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1. INTRODUCTION

The use of color information becomes increasingly impor-
tant in nowadays image processing applications as inexpen-
sive color image acquisition devices become easily available.
Color image processing permits a more extensive image
representation, which expectedly leads to better results.

We deal in this paper with the specific case of face
segmentation which employs face modeling techniques.
This can also be viewed in the more general context of
deformable template matching, using for this purpose a
statistical model of shape variations. Extensive work has
been carried out in the area of face modeling and face
segmentation using statistical models [1-5]. These tech-

niques have initially been developed for gray level images.
Extensions have later been proposed for color images [6, 7].

Some advantages of using the color extension have been
demonstrated, but mostly for working in a controlled image
acquisition environment. Processing color information can
thus be challenging, especially when designing more general
applications that are supposed to work within unconstrained
image acquisition conditions. We demonstrate in this paper
some positive results when using the decorrelated color
information for applications which include face segmenta-
tion and face tracking, intended to work under no predefined
constrains.

The outline of this paper is as follows. In Section 2, we
briefly describe several decorrelated color spaces in terms of
their transforms from the common RGB color space; we also
include a comparison between these color spaces in terms
of how well they are able to decorrelate image channels on
a series of test images. In Section 3, a face segmentation
method is described, based on a statistical shape model
and a fixed face texture template. The limitations of the
application described in Section 3 are addressed in Section 4,
introducing some texture alignment and color transfer
techniques in order to adapt the texture template to the
color distribution of the current image. These operations
are facilitated by converting the texture data to one of
the decorrelated color spaces presented in Section 2. In
Section 5, we show our experiments performed on a general
face image database; the database is built as a mixture of
images, gathered mostly from various standard face image
and video databases; a set of comparative results is provided
in Section 5. Finally, in Section 6 we draw the conclusions of
our work.

2. IMAGE DECORRELATION WITH RESPECT TO
COLOR INFORMATION

Colorwise image decorrelation is useful for applying color
image processing operations independently on each image
channel.
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2.1. Karhunen-Loéve transform

The Karhunen-Loeéve transform (KLT) is optimal in terms of
energy compaction and mean-squared error minimization
for a truncated representation. By applying KLT to a color
image, it creates image basis vectors which are orthogonal,
and it thus achieves complete decorrelation of the image
channels [8-12] as follows:

Cre = A-(I— ), (1)

where I = [I, I, Ig]" contains the image color signals and
Yy = [yR,y(;,yB]T, with y, = E[x]; E is the mathematical
expectation. Cggp is the covariance matrix of the of the image
color signals as follows:

Crr Crc Crp
Cer Cgc Ccs (2)
Cpr Cpc Cps

Crg =

with Cy, = E[(x — E[x])(y — E[y]D], x,y € {R,G,B}. Ais
the transformation matrix formed by the eigenvectors of the
covariance matrix Crgp:

ki ky ki |

T
A= [kl k, k3] = |kiz ka ks | . (3)
kis ko ks
Yet, KLT is data dependant, meaning that it requires the
recalculation of the transformation matrix A for each set of
data (e.g., each new image).

2.2. L L,I; color space

An interesting color space is I;I;I3, proposed by Ohta
et al. [13], which realizes a statistical minimization of
the interchannel correlations (decorrelation of the RGB
components) for natural images. The conversion from RGB
to I L1 is given by the simple linear transformation in (4) as
follows:

L 1/3 1/3 1/3 R
L|l=|112 0 -1/2||G]|. (4)
I -1/4 1/2 -1/4| | B

I, stands as the achromatic (intensity) component, while
I, and I5 are the chromatic components. We remark that the
simple numeric transformation from RGB to I, 1,3 enables
simple and efficient transformation of datasets between these
two color spaces.

I LI; was designed as an approximation for the KLT
of the RGB data to be used for region segmentation on
color images. As the transformation to I;I;I5 represents a
good approximation of the KLT for a large set of natural
images, the resulting color channels are almost completely
decorrelated.

In the previous work of Ohta et al., the discriminating
power of 109 linear combinations of R, G, and B was
tested on eight different color scenes. The selected linear
combinations were gathered such that they could successfully

be used for segmenting important (large area) regions of an
image, based on a histogram threshold. It was found that
82 of the linear combinations had all positive weights, cor-
responding mainly to an intensity component which is best
approximated by I;; another 22 showed opposite signs for the
weights of R and B, representing the difference between the R
and B components which are best approximated by I; finally,
the remaining 4 linear combinations could be approximated
by I5. Thus it was shown that the I, I, and Is components in
(4) are effective for discriminating between different regions
and that they are significant in this order [13]. We can further
conclude, based on the above figures, that the percentage
of color features which are well discriminated on the first,
second, and third channels is around 76.15%, 20.18%, and
3.67%, respectively.

I L1 is also found in [14] to perform better as compared
to other color space implementations like YIQ, CIELAB, and
UVW for segmentation of color images based on Markov
random field (MRF) processing. In [15], the I, I,I5 color space
was used for color image segmentation based on an MRF
model and simulated annealing due to its effectiveness in
terms of the quality of the segmentation and the reduced
complexity of the transformation.

2.3. laf color space

Assuming that the human visual system is ideal for process-
ing natural scenes, Ruderman et al. [16] developed the laf
color space, which also minimizes the correlation between
channels for natural images. The conversion from RGB is
realized by means of an initial transform to LMS cone space,
followed by a conversion of the data to logarithmic space
(used to reduce skewness):

L 0.3811 0.5783 0.0402 | | R
M| =0.1967 0.7244 0.0782 | | G|, (5)
S 0.0241 0.1288 0.8444| | B
L logL
M = logM . (6)
S log S
Finally, the laf5 data is obtained from
! /3 0 0 11 1][L
al=| 0 1/4/6 0 11 =2([M|. (@
B 0 o0 V2|1 -1 0]]|S

This color space has successfully been used in [17, 18] for
image color transfer operations, which will be described in
Section 4.1.

2.4. Comparison between the different color
image representations
The correlation between two image channels is given by
__ Elvi—E[vi]) (v; — E[v;])]
VEL(v: — Ev])"JEL(v; - Elv;])’]

Pij ) (8)
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TaBLE 1: Decorrelation results over the tested database.
. Correlation coefficients (mean/std)

Image representation

P12 P13 P23 Riotal
RGB 0.93/0.06 0.84/0.12 0.95/0.07 0.91/0.07
KLT 0/0 0/0 0/0 0/0
LLI; 0.29/0.22 0.25/0.21 0.52/0.26 0.35/0.15
laf 0.32/0.20 0.27/0.20 0.74/0.19 0.44/0.13

FIGURE 1: General, mixed color face image database.

where v; and v; represent the ith and jth image channel
signals, respectively, (with i,j = 1,3, i # j), for a certain
color image representation.

The total interchannel correlation is calculated as follows:

Rl = lpia| + |P;3| + | pas |. (9)

The correlation coefficients have been measured for
several test images (see Figure 1) in the discussed color image
representations using the above formulae [19]. Results are
summarized in Table 1.

It can be observed that the RGB representation presents
a very high interchannel correlation, while the I; 1,5 and laf3
image representations significantly reduce this correlation.
As stated above, the KLT, which is adapted to each particular
image, achieves total decorrelation of the image channels.

3. FACE SEGMENTATION USING DEFORMABLE
TEMPLATE MATCHING

Note that the term texture, frequently used in this paper,
refers in the context of this work to the set of pixel intensities
across an object, also subsequent to a suitable normalization.

3.1. Statistical shape models

We are interested in designing a shape model robust to head
pose variations. The shape is defined as the set of positions
of some fiducial points on the face. The model is statistically
built from a training dataset which contains image examples,
annotated with a fixed set of landmark points. The sets of
2-D coordinates of the landmark points define the shapes
inside the image frame. These shapes are aligned using the
generalized procrustes analysis [20], a technique for removing
the differences in translation, rotation, and scale between
the training set of shapes. This defines the shapes in the
normalized frame.

Let N be the number of training examples. Each shape
example is represented as a vector s of concatenated coor-
dinates of its points (xl,xz,...,xL,yl,yz,...,yL)T, where L
is the number of landmark points. principal components
analysis (PCA) is then applied to the set of aligned shape
vectors reducing the initial dimensionality of the data.
It can be noted that PCA is very similar to KLT. In a
geometric interpretation, KLT can be viewed as a rotation
of the coordinate system, while for PCA, the rotation of the
coordinate system is preceded by a shift of the origin to the
mean point [21]. Shape variability is thus linearly modeled
as a base (mean) shape plus a linear combination of shape
eigenvectors:

Sm = S+ O,bs, (10)

where s,, represents a modeled shape, § is the mean of the
aligned shapes, ®; = (¢, [ds, | - - - \gbsp) is a matrix having p
shape eigenvectors as its columns (p < N); finally, bs defines
the set of parameters of the shape model. p is chosen so that a
certain percentage of the total variance of the data is retained.

The standard deviation for each parameter of the face
model, as resulted from the training dataset, provides its
dynamic range. By altering the model parameters within
their dynamic range helps insuring that only plausible
instances of the modeled object are being generated. A
description of the way in which the optimal model param-
eters for a new image can automatically be estimated follows
in Section 3.2.
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3.2. Face texture template optimization algorithm

In order to optimize the face model parameters, a texture
template is also required. The separation between shape
and texture is realized using a reference shape. Based on
this reference shape, the so-called texture examples can be
extracted. The reference shape is usually chosen as the
pointwise mean of the shape examples. The texture examples
are defined in the normalized frame of the reference shape.
Each image example is then distorted such that the points
that define its attached shape, used as control points, match
the reference shape, such that the topology is preserved. An
image warping method is employed for this purpose. Image
warping methods are discussed in Section3.3.

Subsequent to the warping stage, all shape differences
between the image examples have been removed. The texture
across each image object is thus mapped into a shape-
normalized representation. The resulting images are also
called the image examples in the normalized frame. For
each of these images, the corresponding pixel values across
their common shape are scanned to form the texture vectors
tim = (timy> timy>- - - » timP)T, where P is the number of texture
samples.

Based on previous experiments, we remark that the
variability of the shape component of the face is much more
important than the variability of the texture component
in terms of a successful segmentation of the face. Due
to this fact, we consider in the following a simplified
formulation of a model-based face segmentation technique,
where the modeled image is represented by a fixed texture
template; extensions could be made so that to include texture
variability, yet that was beyond the purpose of the current
work. Thus during an optimization stage (fitting the model
to a query image), the parameters to be found are p = (bz ),
where g, are the shape 2-D position, 2-D rotation, and scale
parameters inside the image frame, and b, are the shape
model parameters. The optimization of the parameters p
is realized by minimizing the reconstruction error between
the query image and the modeled image. The error is
evaluated in the coordinate frame of the model, that is, in
the normalized texture reference frame, rather than in the
coordinate frame of the image. The difference between the
query image and the modeled image is thus given by the
difference between the (normalized) image texture and the
(normalized) template texture as follows:

r(p) = t.—t, (11)

and [lr(p)|1? is the reconstruction error, with || - || marking the
Euclidean norm.
A first order Taylor extension of r(p) is given by

or
r(p+Jp) = r(p) + $5p- (12)

Op should be chosen so that to minimize |[r(p + dp)I. It
follows that:

0
5§w:—ﬂm. (13)

Normally, the gradient matrix dr/dp should be recomputed
at each iteration. Yet, as the error is estimated in a normalized
texture frame, it was shown that this gradient matrix may
be considered as fixed, being thus possible to precompute
it from a training dataset; these techniques, introduced in
[22], and extended so that to also incorporate a statistical
texture variation model (as opposed to a fixed texture
template described above), are called active appearance
models (AAMs). Using this technique, each parameter in p is
systematically displaced from its known optimal value retain-
ing the normalized texture differences. The resulted matrices
are then averaged over several displacement amounts and
over several training images. The update direction of the
model parameters p is then given by

8p = —Rr(p), (14)

where R = ((ar/ap)” (ar/dp)) (9r/ap)” is the pseudoin-
verse of the determined gradient matrix, which can be
precomputed as part of the training stage. The parameters
p continue to be updated iteratively until the error can no
longer be reduced and convergence is declared.

3.3. A TPS-based model fitting technique

Piecewise affine warping is extensively used in techniques like
AAM due to its reduced computational costs. A triangulation
(e.g., Delauney) is used to partition the convex hull of
the control points. The points inside triangles are then
mapped via an affine transformation which uniquely assigns
the corners of a triangle to their new positions. Although
the assumption that the face patches are piecewise affine
within the triangles is a satisfactory solution when there is a
sufficiently large number of landmark points, it also shows
an important drawback. This refers to the fact that, when
modeling large face pose variations, corners of some triangles
tend to get reversed due to occlusions of the corresponding
landmark points. This obviously affects the image warping
outcome by creating erroneous face patches. The errors are
further propagated into the fitting algorithm, resulting in
an incorrect fit. That is why the piecewise warping method
works well mostly for modeling frontal or nearly frontal
faces.

A more advanced and accurate warping method is
obtained by employing the thin plate splines (TPSs), intro-
duced in [23]. A short description of this warping method
is also given in the appendix. An initial drawback of using
the thin plate splines was represented by the fact that they
were quite expensive to calculate. The solution requires the
inversion of a p X p matrix (the bending energy matrix)
which has a computational complexity of O(N?), where p
is the number of points in the dataset (i.e., the number of
pixels in the image); furthermore, the evaluation process is
O(N?). Portunately, important progress has been made in
order to speed this process up. An approximation approach
was proved in [24] to be very efficient in dealing with the
first problem, reducing greatly the computational burden.
As far as the evaluation process is concerned, the multilevel
fast multipole method (MLFMM) framework was described
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(c)

FiGure 2: Face modeling. (a) Original texture template; (b) model
initialization; and (c) converged model.
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FIGURE 3: TPS-based convergence—TPS-deformed grid for the
rectangular region around the fitted shape.

in [25] for the evaluation of two-dimensional polyharmonic
splines, while in [26] this work was extended for the specific
case of TPS, showing that a reduction of the computational
complexity from O(N?) to O(NlogN) is indeed possible.
Thus the computational difficulties involving the use of TPS
have been to an important extent removed.

We show in Figures 2 and 3 an example of fitting the
model based on TPS warping. The error is evaluated relative
to the number of available data points after the deformation.

4. IMPROVED MODEL FITTING BY MEANS OF
LOCAL COLOR TRANSFER

A face detection algorithm is firstly applied for the current
image. We used here the Viola-Jones face detector [27],
which is based on the AdaBoost algorithm [28]. A statistical

relation between the face detector estimates for the face
position and size (rectangle region) and the position and
size of the reference shape inside the image frame is
initially learnt (offline) from a set of training images. This
relation is then used to obtain a more accurate initial-
ization for the reference shape, tuned with the employed
face detection algorithm. It is also important to have a
reasonably close initialization to the real values in order to
insure the convergence of the fitting algorithm described
in Section 3. Color statistics are then extracted across the
convex hull of landmark points of the initialized reference
shape.

4.1. Image color transfer

According to [17], color can be transferred between two
images (global color transfer) using the formula in (15),
applied in the laf color space:

g(ct) =[ls+%i(ct—[4t), (15)
where y and o are, respectively, the mean and standard
deviation of the Gaussian distribution in the considered
color space.

For local color transfer between two images, color
statistics (e.g., mean and variance of the Gaussian-modeled
color distribution) are gathered from the target and source
image, respectively, and used to calculate the color influence
map (CIM). CIM contains the weights for each pixel in the
target image, determined based on their proximity to the
color range in the source image.

Consider the distance between a pixel and the center of
the color distribution. For three-dimensional color data this
is the Mahalanobis distance given by

du(c,u) = /(c—w)S1(c—p), (16)

where S is the covariance matrix of the three-variate color
texture vector.

Yet, if a decorrelated color space is used, then the
covariance matrix S is close to being diagonal and (16)
reduces to the normalized Euclidean distance (17):

e =||<2H[ (17)

where ¢ is the standard deviation vector of ¢ over the sample
set.

The weights in CIM are calculated using a function of
the above distance f(d), for which the following conditions
should be met as follows:

(gimf(d) =0; f(0) =1. (18)

The function below was proposed in [18] to be used with

the laf color space:

f(d) = e, (19)
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(b) ()

FIGURe 4: Face modeling using color transfer. (a) Generating
the color-adapted template from the original template and the
estimated face region in the image; (b) converged model with no
color transfer; and (c) converged model using the color-adapted
template.

The color transfer equation in (15) was also extended in
[18] to

O
gle) =+ f(d) (/45 + ;(Ct — Us) — Ct)) (20)
t
or, if a single color ¢ is used as source for color transfer,

g(ct) =t +f(d)(c—y[). (21)

4.2. Adaptive texture template matching

Using a decorrelated color space (see Section 2), the color
of the texture template (see Figure 4(a)) can be adapted to
the current image, increasing the chance of a correct fitting
(correct-face segmentation) of the face model. Experimental
results to support this premise and to confirm the benefits
of employing color adaptation techniques with the template
matching algorithm follow next.

TaBLE 2: Convergence results.

. . Pt-Pt errors (m td
Color transfer implementation errors (mean/std)

Before fitting After fitting
None (on grayscale) 16.10/13.76
None (on color) 21.00/2.73 14.78/11.48
L LIs 7.91/4.46
lo 9.86/5.33

5. EXPERIMENTS

The experiments have been performed on a randomly chosen
subset of 16 images from the database in Figure 1. The
images have been semiautomatically annotated and the set
of annotations has been used as the ground truth for
calculating the boundary errors, which give an objective
measure for the fitting quality of the face model. The
boundary errors are measured between the exact shape in the
image frame (obtained from the ground truth annotations)
and the optimized model shape in the image frame. The
boundary error is calculated as the point-to-point (Pt-Pt)
error, which is given by the Euclidian distance between
the two shape vectors of concatenated x and y coordinates
of the landmark points. The mean and standard deviation
of Pt-Pt errors is used to evaluate the boundary errors
over a whole set of images. The results are summarized in
Table 2.

An implementation based only on the intensity (gray
scale) component has also been tested. The gray scale images
have been obtained by applying the standard mix of RGB
components in (22):

Grayscale = 0.30R + 0.59G + 0.11B. (22)

The initial results (no color adaptation) show a slight
gain in the fitting accuracy over the gray scale implementa-
tion when color information is added. However, significant
increase in face segmentation accuracy can be observed when
adapting the color of the texture template using color transfer
techniques. It can also be noted that the implementation
based on I; 1,15 color space performs slightly better in terms
of segmentation accuracy, although subjectively better color
adaptation results have been observed when using the laf3
color space. This can be explained by the fact that the
I 15 color space representation is more suitable to be used
together with the fitting algorithm which is implemented in
the RGB color space.

The robustness to changes in the illumination conditions
was also tested using the Oulu face image database [29]. An
example of color adaptation of the texture template for this
database is shown in Figure 5.

6. DISCUSSION AND CONCLUSIONS

We analyzed in this paper the possibility of enhancing a face
segmentation/tracking method based on texture template
matching by means of color image alignment. We also
presented a model parameters optimization approach which
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FIGUre 5: Example of color adaptation of the texture template
under 16 different camera calibration settings and illumination
conditions from Oulu database (all 4 X 4 combinations of horizon,
incandescent, fluorescent, and daylight illuminants). (a) Initial
images; (b) color-adapted templates.

minimized the error between the texture template and the
warped image texture across the current shape. We employed
here the TPS-based warping method which is more robust
for head pose variations.

The color alignment techniques make use of the decorre-
lated color statistics of the current image and template image.
Improvements of the accuracy of the segmentation have been
demonstrated.

From our experiments, we can conclude that the color-
adaptation method for the texture template can also be useful
in face tracking applications which employ face modeling
techniques similar to the one described in Section 3. In
particular, it was shown significant improvements and
increased robustness for the case of tracking a face under
changes in the illumination conditions, like the change of
the type of illuminant. This may be a real change of the
illuminant or it could be caused by some wrong white
balance setting of the image acquisition device.

APPENDIX
IMAGE WARPING: PRINCIPAL WARPS

The thin plate splines (TPSs)-based warping method, also
named principal warps, was first introduced in [23]. It repre-
sents a nonrigid registration method, built upon an analogy
with a theory in mechanics. Namely, the analogy is made
with minimizing the bending energy of a thin metal plate
on which pressure is exerted using some point constraints.
The bending energy is then given by a quadratic form; the
spline is represented as a linear combination (superposition)
of eigenvectors of the bending energy matrix:

- (XJ’)H),
(A1)

P
flx,y) =a+ax+a,y+ ZwiU(||(xi,yi)

i=1

where U(r) = r?log(r); (x;, y) are the initial control points.
= (a1,ax,a,) defines the affine part, while w defines the
nonlinear part of the deformation.

The total bending energy is expressed as

*f PN\ (P f) )
Iy = HR:((Eb@) 2(8x8y> " (E)y dedy. (8.2)
The surface is deformed such that to have minimum
bending energy. The conditions that need to be met so that

(A.1) is valid (so that f(x, y) has second-order derivatives)
are given by

P
Zwi = 0,
i=1

p P (A.3)
ZW,‘xi = 0; zw,-yi =0.
i=1 i=1

Adding to this the interpolation conditions f(x;, ;) = vi,
(A.1) can now be written as the linear system in (A.4):

# ol[2]-[e]

where Ki; = U(ll(xi, yi) — (x5, yj)1), O is a 3 x 3 matrix of
zeros, 0 is a 3 X 1 vector of zeros, P;j = (1,x;, y;); w and v are
the column vectors formed by w; and v;, respectively, while
a=lajay ay]T.

(A4)
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