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Crystallographic texture is described by pole figures. In this paper, we continue to study experimental pole figure errors. In other
words it can be named pole figure measurement errors. These errors are connected with the experimental procedure and do not
depend on any further computations. In our previous works it was shown that the qualitative behaviour of pole figure measurement
errors is similar to peak width determination errors. To check this conclusion a set of diffraction spectra were measured for
Mg + 4.5%Al + 1%Zn sample on the spectrometer for quantitative texture analysis (SKAT) at FLNP, JINR, Dubna. Then we
simulated the individual spectra and used these spectra for the pole figure extraction and the pole figure error determination.
Such simulation enabled to confirm conclusions concerning the main role of the peak width determination error in the pole figure
error. Additionally, we simulated individual spectra using model pole figures and extracted pole figures and pole figures errors
from those spectra. For this case we also confirmed the same qualitative behaviour of pole figure measurement errors and peak
width determination errors. The model pole figures were calculated on the basis of normal distributions.
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1. Introduction

The neutron diffraction experiment is one of the methods for
obtaining information about crystallographic texture. The
spectrometer for quantitative texture analysis (SKAT) has
been successfully operated at the 7A channel of IBR-2 reactor
(FLNP, JINR, Dubna) since 1997 [1]. Measurements of
spectra are provided using time-of-flight technique at pulsed
reactor. The aim of texture neutron diffraction experiment is
to determine the orientations of crystallites in a polycrystal.
Neutron spectra are measured at SKAT to be used for pole
figures extraction. We are interested in the integral intensity
of individual peaks for the pole figure determination. 1368
spectra have to be processed simultaneously for complete
pole figure. That corresponds to a 5-degree grid for the polar
angle and azimuth as well (19× 72).

Pole figures (PFs) contain experimental information
about crystallographic texture. The requirements for the
accuracy of PFs are growing in correlation with the compli-
cation of the investigated problems. Besides, it is necessary

to take accurately the experimental errors into account for
developing new instruments for quantitative texture analysis.
Thus it is very important to study sources of the PF’s
measurement errors to look after their minimization. A set
of papers [2–5] are devoted to this theme. In these works
the main types of PF’s measurement errors are analyzed.
They are approximation errors connected to the instrument
resolution and statistical errors connected to finite intensity
of neutron sources and finite number of grains in measured
textured samples. The study how counting statistics and
exposure time influence the pole figure errors is described in
[3], the influence of grain statistics is studied in [5] as well.
It is necessary to underline that pole figures measurement
errors have an integral character, that is, they include all
factors like experimental layout, neutron statistics, grain
statistics, external noise, and so forth. The local peak fit
approach gives us a tool for pole figure intensity and pole
figure measurement errors determination. This approach is
described in our previous works [6, 7]. Pole figures measure-
ment errors do not depend on ODF reconstruction methods
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and are not connected with any further computations with
pole figures, so they are of “pure” experimental kind. In
our previous investigations [6, 7] it was established that
the qualitative distribution of PF measurement errors is
similar to the distribution of peak width determination
errors. Thus, the errors of determination of the peak width
play a determining role in the PF measurement errors. This
statement is the starting point for the present work. To check
this conclusion spectra simulations have been done. The
purpose of such simulations is to be convinced that such
behaviour of pole figure errors is a property not only of the
spectrometer SKAT. It can be checked up by means of spectra
simulations because the errors entered into the spectra at the
simulations are not connected with a special measurement
process.

2. Fundamentals

Denoting by dV volume of all crystallites in a sample which
possesses an orientation g within orientation region dg,
and by V the total sample volume, then the orientation
distribution function (ODF) f (g) is defined by [8]

1
8π2

f
(
g
)
dg = dV

(
g
)

g
. (1)

All rotations form the rotation group SO(3). The ODF
is defined on the rotation group SO(3). As can be seen from
definition the ODF is a normalized function:

1
8π2

∫

SO(3)
f
(
g
)
dg = 1. (2)

Let −→y be the unit vector of a direction in the “sample

coordinate system,”
−→
h the unit vector of a direction described

in the “crystal coordinate system” of a single crystal, then
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the crystallographic direction
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The PFs are defined on the surface of a sphere S2 with the
normalization property [8]:
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The connection between the ODF and the PFs is given by the
integral [9]:

P−→
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(−→y ) = 1
2π

∫ 2π
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})
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Equation (5) is the mathematical formulation of the
main problem of quantitative texture analysis [10]. The

notation {−→y , 0} means that a rotation g has corresponding
Euler angles as two spherical ones of vector −→y and the third
Euler angle is 0. (It is assumed that the first angle of rotation
is about Z axis, the second one is about the new position
of Y ′ and the last is about newer position of Z′′.) Vector−→
h can be considered as a properly rotated vector (001) and
vector −→y could be considered as well as properly rotated

vector (001). So the rotation g that connects vectors
−→
h and

−→y could be expressed from the equation {−→h , ϕ̃}
−1
· (001) =

g·{−→y ,
≈
ϕ}

−1

·(001) or g = {−→h , ϕ̃−
≈
ϕ}

−1

·{−→y , 0}. Equation (5)
utilizes the fact that pole figure describes the relative volume

with
−→
h ||−→y and ODF describes the relative volume of grains

having orientation g. So, to obtain the relative volume for

which
−→
h ||−→y one needs to integrate ODF over ϕ, which is

exactly expressed in (5).

The main problem of quantitative texture analysis is to
reconstruct the ODF f(g) from a finite number of measured
PFs P−→

h i
(−→y ). In [9, 10] it was shown that this is an ill-

posed problem because it has no unique solution. To
overcome this problem several methods were developed [11–
18]. The texture component method approximates the ODF
by components of standard distributions [15–18]. In [19, 20]
it was shown that (5) is the totally geodesic Radon transform
on SO(3) and how this mathematical transform can be used
in texture analysis.

In what follows for simulations we used circular normal
distributions satisfying the central limit theorem on the
rotation group SO(3) [18]. These distributions can also
be obtained using approach of the Brownian motion on
the rotation group SO(3) and sphere S2 [21]. In case of
axial texture the expressions for ODF components and PF
components are given by the formulas [22]:

f A
(
g, g0,D,nt

) =
∞∑

l=0

(2l + 1)exp(−l(l + 1)D)Pl
(
cosβ

)
,

(6)

PA−→
h

(−→y ,−→n t
)=
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l=0(2)

(2l+1)exp{−l(l+1)D}Pl(cos θ1)Pl(cos θ2),

(7)

where g0 is the centre of the peak-like texture component,
D is a width parameter connected with dispersion around
the maximum of the texture component (or, e.g., with
the half-width on a half maximum of the peak), Pl(cos θ)
are Legendre polynomials, −→n t is the fibre axis, cosβ =
(g−→n t , go

−→n t), cos θ1 = (
−→
h , g0

−→n t), cos θ2 = (−→y ,−→n t). It is
necessary to note that the described below results very likely
would be quite similar if instead of the Brownian motion
distributions (6), (7) one would use other type of a central
distribution [23].

If the material has the crystal symmetry described by
the point group RB = {rBi , i = 1, . . . ,MB} and a sample
symmetry of the point group RA = {rAi , i = 1, . . . ,MA},
where GB = {gBi , i = 1, . . . ,NB}, GA = {gAi , i = 1, . . . ,NA}
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are their sub-groups of the rotation group SO(3) then the PFs
and the ODFs are conformed to the symmetry conditions:

f
(
g
) = f

(
gBj · g · gAi

)
, j = 1, . . . ,NB, i = 1, . . . ,NA;

Ph
(−→y ) = PrBj h

(
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−→y ), j = 1, . . . ,MB, i = 1, . . . ,MA.

(8)

To satisfy symmetry conditions, (6), (7) should be rewritten
in the form [10]:
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In quantitative texture analysis is typical to estimate the
quality of the an ODF reconstruction on the basis of
recalculated pole figures PM

hi
(−→y j). In [24] “RP values” have

been proposed that compare experimental and recalculated
pole figures (recalculated using the ODF reconstructed by
one of the methods):
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(11)

Here ε is a sensitivity level. The RP value is traditionally used
as a quantitative characterization of the quality of an exper-
imental pole figure. It characterizes the compatibility of the
individual experimental PF values in order to be explained
as a projection (5) of a three-dimensional distribution of
f(g). Since recalculated pole figures are computed using a
ODF reconstructed from experimental data named “PFs”
then such a PF error characterization obviously depends
on the used ODF reconstruction method also. However
it seems more natural to obtain information about pole
figure measurement errors from the experimental data and
to make attempts to have the obtained level of errors
during ODF reconstruction and pole figures recalculation.
In our previous papers [6, 7] we proposed a method to
determine experimental pole figures measurement errors
directly coming from the experiment and being independent
on any ODF reconstruction methods. This approach is
based on the determination of the main parameters of a
diffraction peak by means of the analysis of the peak profile.

To realize the proposed method for the PF measurement
error determination new software was developed. It is worth
to underline that these errors are not connected with any
further computations.

The procedure used for peak processing can be called
local peak fit in our case. We approximate each individual
peak in contrast to the Rietveld texture analysis (RITA) con-
cept widely used for neutron time-of-flight data treatment
[25–27]. The RITA procedure is used, for example, to extract
texture information from time-of-flight neutron spectra
obtained by the diffractometer HIPPO (Los Alamos Neutron
Science Centre) [27, 28]. In this case up to 240 spectra are
simultaneously processed. The RITA concept was applied for
processing data from the NSHR Dubna spectrometer too
[29, 30]. In this case the spectrometer recorded 601 spectra,
and in [29] only the half of the measured spectra (301) was
used for processing including overlapped peaks and regions
with heavy overlapping. In our case the local peak fit can be a
reasonable procedure for data processing namely because of
the huge number of data sets (1368 spectra).

It should be underlined that the local peak fit concept
can be used for processing overlapped peaks typical for low
crystal symmetries.

Texture measurements were carried out on the SKAT
spectrometer for a set of Mg+4.5%Al+1%Zn samples. The
PFs measurement errors were determined by the proposed
method. It turned out that the qualitative behaviour of the
pole figure measurement errors is similar to that of peak
width parameter. To check this conclusion we simulated
the individual spectra and used these spectra for the pole
figure extraction and the pole figure measurement errors
determination. Additionally, we simulated the individual
spectra on the basis of model PFs.

3. Spectra Simulation

For our measurements the local part of the spectrum could
successfully be approximated by a linear background and a
bell-shaped function of the form [31]:

I(t) =

⎧
⎪⎪⎪⎪⎪⎨
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A0exp

(

− (t − t0)2

2σ2
1

)

, t ≤ t0,

A0exp

(

− (t − t0)2

2σ2
2

)

, t > t0.

(12)

Here A0 describes the peak amplitude, t0 is for the peak
position and σ1, σ2 describe the peak half-width from the left
and right side of the peak maximum A0, respectively. It is
necessary to notice that the exact relationship between half-
width at half maximum (HWHM) and the standard devia-
tion of the normal distribution is the following: HWHM =√

2ln2σ ≈ 1.178σ . We consider the standard deviations σ1, σ2

as “peak half-width” from the left and right side of the peak
maximum respectively. Such assumption will not influence
on the main conclusions drawn on the basis of simulation.
For shortness we name σ1, σ2 as peak half-width.

The input values for the spectra simulation were the
experimental pole figure intensity P−→

h i
(−→y j), the peak position
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ti0 and the peak widths σi1, σi2 where ithe peaks numbers. The
peak amplitude was obtained by the expression [6, 7]:

A
ij
0 =

2√
2π

P−→
h i

(
yj
)

σi1 + σi2
. (13)

The values for σi1, σi2 were taken as the average over
the half-width values σi1 j , σ

i
2 j determined from the j = 1,

N = 1368 experimental spectra: σi1 = (1/N)
∑N

j=1σ
i
1 j , σ

i
2 =

(1/N)
∑N

j=1σ
i
2 j . So we can consider σi1, σi2 as “unknown”

input values.
Then our simulation was done in accordance to (12).

The PFs are measured on the SKAT spectrometer using 19
detectors that register the neutron flux simultaneously for
one sample position. Then the sample is rotated by 5-degree
steps. 19 ∗ 72 = 1368 spectra are measured in total that
corresponds to a 5 by 5 degree grid on the complete PF. That
is why 1368 individual spectra were simulated for the Mg
sample. Such a procedure was carried out for the several PFs
that correspond to non-overlapped peaks. The background
of the simulated spectra was approximated by the linear
function:

Bkg = kt + b. (14)

In Figure 1 a part of the simulated individual spectrum
(a) as well as a part of the corresponding experimental
individual spectrum (b) is presented. The intensity registered
by this detector corresponds to the centre of the pole figures.
This figure illustrates the quality of simulation. Then the
simulation of spectra with errors (experimental “noise”) was
carried out. For that the following formula was used:

Ĩ(t) = I(t)(1 + τξ), (15)

where ξ is a random value uniformly distributed in [−1; 1],
τ is a constant value from 0.01 up to 0.1. We used τ =
0.1 for all simulated examples presented in this paper.
Figure 2 shows the example of diffraction the (1011) peak
simulated (a) without experimental errors and (b) with
simulated errors. Pole figure errors were also simulated in
[32]. However, we simulate the errors (noise) directly in
the spectra because actually the spectra contain the primary
experimental information.

Then we repeated the afore-described procedure to
simulate a set of spectra on the basis of model PFs. The model
PFs were calculated using circular normal distributions. As
far as our sample has an axial texture with the symmetry
axis [001] we used (7) to simulate PFs. The simulated
PFs are presented in Figure 7. They were derived for one
texture component with g0 = {0◦, 0◦, 0◦}, D = 0.0823
and no random background (phon). The width parameter
D corresponds to the real half width at half maximum
HWHM ≈ 27.19◦ of the texture component. The HWHM-
value for the Gaussian texture component with a normal
distribution (6) was obtained numerically. Table 1 presents
the connection between parameter D and HWHM of a
normal texture component for some practical cases. The
parameter l up to L = 50 was used to simulate pole figures
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Figure 1: The dependence of the number of scattered neutrons
on the number of channels of the time analyzer: (a) a part of the
simulated individual spectrum, (b) a part of the corresponding
experimental individual spectrum. The background is not sub-
tracted. The channel width of the time analyzer is 64 μs. The
number of reactor pulses during the measuring time for one
individual spectrum was about 5700. It corresponds to ∼19 min of
measuring time for one individual spectrum.

according to (7). For the Mg sample we took hexagonal
crystal symmetry into account in (7) supposing triclinic
sample symmetry. It is needed to underline once more here
that we consider only the pole figure measurement errors
connected with the experimental procedure. That is why we
do not investigate the influence of series truncation errors
neglible for L = 50 in our case.

4. Results and Discussion

The simulated set of 1368 spectra for the Mg sample was
processed using a spectra fit procedure described in what
follows taking into account the peak shape given by (12).
On the given part of the spectrum we found the best
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Table 1: Connection between the parameter D and HWHM of a texture component (6) for some cases.

HWHM 0.5◦ 1◦ 3◦ 5◦ 10◦ 15◦ 20◦ 27.19◦

D 3× 10−5 1× 10−4 9× 10−4 0.0027 0.0110 0.0248 0.0443 0.0823

HWHM 30◦ 40◦ 50◦ 60◦ 65◦ 70◦ 80◦ 90◦

D 0.1005 0.1811 0.2879 0.4237 0.5034 0.5922 0.7983 1.0488
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Figure 2: The dependence of the number of scattered neutrons on
the number of channels of the time analyzer: (10-11) diffraction
peak simulated (a) without experimental errors; (b) with errors, τ =
0.1.

approximation of the experimental data (intensity values in
time-of-flight channels) by the calculated function which
is the sum of the model peak components and linear
background. We use the following approach for determining
pole figure values and their errors in case of small peaks.
If less than 16 points (y-coordinate of each point is counts
of neutrons in a time channel) in a spectrum within the
region of a specific peak not lying above background value,
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Figure 3: The dependence of the number of scattered neutrons on
the channel number of the time analyzer. The picture illustrates
the application of the Savitzky-Golay procedure for smoothing
individual peaks with different signal-to-background ratios (by the
example of the (10-11) peak): (a) smoothing of a poor reflection
(signal-to-background ratio <10), (b) smoothing of a good reflec-
tion (signal-to-background ratio ∼20). Original, smoothed and the
difference spectra are shown.
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Figure 4: (a) Pole figures (0002). The intensities are given in mrd (multiples of random distribution). (b) The relative pole figure errors. (c)
The errors of peak amplitude ΔA0. (d) The errors of peak half-width Δσ2
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Figure 6: (a) Pole figures (10-11). The intensities are given in mrd (multiples of random distribution). (b) The relative pole figure errors.
(c) The errors of peak amplitude ΔA0. (d) The errors of peak half-width Δσ2

1 .

we assume that no peak is present and assign zero to pole
intensity and 100% to a corresponding relative error. The
typical (for a powder sample) number of points lying in the
peak region above the background value is 30.

The fitting procedure was done by minimization of the
module of the difference between the experimental data I and
values of the approximating function I(P) (12):

R = I − I(P), (16)

where P is the set of fit parameters (t0,A0, σ2
1 , σ2

2 ) on
which the minimization was carried out. The direct search
complex algorithm [33, 34] was used for the minimization
problem. The minimization routine applies the complex
method to determine the minimum of a function of several
variables. The method is based on function comparison; no
smoothness is assumed. The errors of fitted parameters were
determined in accordance with the generalized linear least
squares method described in [35, Section 15.4, pages 665–
667].

During the spectra processing for each of the 1368 = 19∗
72 spectra and for each specific peak four parameters with
uncertainties ΔA0, Δt0, Δσ2

1 , Δσ2
2 were determined. So the

pole figures themselves, the measurement errors of PFs and
the peak half-width errors on the pole spheres were obtained.
At this we used the formulas:
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√
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(
σ
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2

)
, (17)

Min 0 (90, 0)
Max 6.22 (0, 0)

1
2
3
4
5

Min 0 (0, 0)
Max 2.05 (90, 0)

0.1
0.4
0.7
1
1.3
1.6

Min 0.18 (0, 0)
Max 1.24 (65, 0)

Min 0 (0, 0)
Max 1.72 (90, 0)

0.2
0.3
0.4
0.5
0.6
0.7

0.1
0.3
0.5
0.7
0.9
1.1

Figure 7: The model pole figures simulated by means of the circular
normal distribution.
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The Pfs were obtained using a preliminary spectra
smoothing, that is, the spectra were smoothed by the
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Figure 8: (a) The pole figures (0002) extracted from spectra simulated on the basis of the model PFs. The intensities are given in mrd
(multiples of random distribution). (b) The relative pole figure errors. (c) The errors of peak amplitude ΔA0. (d) The errors of peak half-
width Δσ2
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Figure 9: (a) The pole figures (10-10) extracted from spectra simulated on the basis of the model PFs. The intensities are given in mrd
(multiples of random distribution). (b) The relative pole figure errors. (c) The errors of peak amplitude ΔA0. (d) The errors of peak half-
width Δσ2

1 .

Savitzky-Golay procedure [35] before the fit procedure
described earlier . The smoothing was done by the specific
moving average over six values. Details of the smoothing
procedure are given in [35, Section 14.8]. Figure 3 illustrates
the application of the smoothing procedure for a “good” and
a “bad” peak. We consider a peak as a good one if the signal-
to-background ratio is about or larger than 10.

In Figures 4–6 the experimental PFs are compared with
those extracted from spectra simulated without and with
simulated errors. The experimental pole figures errors were
determined according to (18). The peak amplitude errors
ΔA0 and the peak half-width determination errors Δσ2

1 are
compared with those obtained from simulated spectra.

The experimental PFs presented in Figures 4(a)–6(a)
were extracted from smoothed by the Savitzky-Golay pro-
cedure spectra. The presented pole figures and the errors
have been smoothed according to the smoothing algorithm
[36]. The smoothing of pole figures leads to an increase
of the width-parameter D which describes the dispersion
around the maximum of the normal distribution (7). Such
smoothing allows paying more attention to the general
behaviour of pole figures or functions on a sphere instead
of fine details. It is appeared to be that the higher PF
values the smaller error and on the contrary the smaller
PF values the lager errors. This is in accordance with the
knowledge of common spectrum analysis determining the
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Figure 10: (a) The pole figures (10-11) extracted from spectra simulated on the basis of model PFs. The intensities are given in mrd
(multiples of random distribution). (b) The relative pole figure errors. (c) The errors of peak amplitude ΔA0. (d) The errors of peak half-
width Δσ2

1 .

parameters of peak-like distribution [37]. One can see from
Figures 4–6 that the qualitative distributions of pole figures
errors are very similar to the distributions of peak half-width
determination errors. The character of the peak amplitude
error distributions is different from the distributions of pole
figure errors. That is true for the experimental PFs and
for PFs simulated without “noise” or with “noise” as well.
Such results we obtained for the (0002), (1010), (1011) PFs.
The statement is also confirmed by the spectra simulation
carried out on the basis of simulated PFs (see Figures 8–10).
So the conclusion about the main role of peak half-width
determination error is drawn on the basis of the comparison
of the errors distributions. At a first sight it seems that the
conclusion concerning the dependence of the pole figure
errors on the peak width errors directly follows from (17),
(18) and in this case our conclusion is trivial and does
not need experimental/empirical verification. However, (17),
(18) are true only if (12) describing the peak form is adequate
for our spectra. If a peak needs to be described using another
form, then (17) and (18) are not necessary to be valid
or vice versa. If after the treatment of our experimental
and simulated spectra we were able to confirm our general
conclusion then this is also a confirmation that the formula
for the peak shape is appropriate.

5. Summary

The analysis of simulated spectra allowed us to confirm
the main influence of the peak width determination error
on the pole figure error. This conclusion is drawn on the
basis of comparison of errors distributions. So we can state
that a decrease of the pole figure errors can be reached by
reducing of the peak width errors. One way to decrease
the peak width error is to enlarge the peak width, but in
this case the experimental resolution may be deteriorated.

However, it can be done if the resolution in the diffraction
spectrum is not so important (e.g., for texture investigations
of samples with a sufficient number of isolated diffraction
peaks). The deterioration of the resolution may increase
the PF approximation error. However, in case of poorer
collimation the statistical errors connected with the finite
number of grains in a sample and with the finite number of
counted neutrons will decrease. This will happen because the
lower the collimation of the neutron beam the more intensity
of scattered neutrons (neutron statistics) and the greater
the number of grains in reflecting position (orientation
statistics) we will get. So the question about the behaviour of
the total PF error with deterioration of collimation is under
consideration at present. Similar results can be expected
for data collected with X-ray measurements using position
sensitive detectors.
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