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of the “fused” confusion matrix, i.e. the CM pertinent to the final decision on the target class. Two fusion rules are considered: a
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1. Introduction

The ability to quickly and reliably recognize non cooperative
targets is of primary importance for surveillance operations
in Homeland Security (HS) applications. The development
of efficient fusion strategies and the improvements in
the design of more reliable sensors have increased the
research interest in the classification techniques in many
fields. In particular, automatic surveillance systems based on
imaging sensors are gaining significant interest, as proved
by recent research work [1-3] addressed to improve the
quality of image-based surveillance systems. The recognition
techniques can include approaches based either on the
human interpretation of the data provided by a sensor
system or on automatic methods. The Automatic Target
Classification (ATC) techniques can use data coming from
sensors of different nature, such as infrared, electro-optic
cameras, and radar systems. As described in [4], the process
of target recognition can be conceptualized as composed
by five levels or subprocesses: the detection, that is, the
process of distinguishing the target from thermal noise; the

discrimination, that is, the capability to extract potential
targets from surrounding clutter; the preclassification, that
is, a sort of prescreen in order to exclude targets that are
not of interest from further processing; the classification, that
is, the process during which the targets are characterized as
belonging to a specific class according to some particular
features; and, finally, the identification, that is, a more
sophisticated process which may refer to the individuation
of the target cooperativeness or to the extrapolation of more
specific features, for example, in a maritime environment the
type or the name of a ship previously associated to a naval
class. This work assumes that the first three processes [5]
have occurred and is only concerned with the classification
process. In particular, we investigate how data coming from
sensors of different nature can be combined to improve
the classification task. In ATC the classification task can
be accomplished using several approaches. A model-based
technique uses a model of the target, obtained, for example,
by a Computer-Aided Design (CAD) or an Electro-Magnetic
(EM) simulation [6], to compare the simulated models with
the signature of the target under test. The computational



load of this methodology can be very high, especially when
more than one sensor are used. Another methodology
can consist of collecting many real versions of the target
signature and of comparing them with the signature of
the current target under test, but in this case a very
large database is required and if the target (or observing
environment) changes significantly the classification process
may be unsuccessful.

In this work a classification algorithm is developed,
which uses a different approach, where the information on
the target class is provided by imaging sensors of different
nature and it is expressed by means of a confusion matrix
(CM). This approach allows us to overcome the difficulties
related to the high computational load of the methodologies
described above and to insert the classification task in the
analysis and simulation of a large and complex system.
The CM is analytically computed for each imaging sensor
and it models the performance of the sensor during the
classification process. The entries of this matrix are the
conditional error probabilities in the classification and
the conditional correct classification probabilities. These
probabilities amount to the target class likelihood functions
and are used to make the decision on the target class by
each sensor. The sensor CM is analytically computed as
a function of its sensitivity features, its resolution, and
using a database of prestored reference images. Then a final
decision on the class is made, using a suitable fusion rule in
order to combine the decisions coming from the different
sensors. The overall performance of the classification process
is evaluated by means of the “fused” confusion matrix, that
is, the CM pertinent to the final decision on the target
class. Two fusion rules are considered to combine the class
information coming from the different sensors: a majority
voting (MV) rule and a maximum likelihood (ML) rule. The
ultimate purpose of this fusion process is to combine the
outputs of the different imaging sensors to obtain an accurate
and reliable estimate of the target class. This analytical
approach is then applied to a case study, where three imaging
sensors located on a generic platform, performing in coastal
surveillance, are considered: a video camera, an infrared (IR)
camera, and a spotlight Synthetic Aperture Radar (SAR). The
final information on the class, considered by means of the
“fused” CM, could then be exploited by the system where the
sensors are located to perform other surveillance operations,
such as the evaluation of the threat level of a noncooperative
target.

In [7], different levels of abstraction in the fusion of data
coming from different imaging sensors are described: the
signal-level fusion is the combination of signals from differ-
ent sensors, performed before the production of images; the
pixel-level fusion consists of merging different digital images;
and the feature-level fusion extracts specific features from
different image and combines them. The approach developed
in this work, using the CM to model the classification
capability of the imaging sensor, refers to a higher level of
abstraction. A similar approach, where the CM is used to
model the classification capability of the sensor, is also used
in [8], but there the classification process is used to support
the data association and to improve the tracking, especially
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in presence of association uncertainty in kinematic mea-
surements. In the literature many applications are proposed
where radar images are combined with images from different
kind of sensors [7, 9-11] or where heterogeneous data sets
coming from dissimilar imaging sensors are combined at an
information fusion level [12]. In [13] we have described the
classification algorithm based on the CM applied to visible
and infrared images. In the present work three sensors are
considered instead of two. In particular, we have considered
electromagnetic simulated images from a spotlight SAR, in
addition to those from the visible camera and from the IR
sensor. The results of a similar case study have already been
presented in [14], in relation to three sensors. In the work
presented herein we present a more complete and methodical
description of the algorithm, we show more details about
the numerical case study considered and the figures of the
simulated images, and we report in the appendix the entire
mathematical details of the analytical computation of the
CM.

The main contribution of the proposed classification
algorithm is the development of a methodology that allows
us to emulate and incorporate the classification process
in the study and simulation of a complex multisensor
system, without increasing the computational load of the
overall simulation. In fact, in [15] the proposed algorithm
has been inserted into the simulation of a multisensor
system for coastal border surveillance, without increasing the
computational load of the whole simulator.

The paper is organized as follows. Section 2 describes the
classification algorithm, based on the analytical computation
of the CM. The fusion of the decisions on the target
class coming from different imaging sensors is presented
in Section 3. Two decision rules are considered, that is, a
majority voting (MV) rule and a maximum likelihood (ML)
rule. The performance of the decision rule is described in
Section 4. In Section 5 a case study is illustrated, where
the developed algorithm is applied to three imaging sensors
located on a platform performing in a maritime surveillance
scenario: a video camera, an IR camera, and a spotlight
SAR. The numerical results for this case study are presented.
Finally, in Section 6 some conclusions are drawn. The
analytical details of the computation of the CM are reported
in the appendix.

2. The Classification Algorithm

The generic entry of the CM of a classifier is the probability
that a target belonging to the class i is misclassified as
belonging to class j:

CEJI-() = Pr{the kth sensor decides for H; when H; is true}

= Pr{é/i\k =il Hi},
(1)
where H; represents the hypothesis that the target belongs

to class 7 and {dAk = j} represents the event {the kth sensor
decides for H;}. Thus the ith row of the CM represents
the event {the true class of the target is i} and the class
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likelihood function for the sensor output j is the jth column
of C [8]. The off-diagonal elements of the CM represent the
conditional error probability during the classification and the
diagonal elements are the conditional correct classification
probabilities for a given sensor, under the hypothesis H;:

(k)
Pecin,
= Pr{correct classification for the kth sensor | H;} (2)

= Pr{the kth sensor decides for H; when H; is true}.

Then the correct classification probability for the kth sensor
is

M
P® = 3Pl - PriH}, (3)
i=1

where M is the number of hypotheses (i.e., the number of
classes considered), the term P(Ckc)‘ p, is the conditional correct

classification probability given by the diagonal element c,(,k Vof
the CM, and Pr{H;} is the probability that the i-th hypothesis
is true. The error probability conditioned to the ith class, for
the kth sensor, is

M
(k) (k)
Prprig, = 2. cij - (4)
-1

The entries of the CM are used to model the performance
of each sensor during the classification and to make the
decision on the target class. This means that a target detected
by the system is declared as belonging to class j with a

probability equal to plg}-() derived from the elements of the
CM and this probability is used by the sensor as a threshold
for the decision on the class. More specifically, in order to
associate a class to an incoming target, a random variable
uniformly distributed in the interval [0, 1] is generated and
it is compared with the threshold given by the entries of the
sensor CM:
0<u<c® then the kth sensor decides for Hj,

il
n
ZCEJIF) <u< Zc,g]}-() then the kth sensor decides for H,
j=1

(for 1 <n < M).
(5)

This is done to simulate the classification event without
generating the data. The simulation of the classification event
based on the elements of the CM is shown in Figure 1.

In the classification approach described here, the entries
of the CM are computed in an approximated closed-form
by means of an analytical evaluation, whose details are
described in the appendix. The parameters required for the
analytical evaluation for each sensor are: (i) the signal-to-
noise ratio (SNR) at the output of the sensor; (ii) the sensor
resolution; (iii) a set of reference images stored in a database;

and (iv) the cross-correlation between the images of the
database. The CM can be expressed as the following function:

C=[c;] = f(SNR,Ny, Ny, M), (6)

where SNR is the signal-to-noise ratio, Ny and Nyrepresent
the sensor resolution in terms of number of pixels on the
horizontal and vertical planes, respectively, and M is the
dimension of the reference database. In order to simplify the
analysis, the following assumptions are made:

(1) the detection of the target has already occurred (e.g.,
it has been performed by a radar system);

(2) the image database for each sensor is exhaustive, that
is, the possibility that the image of the target under
test is not contained in the database is not considered;

(3) the reference images of each database do not contain
noise, but this is added during the analytical compu-
tation of the CM;

(4) the noise added on each image is Gaussian and
independent from pixel to pixel.

As described in more details in the appendix, the compu-
tation of the entries of the CM in the ith row is derived
from the computation of the classification error probability
for the ith class. The error probability is computed in an
incremental way, by defining the elementary error event in
the space composed by all the possible hypotheses (Hy, ...,
Hyr) and by adding the contribution of this event to the
overall error probability. The partial contributions for the
ith class are assigned to the off-diagonal elements cf]]-(). The
diagonal elements can be computed as

M

(k) (k) (k)

i =1—Ppppiy, = 1 - Z Cij - (7)
=it

In the case considered here, the dimension of the reference
database is equal to the number of classes considered, since
the hypothesis of exhaustive database is made. The images of
the reference database for each sensor can be derived from a
CAD model of the target. The algorithm for the computation
of the CM is schematically represented in Figure 2. An
example of database construction is mentioned in the case
study of Section 5 and described in [13].

3. Fusion of the Decisions on Target Class

The purpose of the fusion process is to combine the outputs

of all the imaging sensors in the system to obtain an accurate

and reliable estimate of the target class. As stated before, the

performance of each imaging sensor during the classification

process is modelled by means of its confusion matrix C* =
(k)

[Ci j 1.

The fusion process is described in Figure 3 in the
case of K imaging sensors. For simplicity, let us consider
K = 3 sensors. For each imaging sensor, the CM matrix
is analytically computed as described in Section 2 and its
entries are used to make a local decision on the class, that is,



d, d», and ds. Then these local decisions are combined using
a suitable decision rule. Thus the observed data is a three-
dimensional vector d = (di, d», d3) whose elements {d} are
discrete random variables (r.v.) that take values in the set I =
{1,2,..., M}, where M is the number of classes considered,
and represent the decision on the target class coming from
each imaging sensor. Moreover, we assume that the elements
of d are mutually independent, that is, the decisions made by
different sensors are independent.

Let us consider the set Iy = {d™ m = 1--.-MK},
that is, the set of all the observable sequences of K = 3
elements, that can be constructed with the M elements of the
set Is. The dimension of I is M>. Our purpose is to map
the three-dimensional vectors d into a scalar value belonging
to the set Is and representing the final estimated class of the
target, that is, dy in Figure 3. This means that there are M
possible hypotheses {Hj, Ha,. .., Hy}. We assume that these
hypotheses have the same a priori probability:

1 ;

Pr{H;} = W fori=1,...,M. (8)

We indicate with g(d) the fusion rule, that is, the function

that maps the observed vector d into a final decision in favour
of one of the M hypotheses:

d = g(d), )

where {df = j} represents the event (we decide in favour
of H;). This approach, based on the fusion of the decisions
made by each sensor through the CM entries, allows us
to manage the combination of information coming from
very dissimilar imaging sensors and to compensate for the
sensor parameter differences, such as the fields of view, the
resolutions, and the noise features. The overall performance
of the fusion process can be expressed by means of a “fused”
confusion matrix, that is, the matrix pertinent to the final
decision on the target class dy. Two fusion strategies are
investigated and compared in this work: one based on the
majority voting decision rule and the other based on the
maximum likelihood decision rule.

3.1. Majority Voting Decision Rule (MV). The majority
voting decision rule consists in choosing for target class that
occurs more times in the observed sequences. In the case of
the three-dimensional sequences d = (d;, d,, d3) considered
here, the MV rule can be analytically expressed as follow

dp=q ifq:{Ly(d) =2}
= {[Ly@ =2] u [L4(a) = 3]},

where Ly(dy,d,,ds) is the number of times the value g
appears in the sequence d = (di, d,, d3), that is, the number
of occurrences of the gth class in the observed sequence.
When Ly(d) = 1 for g = 1,2, and 3, that is, {(d; #d2) N
(di #d3) N (dy #d3)}, the MV rule is not applicable. In
these cases, we choose the class in favour of which the
“more reliable sensor” has decided. Note that the more
reliable sensor is the sensor for which the conditional correct

(10)
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classification probability, given by the diagonal elements of
the CM, is higher. For instance, if the sequence diBl = (1,2,4)
is observed, the final class will be dy = g for which Pr{d; =
q | Hy} is maximum, for k = 1, 2, 3. In this example we have:
dy = 1,d, = 2,and d3 = 4; then we consider the diagonal
elements c(lll) for the first sensor, cg? for the second sensor
and cﬁ) for the third one and we decide
1 if max(cgll),cg),cﬁ)) =Y,
dp =42 if max(cill),cgzz),cﬁ)) = cg), (11)

4 if max(cgll),cgzz),cﬁ)) = Cﬁ)-

The observable three-dimensional vectors d”! are all the
possible sequences of K = 3 objects d = (d;,d,,d3) that
can be made with the M = 4 elements of the previously
defined set I;. Table 1 shows all the 64 observable sequences.
According to the decision rule described by (10), we can
construct a fusion table for MV decision rule, as shown
in Table 2. The last column of the table contains the final
decision on the target class made according to the MV rule.
Using this table, we can construct the “fused” matrix F, after
the fusion of the information on the target class:

F=|fi] (12)

The entries of this matrix are

fi=Prid;=jIH}= Y Pr(d=d" | H), (13)

mEDj

where D; is the decision zone of Hj, that is, the set of m’s for
which we decide in favour of H;. It is defined as

D; = {m:g(d™) = j}. (14)

The elements of the sum Pr(d = d!"! | H;) can be computed
as:

Pr(d=d" | H;)
=Pr(dy=d" | H) -Pr(dy=d™ | H) (15
Pr(ds = d™ | Hy)

that represents the product of the entries of the CMs of the
three sensors:

Pl'(d | H,') = Pr{d1 = j,dz = k,d3 =n | Hi}
1. @ 3 (16)
=Cij Gkt Cin
with j,k,n,i=1,...,4.

Note that the sum with respect to j of the elements in
(13), that is, the sum of the elements of each row of the fused
CM, is equal to 1 by construction. In fact, the combination
of elementary events (i.e., single-sensor decision events)
belonging to three distinct probability sets, where probability
sums to 1, will provide a set of probabilities whose sum will
be again equal to 1.
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TaBLE 1: Observable sequences
111 121 131 141
112 122 132 142
113 123 133 143
114 124 134 144
211 221 131 141
212 222 232 242
213 223 233 243
214 224 234 244
311 321 331 341
312 322 332 342
313 323 333 343
314 324 334 344
411 421 431 441
412 422 432 442
413 423 433 443
414 424 434 444
TaBLE 2: Fusion table for the MV rule.
d # occurrences of 1 # occurrences of 2 # occurrences of 3 # occurrences of 4 dy
di 111 3 0 0 0 1
d 112 2 1 0 0 1
di! 113 2 0 1 0 1
d 114 2 0 0 1 1
dsl 124 1 1 0 1 ¢
dledl 444 0 0 0 3 4

* Choose class coming from the more reliable sensor.

pu)
Class 1
Class 2
Class 3 Class 4
!_ u=U(0,1)
0 Ci Ci+Co Ci+Cp+Cp

Ci+Cip+Ciz+Ciyy=1

Figure 1: Simulation of the classification event based on the
elements of the CM.

3.2. Maximum Likelihood Decision Rule. In many applica-
tions, the most common approach utilized to distinguish
between two or more hypotheses is based on the Bayes
rule, that assume a priori knowledge of the probabilities of
the hypotheses under test. The Bayes rule is based on the
minimization of the expectation of the cost function Cj;,
defined as the cost assigned to the decision to choose in
favour of Hjwhen H; is true [16]. The analytical formulation

of the Bayesian approach applied to the decision on the target
class is

df=q:q=arg max{Pr(Hj | d)} forj=1,...,M.
] (17)

The rule expressed by (17) is called M-ary maximum a
posteriori probability (MAP) decision rule, since Pr(H; | d) is
the probability that the hypothesis H; is the true one after the
observation of the data d, thus it is an a posteriori probability.
As stated before, this decision rule assumes prior knowledge
of the likelihoods of the hypotheses.

According to the Bayes theorem, the a posteriori proba-
bility Pr(H; | d) can be expressed as

p(d 1 Hy) - Pr(H;)
p(d) ’

where Pr(H;) is the prior probability of the jth hypothesis
and p(d) is the probability mass function (pmf) of the
discrete data d. Since p(d) is a positive function that
does not depend on the hypothesis, it does not affect the
maximization of Pr(H; | d). When the assumption of equal

Pr(H; | d) = (18)
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Set sensor’s parameters

Resolution:
- number of horizontal pixels
- number of vertical pixels

Imaging sensor 2 |—o K

: / Sensor’s noise features
Imaging sensor K]

Imaging sensor 1

Compute
confusion
matrix
Scenario Atr]r;(:)sgillere (analytically)
[
[
Compute
signal-to-noise ratio
Load target geometry Construct the
(CAD) image database
Ficure 2: Computation of the CM.
Imaging Imaging Imaging
sensor 1 sensor 2 sensor K

!

Analytical computation

Analytical computation
of confusion matrix

Analytical computation
of confusion matrix

of confusion matrix

c l c@ c(K)
(1) 2 (k)
[Cij ] [Cij | [Cij ]
T { H H [ : T
1] 2 3 14 o2 1 3 |4 i 2 1 3 14
L1 /Y 1 ! 1y
dy d) dg

Decision rule
d=(d,da,- - ,dk)
df =g(d)

!

df =7 E=1[f;]

FIGURE 3: Fusion of the decision on the target class.
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p(di| Hy)
~ A
e Cil) AN
{ ! )
DN PR ()
- 612 €13 C( )
p(d2| Hy)
pldy = 1,dy = 2,d3 = 4|Hy) =
m @ 6
511) : Clz) : L§4)
p(ds| Hy)

d;

FiGURE 4: Example of the pmlf, for the sequence d®! = (1,2,4) when hypothesis H1 is true.

prior probability of the hypotheses can be done, the decision
rule of (17) can be expressed as

df:q:qzargmaxp(lej) for j,q=1,...,M, j#q.
j
(19)

This is called M-ary maximum likelihood (ML) decision
rule, since p(d | H;) is the likelihood function of the jth
hypothesis. Note that the decision rule (19) provides the
minimum error probability only when the prior probabilities
Pr(H,) are all equal.

According to the ML rule, in order to decide the final class
of the target using the observed data sequences d, we have to
choose for the hypothesis H; that maximizes the following
probability mass functions:

p(d =dim | Hq), form = 1,..., MK,
(20)
forg=1,...,M,

where

p(d=d" | Hy)
=p(di=d™ 1 Hy)  p(dr=d" | H;) (1)

- p(ds =d™ | Hy).

The elements of the product in (21) are the entries of the
confusion matrices C'V), C?), and C®, respectively. The joint
conditional probability mass function of d can be expressed
as follows:

p(d 1 Hy) =Pri{di = idy = j,ds = n| Hy|
(22)
m . @

. )L (3)
qi " Cqj €

=c -
This is shown in Figure 4 for the sequence d'®/ = (1,2,4).
According to the ML decision rule described above, we can
derive a fusion table for all the observable sequences, as
shown in Table 3. The last column of the table contains the
final decision on the target class made according to (19).
Similarly to the case of the MV rule, from this table we can
evaluate the fused confusion matrix F, by using (13) and
(14).

4. Performance Analysis

The performance of the decision rule can be expressed in
terms of closeness of the fused confusion matrix F to the
identity matrix, which represents the ideal case. In fact, an
ideal classification process is characterized by probabilities of
error (off-diagonal elements of the CM) equal to zero and



by probabilities of correct classification (diagonal elements)
equal to one, that is,

F =1, (23)

where I is the identity matrix of order M. The conditional
correct classification probabilities for the fused matrix F can
be expressed from its diagonal elements, similarly to those of
the CMs of the K sensors, C, C? ... CX):

Pccin; = Pricorrect classification | H;} = f;i. (24)

The probability of correct classification is then

M

M
1
Pec = > Pegim; - PriH;} = M > Peci,  (25)
i=1 i=1

where in the last part of the equality, we have used
the assumption (8) of equal a priori probability for the
hypotheses. By replacing (24) in (25), we obtain

M M
1 1 tr(F)

Pcc=— > Poci, = — - D fi = , o (206)

M = M 3 M

where we have considered that the sum of the diagonal
elements represents the trace of matrix F. To evaluate
the performance of the fusion process, we consider the
probability of correct classification expressed in (26) and
we select as the best performing matrix the one for which
the probability of correct classification, and then the ratio
tr(F)/M, is the nearest to 1, that is, its maximum value. This
occurs when the trace of matrix F at the numerator is close to
M, which is the trace of the identity matrix. From this point
of view, the correct classification probability is an indication
of the closeness of matrix F to the identity I.

The same performance criterion can be explained by
considering an alternative interpretation. In order to evaluate
the closeness of the fused matrix F to the identity, we can
define the following quality factor [14]:

_1- tr{ly —F} tr(Iy) — tr(F)

Q=1 - tr(Tn) -
_tu(F)  u(F)
Ttr(ly) T M

The parameter Q belongs to the interval [0, 1] and it is close
to 1 when the fused matrix F is very close to identity and it
is close to 0 when F is significantly different from identity. As
we can see by comparing (26) and (27), the parameter Q is
equivalent to the probability of correct classification. Thus,
the best fused matrix is the one for which this quality factor
is nearest to 1, that is also the maximum value of the correct
classification probability. The difference tr(Iys) — tr(F) at the
numerator of the first side of expression (27) represents the
sum of the off-diagonal elements of F:

M M

tr(Iy) — tr(F) = M — tr(F) = > > fii. (28)
j=li=1
it
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This property is due to the fact that the sum of all the
elements of the matrix F is equal to M, that is due to the fact
that the sum of the elements in each row of the CM is equal
to 1.

5. Numerical Case Study

In this section a case study is presented, where the developed
algorithm is applied to three imaging sensors located on a
generic air platform: a video camera, an infrared camera
(IR), and a spotlight Synthetic Aperture Radar (SAR). A
numerical example, concerning the classification process
performed by the three imaging sensors, is provided, for
four classes of naval targets. This case study allowed us
to include and test the algorithm proposed in this work
inside the simulation of a complex multisensor system, which
performs its operations in a realistic scenario for maritime
border surveillance. The considered system is notional. The
numerical values considered in this example reflect a typical
maritime situation, with standard environmental conditions.

5.1. The System and the Scenario. The background of this
case study is represented by an integrated multisensor system
for the coastal surveillance. The focus herein is on the
classification process, in particular on the fusion of the
target class data coming from different imaging sensors.
This is a part of a research activity whose final goal is
the development of a computer simulator that emulates
the main functions of the integrated multisensor system
for coastal surveillance (see [15, 17, 18]). The integrated
multisensor system is composed of two platforms of multiple
sensors: a land-based platform, located on the coast, and
an air platform, moving in front of the coast. The land
platform is equipped with a Vessel Traffic Service (VTS)
radar, an infrared camera (IR), and a station belonging to
an Automatic Identification System (AIS) that provides an
information on the target cooperativeness. The air platform
carries an Airborne Early Warning Radar (AEWR), which
can operate in a spotlight SAR mode, a video camera, and a
second IR camera. The mission of the system is the detection,
the tracking, the identification and the classification of
multiple targets that enter a sea region, the assessment of
their threat level and the selection of a suitable intervention
on them. The threat evaluation and the selection of the
intervention are performed by a command and control
centre (C?), which coordinates all the operations of the
multisensor system. The threat evaluation logic is based on
a deterministic comparison between the target kinematical
parameters detected by the two radars and some tolerance
thresholds on the speed, on the distance between the target
and the coast, and on the direction. This logic also takes
into account for the class information provided by the
imaging sensors inside the system. The three imaging sensors
of the air platform are considered herein. After that the
decision on the target class is made by each imaging sensor,
according to the algorithm described in Section 2, the fusion
of the decisions is performed as described in Section 3. The
information on the class is generally not very reliable for long
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TaBLE 3: Fusion table for the ML rule.
d p(d| Hy) p(d | Hy) p(d | H;) p(d | Hy) ds
ar i S SR e SR :
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TaBLE 4: CM of the video camera, CV).
f)utput - Dinghy Motor boat Fishing boat Oil tanker
nput |
Dinghy 0.9209 0.0648 0.0142 0.0000
Motor boat 0.0648 0.8490 0.0862 0.0000
Fishing boat 0.0142 0.0862 0.8996 0.0000
Oil tanker 0.0000 0.0000 0.0000 1.0000

distance from the air platform, when only the spotlight SAR
is active, and it becomes more reliable when the target is
closer to the platform, when also the video camera and IR
camera are active.

According to the evaluation logic a Threat Level is
assigned to the non-cooperative targets in the set (TLO, TL1,
TL2), where TLO indicates a neutral target, TL1 a suspect
target, and TL2 a threat target. The intervention is only
selected for the targets assessed as threat and it consists in
the allocation of a system resource in order to inspect the
nature of the target. Two types of resources are considered
here: a helicopter and a patrol boat; both the resources are
used only for the target inspection [15, 18]. The architecture
of the surveillance multisensor system we refer to is shown
in Figure 5. The simulated scenario is composed of: the
geographical area considered, the position of the sensors in
this area, the multiple naval targets that enter the scene, and
the resources of the system. Four classes of naval targets are
considered in this scenario.

(i) Class 1: high speed dinghy;
(i1) Class 2: motor boat;
(iii) Class 3: fishing boat;

(iv) Class 4: oil tanker.

5.2. Numerical Results. The CMs of the three sensors have
been computed by considering the analytical algorithm
described above, for the four classes of naval targets. The
analytical computation of the CM requires the setup of a
database of reference images. In this numerical example the
reference database for each sensor is composed of simulated
images, no real data have been considered for now. This

database has been constructed using a three-dimensional
(3D) CAD model of the naval targets considered in the
scenario. The same CAD models have been exploited for the
construction of the reference database for the video camera,
for the IR camera, and for the spotlight SAR. The sizes
considered for the naval targets reported are: (10 X 4.6 X
3) m for the dinghy; (15 X 4.7 x 5.3) m for the motor boat;
(16 x 5.3 x 7) m for the fishing boat; (100 x 33.5 X 37.6) m
for the oil tanker. For the video camera the image generation
is simply obtained by the projection of the 3D CAD on
the camera focal plane. For the IR camera, the images are
simulated using a specific simulation software, the Open-
source Software for Modelling and Simulation of Infrared
Signatures (OSMOSIS) [19], developed at the Military Royal
Academy of Brussels. For the spotlight SAR the CADs have
been processed by a software for the simulation of electro-
magnetic (EM) images. An example of the simulated images
for the dinghy for a view angle equal to 45° and is shown
in Figures 6(a)—6(c), respectively, for the video camera, the
IR camera, and the spotlight SAR. The distance between the
sensor and the target is 5 Km for the video camera and 1 Km
for the IR camera, where the temperature information is
represented by the gray scale of the images.

The SNR over the single pixel of the reference images
has been evaluated by considering the noise level of each
imaging sensor. As it concerns the electro-optical sensors
(EO) we have considered the Noise Equivalent Illuminance
(NEIL) for the video camera and the Noise Equivalent
Temperature Difference (NETD) for the IR camera. In both
cases we have taken into account that the SNR decreases with
the distance between the target and the sensor because of
the atmosphere attenuation. For the video camera we have
analytically computed the atmosphere extinction coefficient
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TaBLE 5: CM of the IR camera, C?.

f)utput - Dinghy Motor boat Fishing boat Oil tanker
input |

Dinghy 0.8076 0.0289 0.1635 0.0000
Motor boat 0.0289 0.9529 0.0182 0.0000
Fishing boat 0.1635 0.0182 0.8182 0.0000
Oil tanker 0.0000 0.0000 0.0000 1.0000

TaBLE 6: CM of the spotlight SAR, C®,

f)utput - Dinghy Motor boat Fishing boat Oil tanker
input |

Dinghy 0.5995 0.2306 0.1698 0.0000
Motor boat 0.2306 0.7167 0.0526 0.0000
Fishing boat 0.1698 0.0526 0.7775 0.0000
Oil tanker 0.0000 0.0000 0.0000 1.0000

[20], assuming a wavelength value of 550 nm. For the IR
camera the extinction coefficient has been computed by
LOWTRAN (LOW resolution TRANsmission model) for
standard weather conditions: a temperature equal to 30°C,
a relative humidity equal to 43%, and a sea state equal to 0.
For the evaluation of the SNR in the case of the spotlight
SAR, we have considered the radar equation, revisited in
order to take into account for the SAR geometry [21, 22].
The simulated images of the three sensors are referred to
the same geometrical and environmental conditions, but the
SNR value can be different from one sensor to the other,
due to the different nature of the sensors. The classification
approach described in this work allows compensating for the
sensor parameter differences, such as the fields of view, the
resolutions and the noise features.

In this case study we have assumed that the decisions
coming from the three sensors are aligned in time. In a future
development of this work we will also consider the time
misalignment in the decisions, by introducing a delay in the
fusion process in order to take into account for the sampling
rate of the slower sensor.

The CMs of the three imaging sensors considered in the

case study are C') = [c,(jl ] for the video camera, C®) = [C,(jz)]

for the IR camera, and C® = [cg)] for the spotlight SAR.
According to the definition given in (1), the generic entry of
the matrix C' is the following probability:

c,(]1 ) = Pr{video camera decides for H; when H; is true}

= Pr{d1 = ] | Hl}
(29)

Similarly, the entries of matrices C?) and C®® are defined as

cg) = Pr{IR camera decides for H; when H; is true}

=Pr{d, = j | Hi},
(30)

CS’) = Pr{Spotlight SAR decides for H; when H; is true}
= Pr{d3 :j | H,}
(31)
Moreover we have:
(i) {d, = j} = {Video camera decides for H;};
(ii) {d> = j} = {IR camera decides for H;};
(iii) {d5 = j} = {Spotlight SAR decides for H;}.

Thus, the conditional correct classification probabilities are

c,(»,»l) = Pr{d, = i | H;} for the video camera; and c,(.,-z) =
Pr{d, = i | H;} for the IR camera; CE?) = Pr{ds; =i | H;}
for the spotlight SAR.

In the case study a distance between the target and the
sensor equal to 10 Km and a view angle equal to 180° have
been considered. The resulting CMs for the video camera, the
IR camera, and the spotlight SAR are reported, respectively,
in Tables 4, 5, and 6. These tables show that the less reliable
sensor, as it concerns the classification of the four targets
considered, is the spotlight SAR. On the other side this sensor
has a major coverage with respect to the other two sensors.
The correct classification probability conditioned to Class 4
(oil tanker) is always Pcoin, = 1, due to the fact that the
size of this class of target (100m) is significantly different
from the size of the other targets considered. The fused
CMs obtained by the majority voting rule, Fyy, and by the
maximum likelihood rule, Fyy1, are shown in Tables 7 and 8,
respectively. From these tables we can observe that the best
performing fused matrix, that is, the nearest to Iy, is the one
obtained by the ML decision rule, Fyr. The goodness of the
CMs in Tables 4-8 is expressed by means of the probability of
correct classification Pcc that is equal to the quality factor Q
defined in (27). As shown in Table 9, the value of Pcc nearest
to 1 is that corresponding to the fused matrix Fyy. The
fusion process can provide an improvement in the correct
classification probability equal to 3.59% for the MV rule and



International Journal of Navigation and Observation 11
TaBLE 7: Fused CM by using the MV rule, Fyy.

?utp ut = Dinghy Motor boat Fishing boat Oil tanker

input |

Dinghy 0.9455 0.0226 0.0317 0.0000

Motor boat 0.0523 0.9407 0.0069 0.0000

Fishing boat 0.0660 0.0069 0.9269 0.0000

Oil tanker 0.0000 0.0000 0.0000 1.0000
TaBLE 8: Fused CM by using the ML rule, Fyy.

?Utp ut = Dinghy Motor boat Fishing boat Oil tanker

mnput |

Dinghy 0.9460 0.0229 0.0309 0.0000

Motor boat 0.0262 0.9597 0.0140 0.0000

Fishing boat 0.0166 0.0097 0.9735 0.0000

Oil tanker 0.0000 0.0000 0.0000 1.0000

equal to 5.24% for the ML rule, with respect to the most
reliable sensor, that is, the video camera in the numerical
example considered here. The value Pcc = Q for all the
CMs considered in this numerical example is also graphically
shown in Figure 7.

6. Conclusions

This work describes a classification algorithm based on the
fusion of the class information provided by multiple imaging
sensors. The classification algorithm automatically exploits
the a priori knowledge provided by the sensor CM, which
is used to model the sensor performance during the classi-
fication process. The entries of the CM are the conditional
error probabilities in the classification and the conditional
correct classification probabilities, and they are used to make
the decision on the target class by each sensor. The CM is
analytically computed as a function of the sensor SNR, the
sensor resolution, a set of simulated reference images stored
in a database, and the cross-correlation between the reference
images. Then a final decision on the class is made, using
a suitable fusion rule, in order to combine the decisions
coming from the three sensors. The fusion, operated on the
single decisions, allows us to manage the combination of
information coming from very dissimilar imaging sensors
and to compensate for the sensor parameter differences. The
overall performance of the classification process is evaluated
by means of the fused CM, that is, the matrix pertinent to
the final decision on the target class. Two decision rules are
described in the paper: a majority voting (MV) rule and
a maximum likelihood (ML) rule. A numerical example is
finally proposed where the described classification algorithm
is applied to a case study where three imaging sensors are
located on a generic platform. The three imaging sensors are
a video camera, an IR camera, and a spotlight SAR, and they
operate into a multisensor system for coastal surveillance.
The final information on the class is used in the multisensor
system, as a support to other processes required during
the surveillance operation. This methodology allowed us to

include the classification process inside the simulation of a
complex multisensor surveillance system, without increasing
the overall computational load [18].

As a final remark, we note that in this analysis we have
assumed that a recognition process always occurs. Future
developments of the described approach are expected to
refine the model, by considering the possibility that the
image under test is not contained in the image database
and by evaluating the performance of the joint process of
recognition and classification.

Appendix

Analytical Computation of
the Confusion Matrix

The generic entry of the CM of a sensor is the probability that
a target belonging to the class 7 is misclassified as belonging
to class j:

cij = Pr{the sensor decides for H; when H; is true},
(A.1)

where H; represents the hypothesis that the target belongs
to class i. The computation of the entries of the CM
in the ith row is derived from the computation of the
classification error probability for the ith class. The error
probability is computed in an incremental way by adding
the contribution of the generic elemental error event to
the overall error probability: these partial contributions to
the error probability for the ith class are assigned to the
off-diagonal elements ¢;; of the of the CM. The diagonal
elements, representing the conditional correct classification
probabilities, can be consequently computed as

M
Gi=1-Pgrm,=1— > cij (A.2)
i=Lisj

where M is the number of classes considered. The elemental
error event in the classification of an image belonging to
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TaBLE 9: Performance of the CMs.
cm Cc@ Cc® Fuv Fur
Q = Pcc 09174 0.8947 0.7734 0.9533 0.9698
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FIGURE 5: Architecture of the integrated

a given class is defined through the correlation between
the reference images and through their energy differences,
compared to the variance of the noise over the single pixel.
The error probability can be defined as the average of the
conditional error probabilities:

M
Prrr = > Prrriy, - P(H,). (A.3)

i=1
Consider a database of M reference images {I;,...,Inu},

one for each class, and a received image I. These images are
represented by matrices whose dimension depends on the
sensor resolution, in terms of pixels on the horizontal and
vertical planes. In general, these matrices are dependent on
the target coordinate along the azimuth and the elevation.
In the rest of this appendix this dependence is omitted to
simplify the notation. The elements of these matrices are
intensities proportional to the optical power received from
the target for the video camera and the IR camera, and to
the target RCS for the spotlight SAR. In this analysis the
following assumptions are made.

(i) The image database is exhaustive, that is, the possi-
bility that the image of the target under test is not
contained in the database is not considered.

(ii) The reference images of each database do not contain
any source of noise, but this is added during the
analytical computation of the CM.

multisensor system for coastal surveillance.

(iii) The noise added over each image is additive, Gaus-
sian, and independent of pixel to pixel.

Let us indicate with Y the observation space and let us
divide this space in M decision zone {Y1,..., Ya}, such that
if the image I belongs to the zone Y then the hypothesis Hy
is true. The error probability is

M M
Poe = SPH) - S J P H)Y,  (A4)
i=1 k=kzi" Yk

M M
Pirg = . Jy( > p(I|Hi)-P(H1-))dY, (A.5)

k=1 i=li#k

where the term Zﬁil’k# [y, p(I | H;)dY in (A.4) represents
the probability that an image I generated by the ith class
belongs to the decision zone Yy, thus generating an error
in the classification, and the term fYk(zf‘;Il)#kp(I | H;) -
P(H;))dY in (A.5) represents the probability that an image
I belonging to the decision zone Yj is generated by the ith
class, thus generating an error in the classification.
A given image, I, belongs to the decision zone Yx when

M M
> p(IH)-P(H)< > pd|H)-PH) Vm#k,
i=li#k i=Li#m

(A.6)
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FIGURE 6: Example of simulated images for the dinghy, view angle 45°: (a) video camera; (b) IR camera (by courtesy of F. Lapierre);

(¢) spotlight SAR (by courtesy of U. D’Elia, M.G. Del Gaudio, E Prodi).
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FIGURE 7: Probability of correct classification equal to the factor Q.

that is, when the error probability conditioned to the
hypothesis Hy is minimum [23]. Equation (A.6) can be
written as follows:

M
> p(1| Hy) - P(H;) — p(I | Hx) - P(Hy)
i=1

" (A7)
< >.p(U| Hy) - P(H;) = p(L| Hy) - P(H,)

i=1
so that the image I belongs to the decision zone Y; when

p(X| Hy) - P(Hp) < p(I| H) - P(Hx) Vm#k. (A8)
The set of inequalities in (A.8) defines the boundaries
between the decision zones.

Since the reference images have finite energy over their
range of definition, that is, the sensor field of view, the set of
the reference images {I,..., Iy} can be seen as a vector space
where we can define a scalar product, by using the correlation
function between a generic pair of elements inside the set.
Using the scalar product, we can describe the elements of

this vector space by means of their coordinates with respect
to an orthonormal base, constructed by a Gram-Schmidt
orthonormalization. This representation for the reference
images can be used to express the error probability given a
certain hypothesis, Prg|H, -

In the vector space each image I;, for i = 1,...,M, is
represented by an M-dimensional vector y;, and the energy
difference between two images represented by the vectors y;
andy; is

M

AE=E —Ey = (v} — %)
k=1

M
(A.9)
= > (e +y20) - 1k — y2k)
k=1

=(yi+y2) - (y1 - v2)s

where y; represents the kth component of the vector y;.

Let us indicate with n the vector representing the
noise, assumed to be zero-mean, additive, Gaussian, and
independent of pixel to pixel with variance 02, and with {
the elements of the orthonormal Gram-Schmidt base. The
statistics of the noise vector n are related to the sensor signal-
to-noise ratio and they do not depend on the class of the
image under test.

Assuming that the noise is Gaussian and that the M
hypotheses have the same a priori probabilities, the decision
criterion of (A.8) can be expressed as

k
o= (5) 08 v) Sy = (5) 67 ),
J
(A.10)

where y is the vector representing the received image in the
vector space. Equation (A.10) can be written as:

[YT_ %(YkT’LYJT)] (v -vj) ]5,0 (A.11)
J

since the scalar quantities y; - Yj and ij - Yk are equal. Then
the error event can be characterized as follows:
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(i) the inequality

[YT— %(Y{+YJT>] (y-v;) <0

represents the elemental error event in the classifica-
tion of an image belonging to the kth class;

(A.12)

(ii) by defining the normalized vector

(A.13)

where Ejx = Zf\il (Yk,i —yj,,-)2 is the cross energy
between an image belonging to the kth class and
another image belonging to the jth class, the condi-
tional error probability can be expressed as

M 1 T
PR, = Pr{ U [(M 5(% —w)) " Vjk < 0} };
j=Lj#k
(A.14)
(iii) Considering that
1 T 1 —
E(Yk —y]) . 'ij = E Ejk (AlS)
the conditional error probability becomes
M 1
Prrrif, = Pl‘<| U [nT Yk < ~3 Ejk]]’ (A.16)
j=Li#k

and it can be divided in the following contributions:

M
1
Prrriy, = Pr<| U (nT VK< =5 Ejk)]»
j=1i#k

M-1 |
= Pr<| U (nT k<=5 Ejk)}

j=Li#k

1
T
+Pr{n Yk < —5\ EMk}

(A.17)

such that the conditional error probability Pgrgr g, can
be computed by considering two elements in the
union and by reiterating M-3 times the operation
expressed in (A.17).

More details about this analytical computation can be
found in [18].
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Nomenclature

AEWR: Airborne Early Warning Radar
AIS:  Automatic Identification System
ATC:  Automatic Target Classification
Cc% Command and Control

CAD: Computer-Aided Design

CM:  Confusion Matrix

EM:  Electromagnetic

EO:  Electro-Optical

HS: Homeland Security

NEIL: Noise Equivalent Luminance
NETD: Noise Equivalent Temperature Difference
IR: Infrared

ML:  Maximum Likelihood

MV:  Majority Voting

SAR:  Synthetic Aperture Radar

TL: Threat Level

VTS:  Vessel Traffic Service.

Acknowledgments

The authors would like to acknowledge Fabian D. Lapierre
(Royal Military Academy, Brussels, Belgium) for kindly
providing the temperature file exploited for the simulation
of the infrared images; Ugo D’Elia and Maria Grazia Del
Gaudio (MBDA, Rome, Italy), and Francesco Prodi (SELEX
Sistemi Integrati, La Spezia, Italy) for kindly providing the
simulated electromagnetic images exploited in this work;
Paolo Marrucci (SELEX Galileo, Pomezia, Italy) for his help
with the meteorological vectors for IR simulation.

References

[1] G. L. Foresti, C. Micheloni, L. Snidaro, P. Remagnino, and
T. Ellis, “Active video-based surveillance system,” IEEE Signal
Processing Magazine, vol. 22, no. 2, pp. 25-37, 2005.

[2] H.-M. Chen, S. Lee, R. M. Rao, M.-A. Slamani, and P. K.
Varshney, “Imaging for concealed weapon detection: a tutorial
overview of development in imaging sensors and processing,”
IEEE Signal Processing Magazine, vol. 22, no. 2, pp. 52-61,
2005.

[3] L. Snidaro, R. Niu, G. L. Foresti, and P. K. Varshney, “Quality-
based fusion of multiple video sensors for video surveillance,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B,
vol. 37, no. 4, pp. 1044-1051, 2007.

[4] M. N. Cohen, “An overview of radar-based, automatic,
noncooperative target recognition techniques,” in Proceedings
of the IEEE International Conference on Systems Engineering,
Pp- 29-34, Fairborn, Ohio, USA, August 1991.

[5] F. Gini, A. Farina, and M. S. Greco, “Radar detection and
preclassification based on multiple hypothesis testing,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 40, no.
3, pp. 1046-1059, 2004.

[6] C.]J. Baker, H. D. Griffiths, and M. Vespe, “Multi-perspective

imaging and image interpretation,” in Proceedings of the NATO

ASI Lectures on Imaging for Detection and Identification, July

2006.

M. Costantini, A. Farina, and E. Zirilli, “The fusion of different

resolution SAR images,” Proceedings of the IEEE, vol. 85, no. 1,

pp. 139-146, 1997.

~



International Journal of Navigation and Observation

[8] Y. Bar-Shalom, T. Kirubarajan, and C. Gokberk, “Tracking
with classification-aided multiframe data association,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 41, no.
3, pp. 868-878, 2005.

[9] A. Farina, P. Lombardo, and M. Marsella, “Joint tracking
and identification algorithms for multisensor data,” IEE
Proceedings: Radar, Sonar and Navigation, vol. 149, no. 6, pp.
271-280, 2002.

[10] G. Davidson, S. J. Symons, and M. Everett, “Sensor fusion
system for infrared and radar,” in Proceedings of the IEE
Seminar on Signal Processing Solutions for Homeland Security,
October 2005.

[11] S.J. Symons, R. Philpott, D. Manson, and M. Everett, “MFR-
IRST integration in the naval domain,” in Proceedings of the
IEE Colloquium on the Use of Radars with Others Sensing Types,
pp- 4/1-4/6, October 2000.

[12] A. Howard and H. Seraji, “Multi-sensor terrain classification
for safe spacecraft landing,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 40, no. 4, pp. 1122-1131, 2004.

[13] S. Giompapa, R. Croci, R. Di Stefano, et al., “Naval target
classification by fusion of IR and EO sensors,” in Electro-
Optical and Infrared Systems: Technology and Applications IV,
vol. 6737 of Proceedings of SPIE, Florence, France, September
2007.

[14] S. Giompapa, A. Farina, E Gini, A. Graziano, R. Croci, and R.

Di Stefano, “Naval target classification based on the confusion

matrix,” in Proceedings of the IEEE Aerospace Conference, Big

Sky, Mont, USA, March 2008.

S. Giompapa, A. Farina, E Gini, A. Graziano, R. Croci,

and R. Di Stefano, “Study of the classification task into an

integrated multisensor system for maritime border control,”
in Proceedings of the IEEE Radar Conference, Rome, Italy, May

2008.

S. M. Kay, Fundamental of Statistical Signal Processing, Volume

2: Detection Theory, Prentice-Hall, Upper Saddle River, NJ,

USA, 1998.

[17] S. Giompapa, A. Farina, E Gini, A. Graziano, and R. Di
Stefano, “Computer simulation of an integrated multi-sensor
system for maritime border control,” in Proceedings of the
IEEE Radar Conference, pp. 308—313, Boston, Mass, USA, April
2007.

[18] S. Giompapa, Analysis, modelling, and simulation of an
integrated multisensor system for maritime border control, Ph.D.
dissertation, University of Pisa, Pisa, Italy, 2008.

[19] E D. Lapierre, R. Dumont, A. Borghgraef, J.-P. Marcel, and M.
Acheroy, “OSMOSIS: an open-source software for modelling
and simulation of infrared signatures using general emissivity
profiles,” in Proceedings of the 3rd International IR Target and
Background Modelling and Simulation Workshop (ITBMS °07),
Toulouse, France, June 2007.

[20] L. I. Kim, B. McArthur, and E. Korevaar, “Comparison of
laser beam propagation at 785nm and 1550 nm in fog and
haze for optical wireless communications,” in Optical Wireless
Communications III, vol. 4214 of Proceedings of SPIE, pp. 26—
37, Boston, Mass, USA, November 2001.

[21] W. G. Carrara, R. S. Goodman, and R. M. Majewski, Spotlight
SAR Signal Processing Algorithms, Artech House, Boston, Mass,
USA, 1995.

[22] G. Franceschetti and R. Lanari, Synthetic Aperture Radar
Processing, CRC Press, Boca Raton, Fla, USA, 1999.

[23] J. L. Melsa and D. L. Cohn, Decision and Estimation Theory,
McGraw-Hill, New York, NY, USA, 1978.

[15

(16



- i

/> . =
= &

Advances in

Civil Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Chemical Engineering

The Scientific
WQrId Journal

International Journal of

Rotating
Machinery

Journal of

Sensors

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Y :-
.

VLSI Design

‘.
.

Internatio Urna
Antennas and
Propagation

Modelling &
Simulation
in Engineering

International Journal of
Navigation and
Observation

e

Active and Passive
Electronic Components

Shock and Vibration

International Journal of

Distributed
Sensor Networks

Journal of
Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering



