di-
vision, Rosenberg analyzed its possible anticancer properties
and found that, indeed, this compound inhibited the growth
of sarcomas transplanted into rats. Nowadays, cisplatin has
become one of the major chemotherapy drugs [4].

2. CISPLATIN MECHANISM OF ACTION

Cisplatin enters the cell mainly by passive diffusion, although
its efflux and uptake have been linked to copper metabo-

lic pathways, implicating the high-affinity cooper trans-
porter (CTR1) and the copper-transporting P-type adeno-
sine triphosphate (ATP-7B) [5, 6]. Once inside the cell, cis-
platin forms adducts with DNA with a preference for nucleo-
somal regions. In this process, cisplatin losses one of its chlo-
ride ions and binds a molecule of water in order to attach
to the nitrogen-7 position of a DNA purine. Subsequently,
the other chloride is replaced by another molecule of water,
thereby binding to DNA in a covalent form to produce 1, 2
or 1, 3 intrastrand or interstrand cross-links. Cisplatin also
forms simple monoadducts with DNA, or monoadducts that
bind also to proteins or glutathione molecules (see Figure 2)
[7, 8]. The importance of this molecular mechanism is high-
lighted by the reports showing that the level of platinum-
DNA adducts correlates with clinical response of cisplatin
(9, 10].

DNA damage produced by cisplatin is detected and
repaired by the nucleotide excision pathway (NER) [11,
12]. This pathway involves two subpathways; transcription-
coupled NER and global genomic NER. Furuta et al. [12] re-
ported that transcription-coupled NER-deficient cells are hy-
persensitive to cisplatin, irrespective of their global genomic
NER status, showing that the former pathway could be re-
sponsible for resistance to the platinum drug. If the dam-
age produced by cisplatin is not totally repaired, cells emit
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FIGURE 1: Structure of cisplatin: cis-diamminedichloroplatinum
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signals to initiate cellular death through apoptosis or necro-
sis, depending on the particular cisplatin concentration and
specific tissue involved [13].

Several signal transduction pathways are activated in the
cell after exposure of cisplatin, including the 3 main subfam-
ilies of MAPK kinases, namely, extracellular signal-regulated
kinase (ERK) [14], c-Jun NH2-terminal kinase (JNK) [15,
16], and p38 mitogen-activated protein kinase (p38 MAPK)
[17, 18]. Cisplatin also activates v-akt murine thymoma vi-
ral oncogene homologue (AKT) [19, 20] and nuclear factor-
kappa B (NF-«B) pathways [21, 22].

3. NF-KAPPA B TRANSDUCTION PATHWAY

NF-kappa B is a family of transcription factors constituted by
15 dimers that result from different combinations of 5 pro-
teins (Rel (cRel), Rel A (p65), Rel B, NFkB-1 (p105/p50), and
NFkB-2 (p100/p52)). Each of these subunits contains a 300-
amino acid Rel homology (RH) domain, which has the abil-
ity to bind to a defined DNA sequence (see Figure 3) [23].
These dimers regulate the expression of hundreds of genes
involved in immune and inflammatory response, prolifera-
tion, differentiation, and cell survival. However, examples are
also known where NF-«B functions as a proapoptotic factor.
The control over cell survival is achieved mainly through up-
regulation of the antiapoptotic proteins, cIAP1, cIAP2, XIAP,
Blf/A1, BCL-xL, and FLIP, whereas the proapoptotic activ-
ity is mediated by FAS, FASL, DR4, and DR5 genes [24]. Al-
though not universal, it seems that the antiapoptotic func-
tions of NF-«B are mediated by dimers containing the relA
subunit of this transcriptional factor.

One critical step in the control of NF-«B activity is the
association of these dimers with members of the inhibitor
of kappa B family (Ikappa-B alpha, Ikappa-B beta, Ikappa-B
epsilon, p105/gamma, p100/delta, and BCL3). The union of
a particular dimer with one Ikappa-B molecule prevents its
nuclear translocation. NF-«B subunits can be released from
its inhibitor by specific posttranslational processes, such as
phosphorylation or ubiquitination followed by proteosome-
mediated proteolysis (see Figure 4).

The most studied upstream activator of NF-«B is the in-
hibitor of kappa B kinase (IKK) complex. This complex con-
tains two kinase catalytic subunits, IKK alpha and IKK beta,
as well as a helical subunit termed IKK gamma (NEMO)
which plays a critical role in the assembly of the IKK com-
plex. Both catalytic kinase subunits are highly homologous,
but are activated by different stimuli. Once activated with
proinflammatory cytokines such as tumor necrosis factor al-
pha (TNF-a) or interleukin-1f3 (IL-183), IKK f inactivates
Ikappa-B-a, Ikappa-B-83, and Ikappa-B-¢, inducing the so-
called canonic NF-«B pathway, described previously. IKK-
a is activated by more diverse stimuli, such as CD40, lym-
photoxin £, or lipopolysaccharide, which induce processing
of the p52 precursor protein, p100, forming homo- or het-
erodimers with p50 to constitute the noncanonical NF-«B
pathway [25].

4. NF-KAPPA B AND CISPLATIN RESISTANCE

Platinum drug resistance can be mediated by several mech-
anisms, such as drug inactivation, cellular drug efflux, alter-
ations in drug target, modulation of DNA repair, and evasion
from apoptotic cell death [13, 26].

Due to the importance of NF-xB in determining the final
outcome of an apoptotic insult and the fact that most can-
cer cells present a constitutive activation of this transcription
factor, it is not unexpected that it could be involved in re-
sistance to platinum drugs. Earlier reports showed that cis-
platin is able to induce activation of NF-«B [22, 27], thereby
providing a mechanism of intrinsic resistance. Furthermore,
low-dose gamma irradiation induces a crossresistant pheno-
type in HeLa cells, which is associated with NF-«B activation
by a deregulation of silencer of death domain (SODD) pro-
tein expression [28]. NF-xB activation after cisplatin expo-
sure seems to be a widespread phenomenon in cancer [29]
and normal cells [30]. However, cisplatin exposure results in
downregulation of NF-xB activity in hepatoma cells [31] al-
though the reason for this remains unclear. Tissue-specific
differences could play a role since mice lacking p65 subunit
die at 15 days of gestation by massive liver cell apoptosis,
showing a particular and specific requirement for the NF-«xB
antiapoptotic function, specifically in liver homeostasis [32].
Alternatively, the well-known negative feedback mediated by
Ikappa B synthesis, which downregulates NF-xB activity af-
ter an initial stimulus, could explain this contradiction [33].
Further complicating this situation, different combinations
of NF-« subunits are known to have opposing transcriptional
activities, which could help explain the contradictory results.
In addition, cancer cells with cisplatin-resistant phenotypes
have elevated NF-«B activity [21, 34] although the molecular
reason behind this activation remains obscure.

Supporting the relevance of NF-«B importance in the
control of apoptosis induced by cisplatin is that its inhibi-
tion by different methods sensitizes cancer cells to the drug.
Genistein, a soy isoflavonoid with NF-«xB-inhibiting prop-
erties, potentates cisplatin effects on pancreatic cancer cells
[35]. Similarly, inhibition of NF-«B translocation or activa-
tion increased the efficacy of cisplatin on an in vivo model
of ovarian cancer [21] and on cultured head and neck [36],
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prostate [37], and esophageal [38] cancer cell lines. In this
regard, it is noteworthy that patients with esophageal tumors
resistant to chemotherapy fail to downregulate NF-«B after
therapy [39].

In addition, it has been shown that NF-xB may be im-
portant in acquired chemoresistance since even a transient
exposure to small doses of an antineoplasic agent or radia-
tion induces cross-resistance to cisplatin by the activation of
this transcription factor [28, 40, 41].

Also of note is that a recent phase I trial showed that in-
hibition of NF-xB with bortezomib, a proteasome inhibitor,

made ovarian cancer patients more sensitive to carbo-
platin [42]. Similarly, preclinical studies demonstrated that
the newly synthesized NF-«xB inhibitor, dehydroxymethyle-
poxyquinomicin (DHMEQ), enhanced the sensitivity of
YCU-H and KB cells to cisplatin [36]. Furthermore, the im-
portance of NF-xB in resistance can be found in the blocking
of its activation by an adenovirus carrying a “superrepres-
sor” form of I-xB (ad-lIkappaBalpha) in cisplatin-resistant
lung cancer cells, which restored their sensitivity to control
levels found in sensitive cell lines [43]. These results warrant
further exploration of the possible clinical use of NF-xB in-
hibitors in patients with intrinsic or acquired platinum drug-
resistant cancers.

5. MECHANISMS OF NF-KAPPA B ACTIVATION
BY CISPLATIN

After DNA damage, several transduction cascades are acti-
vated, among them JNK and p38 [16]. Activation of JNK
takes place via the MEKK1/SEK1 cascade required for cell
death after platinum drug exposure [44]. MEKKI activa-
tion drives the activation of NF-«B, seen after cisplatin treat-
ment [45], providing a basis for a possible mechanism of ac-
quired resistance. On the other hand, Yeh et al. [46] demon-
strated that the MEK/ERK pathway is one of the NF-«B in-
hibitory circuits activated after exposure of cervical cancer
cells to cisplatin. This mechanism relies on the alteration of
the phosphorylation of p65 by protein phosphatase-4 [46].
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These cascades activate the phosphorylation, ubiquitination,
and degradation of NF-xB inhibitor I-«B, allowing transloca-
tion of active NF-«xB dimers into the nucleus [22], providing
a plausible basis for intrinsic or acquired resistance, as previ-
ously discussed.

6. DOWNSTREAM TARGETS OF NF-KAPPA B

As mentioned above, NF-«B is a pleiotropic transcription
factor with target genes involved in several cellular processes.
At least 20 proteins involved in the regulation of apoptosis
present kappa-B consensus sites in their promoters and are
actively regulated by this transcription factor [47]. Although
no comprehensive study of the NF-kappa B-responsive genes
involved in cisplatin resistance has been published, recent re-
ports indicate that Bfl-1/A1 [48] and c-Myc [49] could be 2
of these genes, but clearly more investigations are needed.

7. NEW PLATINUM COMPOUNDS

After the initial discovery of cisplatin, several analogs have
been synthesized with the purpose of improving their an-
tineoplastic activity and reducing adverse effects such as
nephrotoxicity. One of the successful analogs is carboplatin,
which contains a platinum atom surrounded with two am-
monia groups and two other ligands in a ring structure. Cis-
platin appears to be superior to carboplatin in terms of ther-
apeutic effectiveness for some tumors such as germ cell tu-
mors, bladder cancer, as well as head and neck cancer, while
in others (e.g., lung and ovarian cancer), their efficacies are
comparable [50]. Carboplatin treatment downregulates con-
stitutive NF-«B activity and prevents nuclear retention of p65
in liver cancer [51] and glioma cell lines [52].

Oxaliplatin is another cisplatin analog that contains
a platinum atom complexed with 1,2-diaminocyclohexane
that has an oxalate ligand. Its spectrum of activity and mech-
anism of action and resistance are different from cisplatin
and carboplatin [53]. Downregulation of NF-«B transactiva-
tion by pharmacological inhibitors enhances oxaliplatin cy-
totoxicity in a panel of 4 colon adenocarcinoma cell lines
[54].

Recently, a new approach has been the synthesis of water-
soluble platinum complexes that can be absorbed after oral
administration, such as JM216 and its metabolite JM118
[55], which have demonstrable oral antitumor activity in
mice broadly equivalent to intravenously administered cis-
platin and a toxicological profile similar to that of carbo-
platin. To date, there are no studies focusing on the activity
of NF-«B in relation to these compounds.

A new promising approach is the encapsulation of cis-
platin in sterically stabilized, long circulating, PEGylated
liposomes, such as SPI-77, which show more stability in
plasma and have a longer circulation time, greater effi-
cacy, and lower toxicity than free cisplatin. Similar to this
compound is lipoplatin, which is formed from cisplatin
and liposomes composed of dipalmitoyl phosphatidyl glyc-
erol (DPPG), soy phosphatidyl choline (SPC-3), choles-
terol, and methoxy-polyethylene glycol-distearoyl phos-
phatidylethanolamine (mPEG2000-DSPE) [56, 57]. There
are no studies to date on the routes that activate these new
drugs.

8. CONCLUSION

In order to increase the benefit of current platinum-based
drugs and to direct effort to obtain improved agents, it is
of great importance to understand the molecular basis of
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acquired and intrinsic resistance. NF-xB is a key to this un-
derstanding due to its importance in determining the final
cell response to platinum drugs. New approaches focusing in
the inhibition of this factor could help to minimize or even
eliminate resistance to platinum drugs or to provide drugs
with less systemic toxicity.
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