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We study the frequency spectrum of nanoemitters placed in a microsphere with a quasiperiodic subwavelength spherical stack. The
spectral evolution of transmittancy at the change of thickness of two-layer blocks, constructed following the Fibonacci sequence,
is investigated. When the number of layers (Fibonacci order) increases, the structure of spectrum acquires a fractal form. Our
calculations show the radiation confinement and gigantic field enhancement, when the ratio of layers’ widths in twolayer blocks of
the stack is close to the golden mean value.
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1. Introduction

The use of microcavities and microspheres in advanced opto-
electronics has provided a new view of various effects
and interactions in highly integrated, functional photonic
devices. A main fundamental question in this area is how
to drastically increase the spectral optical field strength,
using artificially produced alternating layers on a surface of
microsphere. Nowadays the basic regime of the operation
for bare (uncoated) dielectric microspheres is the whispering
gallery mode (WGM). The extremely high-quality factors
(Q-factors) ∼108 ÷ 109 have been realized [1–3]. But since
fabricating the coated dielectric spheres of the submicron
sizes, the problem arises to study the optical oscillations in
microspheres beyond the WGM regime for harmonics with
small spherical numbers.

It is well known that a bare dielectric sphere has a
complex spectrum of the electromagnetic low-quality (Q
factor) eigenoscillations because of the energy leakage into
the outer space [4]. The case of the compound structure,
when the dielectric sphere is coated by an alternative stack,
is much richer. The Q-factor of optical oscillations has a
large value in the frequency regions of weak transmittancy,
and beyond these regions Q remains small [5–8]. This gives
rise to a large variety of optical properties of microspheres,
coated with a multilayer stack. Such a system can serve as

a spherical symmetric photonic band gap structure, which
possesses strong selective transmittance properties [9, 10],
with incorporating the nanometer-sized photon emitters.
These possibilities allow to expand essentially the opera-
tional properties of microspheres with attractive artificial
light sources for advanced optical technologies. It is now
feasible to construct such a microsphere accurately, and
the parameters may be precisely controlled and measured
(see [11] and reference therein). Equally important, this
system can provide a compact and simple building block
for studying the quantum aspects of light. The attachment
of semiconductor nanoclusters onto a spherical microcavity
already has allowed the observation of the vacuum Rabi
splitting [12].

Among the various quasicrystals, the Fibonacci 1D and
Penrose 2D structures have been the subject of an exten-
sive theoretical and experimental efforts [13–19]. However,
though the plane Fibonacci layers are studied well enough,
the properties of quasiperiodic spherical structures were not
studied sufficiently yet.

The important optical property of a periodic alternating
spherical stack is a possibility to confine the optical radiation.
However, is periodicity necessary for such resonant optical
effects?

In order to answer this question, we have studied the
optical radiation of a nanosource (nanometer-sized light
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source), placed into a microsphere coated by a quasiperi-
odic multilayered structure (stack) constructed following
the Fibonacci sequence. In such a system the 1D (radial
depending) theory is strictly valid. Such structures are
called quasiperiodic, and are lying outside the constraints of
periodicity. One of the main properties of such a stack is re-
reflection of the electromagnetic waves from the interfaces of
the layers, that results in the collective wave contributions.
The collective optical effects in a quasiperiodic spherical
stacks are appreciated only if number of layers in the
stack is large enough. In this case, various approximations
based on the decomposition of field states in the partial
spherical modes have insufficient accuracy, so the deeper
insight requires more advanced approaches. Our approach
is based on dyadic Green’s function technique [20], that
provides an advanced approximation for a multilayered
microsphere with nanoemitters [21]. We have applied this
approach to a quasiperiodic spherical stack and found the
substantially enhanced optical resonances (Green function
strength), when the ratio of layers’ widths in two-layer blocks
in stack (quasiperiodicity parameter) is close to the golden
mean value. As far as the authors are aware, the optical fields
of nanoemitters placed in a microsphere with quasiperiodic
spherical stack still have poorly been considered, though it is
a logical extension of previous works in this area.

This paper is organized as follows. In Section 2, we
formulate our approach and basic equations for optical fields
in a dielectric multilayered microsphere. We outline the
numerical scheme of applying the dyadic Green function
(DGF) technique to evaluate the spectrum of a nanoemitter
placed in such a quasiperiodic system. In Section 3, we
present our numerical results on structure of the cavity field
states and resonances in a microsphere with quasiperiodic
spherical stack dependently of the quasiperiodicity parame-
ter. We found the enhanced field peaks if such a parameter
is close to the golden mean value. In the last section, we
summarize our results.

2. Basic Equations

A 1D quasiperiodic (QP) spherical stack, where a Fibonacci
sequence is considered, can be constructed following a
simple procedure. Let us consider two neighbor 2-layer
segments, long and short, denoted, respectively, by L and S.
If we place them one by one onto surface of a microsphere,
we obtain a sequence: LS. In order to obtain a QP sequence,
these elements are transformed according to Fibonacci rules
as follows: L is replaced by LS, S is replaced by L: L → LS,
S→ L. As a result, we obtain a new sequence: LSL. Iteratively
applying this rule, we obtain, in the next iteration, a sequence
with a five-element stack LSLLS, and so on. One can control
the properties of such a QP stack by the use of some control
parameter (see factor γ later in Section 3). For the stack with
N-elements, where N � 1, the ratio of numbers of long to
short elements is the golden mean value, Γ0 = (1 +

√
5)/2 ≈

1.618.
Generally in spherical geometry the wave field depends

on position of a source and it is formed on a distance scale
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Figure 1: Geometry of multilayered microsphere. Stack of quasip-
eriodic multilayers is deposited on the surface of microsphere.

of the order magnitude of the radius of microsphere or
thickness of nanolayers of a stack. For analysis of such a
spectrum it is necessary to use more advanced approach:
the Green function method. The base of the latter is
representation of optical field, radiated by a nanosource in
a coated microsphere, as a weighed superposition (sum)
of forward and backward waves (reflected from the layers
interfaces). We consider a situation when radiating point
source (nanoemitter) is placed into microsphere coated by
a quasiperiodic stack. In this case, the frequency spectrum
is not described longer by a spectrum of bare microsphere
slightly perturbed by the external stack. If the number of
layers is large enough, we have to study the photons field
taking into account the spectral contributions both bottom
microsphere and a quasiperiodic stack. In order to calculate
the properties of such a field, we apply the Green function
technique. In this case, a nanosource corresponds to a
nanorod or quantum dot that recently were employed in
experiments with microspheres (see [12, 22] and references
therein).

The spatial scale of the nanoemitter objects (∼1–100 nm)
is in at least of one order of magnitude smaller than the
spatial scale of microspheres (∼103–104 nm). Therefore, in
the coated microsphere (Figure 1), we can represent the
nanoemitter structure as a point source placed at r′ and
having a dipole moment d0. It is well known that the solution
of the wave equation for the radiated electromagnetic field E
due to a general source J(r′) reads (μ = 1) [23, 24]

E(r) = iωμ0

∫
V
dr′G

(
r, r′,ω

) · J
(

r′
)
, (1)

where G(r, r′,ω) is the dyadic Green function (DGF), which
depends on the type of the boundary conditions imposed
on E(r) and contains all physical information necessary for
describing the multilayered structure (the time dependence
is assumed to be as eiωt). Equation (1) is complemented by
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the standard boundary conditions: limitation of fields in the
center of microsphere, continuity of tangential components
of fields at the interfaces of layers. Also, we use Sommerfeld’s
radiation conditions, there is only outgoing wave in the
external boundary of a microsphere. In this case, the
electromagnetic field E in the coated structure consists of
sum of the waves radiating in the surrounding medium
and the multiple wave reflections due to interfaces between
layers. Substituting the nanorod source in the form J = iωd,
d =d0δ( r− r′) in (1), we obtain

E
(

r, r′, w
) =− p0G

(
r, r′,ω

)
, (2)

where p0 = (d0/ε0)(ω2/c2), r is the point where the field
is observed, while r′ is the nanorod (point nanoemitter)
location. In such a situation, the nanoemitter frequency
spectrum is identical to dyadic Green’s function (DGF)
spectrum.

Let us consider the multilayered spherical structure: a
concentric system of spherical layers contacting with the
sphere (a concentric stack) deposited onto the surface of the
microsphere with a nanoemitter placed in such a structure
(see Figure 1). The layers are localized at the distances Rk
from the center, where dk = Rk+1 − Rk is the width of a kth
layer.

Let us first specify some details of the Green function
technique for multilayered microspheres and introduce our
notations. Following the approach [20], we write down DGF
of such a system as follows:

G
(

r, r′,ω
) = GV

(
r, r′,ω

)
δ f s + G( f s)(r, r′,ω

)
, (3)

where GV (r, r′,ω) represents the contribution of the direct
waves from the radiation sources in the unbounded medium,
whereas G( f s)(r, r′,ω) describes the contribution of the
multiple reflection and transmission waves due to the layer
interfaces. The dyadic Green tensor GV (r, r′,ω) in (3) is given
by

G( f e)(r, r′,ω
)

= iks
4π

∑
p=e,o

∞∑
m=1

m∑
l=0

2m + 1
m(m + 1)

(m− l)!
(m + l)!

(
2− δ0l

)
G

( f ,e)
pml

(
r, r′,ω

)
,

(4)

where G
( f ,e)
cml (r, r′,ω) is the particular Green tensor [20, 21],

m is the spherical and l is the azimuth quantum numbers,
ki = ωni/c, ni = √

εi(ω) is a refraction index. It is
worth to note that in a spherical case, the configuration of
photon field strongly depends on the position of source in
a coated microsphere. Such a field has a structure of single
spherical wave only if a nanosource is placed very close
to the center [6]. Otherwise, many forward and backward
(reflected) spherical waves contribute, therefore the complete
description of such a system or the Green function (3), (4)
has quite complicated structure.

As already we have mentioned, we represent a nanorod
by a dipole nanoemitter. Since nanorods are highly polarized
objects, we pay more attention to the case when the dipole
orientation of a nanoemitter is d =dϕ̂ [22], so only the

tangential components of the Green tensor Gϕϕ contribute.
For a spherical stack, Gϕϕ(r, r,ω) is expressed through the
complex Hankel functions [20, 23]; therefore an analytical
study of the spectrum is rather difficult problem. Further we
use numerical approach; the numerical scheme for our study
is similar to those used in [21].

3. Numerical Results

In this section, we study the frequency spectrum of a
nanoemitter radiation for quasiperiodic Fibonacci layers
(spherical stack) deposited on the surface of a microsphere
(Figure 1) for different numbers of layers in the stack. First,
let us remind that the Green function relates to energy of a
fluctuating electromagnetic field strength E(r) (at small dissi-
pation) as [25]

〈
E(r)2〉 = (�ω2/c2

)
coth

(
�ω/2T0

)
Im
(
G(r, r,

ω)
)→T0→0

(
�ω2/c2

)
Im
(
G(r, r,ω)

)
, where G(r, r,ω) is the

Green function, that is, Gϕϕ(r, r,ω) in our case, T0 is
temperature. We note that such a field state E is not a
photonic state in general, but a state of the macroscopic
medium, dressed by the electromagnetic field [25, 26].

The following parameters have been used in our cal-
culations: the geometry of system is A{L(B,C) · · · S(B,
C) · · · }D, where letters A, B, C, D indicate the materials in
the spherical stack, respectively. The bottom microsphere has
refraction index n4 = 1.5+2·10−4i (A, glass, radius 1000 nm).
The distinct two-layered blocks (L(B,C) and S(B,C)) are
stacked according to the Fibonacci generation rule. For L and
S blocks, we use the notation L = (B,C, 1) and S = (B,C, γ),
where γ is the ratio of both thicknesses: γ = (C)S/(C)L ≤ 1.
Refraction indices of the layers in blocks are nB = 3.58 + 9 ·
10−4i (Si, width 122 nm), nC = 1.46 + 10−3i (SiO2, width
300 nm) [27], and nD = 1 (D, surrounding space). For L-
block layers B andC are constructed as λ/4 layers, while for S-
block thickness B is the same as for L-block, but the thickness
C is 150 nm (γ = 0.5). For example, for Fibonacci order
F9, the total thickness of the microsphere with 68 layers is
13.4μm (34 two-layer blocks). To consider the realistic layer
case, we have added to each ni a small imaginary part that
corresponds to a material dissipation.

In order to study the behavior of field in the micro-
sphere, we have calculated the frequency spectrum of the
transmittance coefficient T and corresponding spectrum of
imaginary parts of the Green functionW ≡ Im (Gϕϕ(r, r,ω)),
where r is position of a nanoemitter, ω = 2π f . We have
calculated evolution of a spectrum for different values γ,
and also for different number of layers in the spherical
stack (Fibonacci order Fn) for a range [300–600] THz or
[1000–500] nm (DGF is normalized on radius of the bottom
microsphere). Most intensive optical peak was found for F9

stack, when γ = 0.618 = 1/Γ0 (Γ0 ≈ 1.618 is golden mean
value). The details of field spectra are shown in Figure 2 for
68 layers in the stack (34 of 2-layer blocks, order Fibonacci
is F9). We observe from Figure 2(a), that such a spectrum
consists of peaks with various amplitudes, however the most
intensive peak with Im (Gϕϕ) � 87 is located at 436.1 THz
(details of this peak are shown in the inset). We also have
calculated that such a peak relates to eigenfrequency of
the system f = 436.098 THz with quite large-quality factor
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Figure 2: (a) Imaginary parts of tangential component of the Green
function W = Gϕϕ(r, r) for r = 900 nm, (b) Frequency spectrum of
transmittance coefficient T for spherical quantum number m = 9.
Microsphere is coated by quasiperiodic stack with N = 68 (34 of
2-layers blocks, order Fibonacci F9) for γ = 0.618. See details in
text.

Q = 7369.02. Thus, even though periodicity of the stack
is broken, well-defined intensive peak of field is clearly
seen. Small peaks in Figure 2(a) have rather indented form
due to the contribution of several close small resonances
corresponding to different spherical modes for DGF in (3)-
(4). The transmittancy spectrum for γ = 0.618 is shown in
Figure 2(b). We observe that as opposed to just a periodic
λ/4 case [6, 7, 28], the Fibonacci stack has a fractal-like trans-
mittancy spectrum, see Figure 2(b). Such a spectrum consists
of narrow resonances separated by numerous pseudoband
gaps, induced by incoherent re-reflections of optical waves
from quasiperiodic layers interfaces. Resonances correspond
to poles of DGF at complex eigenfrequencies f , where
Im ( f ) determinates the width of a resonance or Q-factor
of oscillations Q = Re ( f )/2 Im ( f ). At small dissipation,
peaks have a typical Lorentzian line shape Im (Gϕϕ) ∼ ε/(δ2 +
ε2), where δ is a detuning from a resonance, and ε is the
linewidth.

Adding more layers should strongly narrow the reso-
nances. The spectrum T becomes more complicated and new
resonances do form a well-expressed fractal of transmittancy.
Corresponding spectrum of the Green function becomes
richer, since a greater number of eigenmodes contribute into
numerous pseudoband gaps of T . It is important to note that,
as one can see from Figure 2(b), the cavity modes excited by
a dipole inside a coated microsphere are distinctly different
from whispering gallery modes characterized by m� 1 and
T → 0.

We have calculated evolution of a spectrum for different
values γ close to γ = 1/Γ0 for fixed number of layers in
the spherical stack (Fibonacci order Fn). The results are
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Figure 3: Spectrum of imaginary part of the Green function W =
Gϕϕ(r, r) for r = 900 nm and 68 layers in stack (34 of 2-layer blocks
F9) for different values of parameter quasiperiodicity γ close to the
golden mean value: (1) 0.55, (2) 0.58, (3) 0.6, (4) 0.618, (5) 0.63, (6)
0.65, and (7) 0.68.

displayed in Figure 3 for a range [430–440] THz, or [0.70–
0.68] μm. One can see that in this area the spectrum consists
of rather narrow resonances, and a set of satellite peaks
appears around the main peak. The intensity of this peak
changes for different γ, giving rise to another main peak.
When γ approach to 1/Γ0 = 0.618, the field peaks become
sharper, as shown in Figure 3. We observe that the amplitude
of resonances is maximal for case γ = 0.618.

It is of great interest to compare the spectra in Figure 2 to
the case with distinct “quasiperiodic parameter” γ, especially
to the case γ = 1 case, when QP stack effectively becomes a
periodic λ/4 spherical stack. In result of calculations, we have
found that the dominating peak for γ = 0.618 (Figure 2(a))
is already 40 times higher with respect to periodic λ/4 case,
that is, a signature of a quasiperiodicity strength in a coated
microsphere cases.

In previous figures, the frequency spectrum of the field
(∼Im (Gϕϕ(r, a, f ))) for the quasiperiodic stack was shown.
The fractal complicity of the transmittancy spectrum is
defined by the intrinsic properties of the quasiperiodic
spherical stack independently on the nanoemitter location.
However in experiments, it is important to identify the
spatial distribution of the field, radiated by nanosources
located in such a quasiperiodic microsphere. Therefore, it
is of interest to consider the spatial field distribution in a
cross-section (r,ϕ, θ = const) that contains both center of
the coated microsphere and nanoemitter for some resonant
frequency. Such a distribution is shown in Figure 4 for θ = 1
and the most intensive resonance at f0 = 436.098 THz (see
Figure 2(a)), when the quasiperiodicity parameter γ = 0.618.
We observe from Figure 4 that W(r,ϕ) = Im (Gϕϕ(r, a,ϕ))
has a very sharp peak in the place of the nanosource
location. Such a spatial field structure may be treated as
a confinement of the electromagnetic energy ∼Im (Gϕϕ(r))
inside the coated microsphere. The leakage of photons
through such a structure into the outer space obviously is
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Figure 4: Spatial structure W(r,ϕ) = Im (Gϕϕ(r, a,ϕ)) in a cross-
section 0 < r < 21μm and 0 < ϕ < 2π of the microsphere
with quasiperiodic stack for eigenfrequency f = 436.09 THz. A
nanoemitter is placed at point a = 900 nm. Other parameters are
same as in Figure 2. One can observe the confinement of field in
the stack. Outer cycle only indicates the external boundary Rext =
13.8μm of the quasiperiodic spherical stack.

small. We observe from Figure 4 that the field structure inside
of quasiperiodic stack is anisotropic and quite intricate, but
the field distribution beyond the coated microsphere has a
periodic character.

4. Conclusion

We have studied the frequency spectrum of nanoemitters
placed in a microsphere with a quasiperiodic subwavelength
spherical stack. We found that the transmittancy spectrum
of such a stack consists of quasi-band gaps and narrow
resonances, induced by re-reflection of optical waves. The
spectral evolution of transmittancy at the change of the
thickness of two-layer blocks, constructed following the
Fibonacci sequence, is investigated. When the number of
layers (Fibonacci order) increases, the structure of spectrum
acquires a fractal form. We show that the width of resonant
peaks in the frequency spectrum becomes extremely narrow
for a quasiperiodic spherical stack of a high Fibonacci
order. In principle, that allows creating a narrow-band filter
with a transmission state within the forbidden band gap of
nanoemitters, incorporated in such a coated microsphere.
We have found the confinement and the gigantic enhance-
ment of the optical field in quasiperiodic structure, when
the ratio of layers’ widths in two-layer blocks of stack is
close to the golden mean value. This allows to confine
resonantly the field energy in the quasiperiodic stack in very
narrow frequency range in order to create very selective stop-
band filters. Incorporating nanoemitters into such structured
microspheres can open new opportunities for the active
control of light nanosources.
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