Hindawi Publishing Corporation

VLSI Design

Volume 2009, Article ID 941701, 15 pages
doi:10.1155/2009/941701

Research Article

Networks-On-Chip Based on Dynamic Wormhole Packet Identity

Mapping Management

Faizal A. Samman,’ 2 Thomas Hollstein,! and Manfred Glesner!

I Institute of Microelectronic Systems, Darmstadt University of Technology, Karlstr 15, 64283 Darmstadt, Germany
2 Department of Electrical Engineering, Hasanuddin University, J. Perintis Kemerdekaan km.10, Makassar 90245, Indonesia

Correspondence should be addressed to Faizal A. Samman, faizal. samman@mes.tu-darmstadt.de

Received 7 August 2008; Revised 1 December 2008; Accepted 7 January 2009

Recommended by Rached Tourki

This paper presents a network-on-chip (NoC) with flexible infrastructure based on dynamic wormhole packet identity
management. The NoCs are developed based on a VHDL approach and support the design flexibility. The on-chip router uses
a wormhole packet switching method with a synchronous parallel pipeline technique. Routing algorithms and dynamic wormhole
local packet identity (ID-tag) mapping management are proposed to support a wire sharing methodology and an ID slot division
multiplexing technique. At each communication link, flits belonging to the same message have the same local ID-tag, and the
ID-tag is updated before the packet enters the next communication link by using an ID-tag mapping management unit. Therefore,
flits from different messages can be interleaved, identified, and routed according to their allocated ID slots. Our NoC guarantees
in order and lossless message delivery.

Copyright © 2009 Faizal A. Samman et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. Introduction

According to the International Technology Roadmap for
Semiconductors (ITRS) [1], by the end of this decade, the
feature size of a transistor will be 45-nm and it operates
below one volt. SoCs will grow to 4-billion transistors
running at 10 GHz. The major challenge for SoC designers
would be to provide reliable operation of the interacting
components. A limiting factor for the performance and,
possibly, energy consumption will be presented by on-chip
physical interconnections [2].

Most SoC design approaches use some available (intel-
lectual property IP) components to implement an integrated
circuit for a certain system application (IP-based design
and reuse). A sophisticated communication structure is
needed for inter-IP data exchange. Rather than using single
wires for single communication between two IPs, or point-
to-point communication, a concept of shared segmented
communication infrastructures is proposed. Networks-on-
chip provide advanced intellectual properties (IPs) com-
munication concepts for systems-on-chip (SoC). The NoC
concept has a potential to provide sustainable platforms and

a new paradigm in SoC architecture and multiprocessor
systems [3].

Figure 1 shows an example of an NoC platform with
a 4 X 4mesh topology. There are four main components,
that is, mesh routers, network interfaces, resources (R), and
communication links. Each mesh router is connected via
local port with one resource through a network interface.
The other ports (East, North, West, and South) are con-
nected with adjacent mesh routers through communication
links. Resources can be an IP core or an embedded bus-
based platform with one or more processing elements. The
resource can also be a memory element with a direct memory
access controller. In the context of reconfigurable computing,
the NoC platform provides scalable bandwidth with flexible
resource-to-resource communication configuration.

Several NoCs that have been developed are NOSTRUM
[4], SoCBUS [5], RAW [6], Hermes [7], HiNoC [8],
OCTAGON [9], GEXSpidergon [10], SPIN [11], DSPIN
[12], NoC by Bartic et al. [13], PNoC [14], Xpipes [15], and
ASNoC [16]. All the NoCs have different characteristics and
services provided to transfer messages leading to different
strategies to design their router microarchitecture.

2 VLSI Design
Resource Resource] Resource] Resource] Resource]
L . (0,3) (1,3) (2,3) (3,3)
1/0 dev. AN - - N -
H upC/ N ni ni ni ni
Recont. |- .~ O=0=0=0]
logic DSP N L L 1
Resource| Resource] Resource] Resource]
Mem. || Cache L (02 (1,2) (2,2) (3.2)
zzZ=-77 ni = ni 5 ni 5 ni o
Network P (@) ==(@) =@ |'==(@)
interface Prias : : :
- Resource] Resource] Resource] Resource]
(0,1) (L,1) (2,1) (3,1)
On-chip ni 7 ni 25 ni 5 ni 5
(@] Ol=0=0l=0
N-bit Resource| Resource] Resource] Resource]
Communication
= (0,0) (1,0) (2,0) (3,0)
link - - - | ~
ni 55 ni 5 ni 5 ni 55
(O—0OI—0O—0

FIGURE 1: A 2-dimension mesh 4 x 4 NoC topology.

Asynchronous NoCs are introduced in CHAIN [17],
ASPIDA [18], PROTEO [19], and ANoC [20], while in
MANGO [21], an asynchronous clock-less NoC is proposed.
Asynchronous communication design is a promising con-
cept, but lacks of industrial standard support, especially
with respect to testability issues. In synchronous designs,
global clock-trees are distributed, which lead to electro-
magnetic interference effects and clock power consump-
tion.

In this paper, a reconfigurable NoC with a synchronous
parallel pipeline router architecture called XHiNoC is pro-
posed. XHiNoC stands for eXtendable Hierarchical NoC,
and is an extended version of HiNoC [8], which is based on
a flexible, extendable design environment. The XHiNoC is
developed based on synthesizable modular VHDL objects.
Some flexible object modules can be selected and combined
with base modules to obtain a specific mesh router proto-
types in accordance with a desired specification such as NoC
with multicast service [22]. This paper will only focus on
an XHiNoC prototype with connectionless unicast service.
Some mesh routers have been prototyped by using a static
XY routing algorithm and adaptive routing algorithms in a
regular 2D mesh topology.

The rest of this paper is organized as follows. Section 2
describes the main contribution of XHiNoC multiplexing
technique based on the dynamic local ID-tag mapping
management and its related works with time-divison mul-
tiplexing methodology, such as Athereal [23]. Section 3
presents interconnection configuration used by XHiNoC and
the comparison with other NoCs in FPGA platforms. In
this section, the XHiNoC communication setup is described
in detail. In Section 4, selected routing algorithms and link
multiplexing technique are introduced. Section 5 describes
the microarchitecture of the XHiNoC. Performance evalua-
tion of the XHiNOC under four selected traffic scenarios is
exhibited in Section 6. Logic synthesis results using an FPGA
device and a 130-nm CMOS standard-cell technology and
direct comparison of the performance-area tradeoff between

XHiNoC and Athereal are presented in Section 7. Finally,
Section 8 concludes the paper.

2. Related Works and Contributions

Data communication between IP components in the NoC-
based systems can be made using circuit-switching, packet
(store-and-forward) switching, wormhole, or virtual cut-
through switching methods. The circuit-switching that is
based on time-division multiplexing (TDM) method has
been used by some NoC propososals such in NOSTRUM
[4], SoCBUS [5], DSPIN [12], PNoC [14], and Athereal
[23]. Athereal NoC uses a slot table to avoid contention on
a link, divide up bandwidth per link between connections,
and switch data to the correct output. Every slot table T
has time slots S and router outputs N. There is a logical
notion of synchronicity, where all routers in the network
are in the same fixed-duration slot. In a slot s at most one
block of data can be read/written per input/output port.
In the next slot, (s + 1)% S, the read blocks are written to
their appropriate output ports. Thus, the blocks propagate
in a store-and-forward fashion. However, this methodology
has disadvantage as explained in the following paragraph
according to Figure 3(a).

In Figure 3(a), three packets (A, B, and C) are attempt
to set up connections. Four snapshots of the network at
successive times are presented. The setup packet A enters
node (2,2) from North (N) input port, and setup packet B
enters node (2,1) from West (W) input port as shown in
Figure 3(a)(I). The script (A:1) means that packet A will be
programmed in time-slot 1 in the next router, and (B:2) has
the same meaning as well.

As shown in Figure 3(a)(II), packet A has been forwarded
to South output port of node (2,2), and the time-slot 1 is
allocated for packet A coming from N. While packet B has
also been in South output port of node (2, 1), and the time-
slot 2 is allocated for packet B coming from W input port.
A bold line shows the progress of the connection setup over

VLSI Design

| 3bit | 3bit | 16/24/32 bit
I I I |
Type Source|Source|Source|Target| Target| Target
header ID X Y 4 X Y 4 Ext.
Type
1D Data payload
Der}taBod il Type of flit bin/dec code
ype
DataBod| 1P eyl No flit 000 (0)
Packet header 001 (1)
Type Message/data body 010 (2)
EndMsg ID | Data payload End of message 011 (3)
(a) (b)
FIGURE 2: Packet addressing format for XHiNoC.
| A:l | | r A:0
(2,2) C:0]2,2) [(2,2) 2,2)
Time slot Time slot Time slot Time slot
[O0] [0] [0]lw [0]lw
o N QN
5] A2-1p| [3] C:1->| 3] (31
A:1
Inl
(2,1] [(2,1] (2,1) (2,1)
In0 In2
5 I\ Time slot 7 N/ Time slot ? I\ Time slot e & Time slot
B:2 m 0 10 B:2 0]
In3 ‘ . : N
- B:3 ol =W C:2- =W
¢9) (I1) (IIT) (IV)
(a)
| A1) | A1) | A1) | A(1)
J@2) C(0).[z2) C(O)E (2.2) C(O)E (2.2)
ID slot ID slot 1D slot 1D slot
[0] [0](1,N):A [0](1,N):A [0](LN):A
[1] 1] o[1](owW):C @[1](0,W):C
12 12] 2 2]
£ o 3 3
51 INOE N C)->] 5 AQ) -1 5]
16 16 6 6]
L7] L7] 7 [7]
(2,1 (2,1) (2,1 (2,1
= e e i
1D slot ID slot 1D slot 1D slot
B@ et B0 Mgt B bramat, BO Mt
! ol || i EH e
2] B(0 2] 2| (LN):
1] 4] AQYP [cerl||
5] 5] 5 5]
o] o] 6 6]
L7] L7] 7 [7]
M (In)) (V)

(b)

Ficure 3: Communication links setup method by Athereal (Redesign from [23]) and XHiNoC.

time. In every snapshot, the Setup packets are routed to their
next link, and the slot table is incremented by one. Thus, in
the next router, packets A and B will be programmed in time-
slots 2 (A:2) and 3 (B:3), respectively.

In Figure 3(a)(IlI), packet A cannot reserve slot 2
for South output port (S) of node (2,1) because it has
been reserved for the connection of packet C, thus the
connection setup of packet A fails. Therefore, packet A
is routed back along its path to remove the reservations
made so far (see Figure 3(a)(III)). In Figure 3(a)(IV), packet
A has removed the reservation of slot 1 that it made in
Figure 3(a)(II).

The previous explanation has presented the disadvantage
of using time-division multiplexing (TDM) switching method
by Athereal NoC. In Figure 3(a)(IlI), there are still three
free time-slots in South output port of node (2,1), that
is, time-slot 0, 1, and 3. However, Packet A cannot use
that free time-slots, because packet A has been programmed
to reserve time-slot 2, that has been reserved by packet
B from West (W) input port. Therefore, we propose a
more optimistic approach by introducing ID-tag mapping
management (IDM) unit to optimize dynamically the link
bandwidth utilization. The IDM also consists of ID-slot Table
and has the same functionality as slot table used by Athereal.

The communication link setup by XHiNoC is presented
in Figure 3(b). Once again, four snapshots of the network at
successive times are depicted in the figure. For the sake of
simplicity, only the ID slot table of the IDM in South output
port is presented for both mesh nodes. In Figure 3(b)(I), a
packet header A with ID-tag 1 (A(1), numerical value in the
bracket represents ID-tag) enters node (2,2) from North (N)
input port, while a packet header B with ID-tag 2 (B(2))
enters node (2, 1) from West (W) input port.

In Figure 3(b)(II), the packet header A is routed to South
(S) output port and is allocated to ID slot 0. Therefore, all
payload flits having ID-tag 1 from N input port in node (2, 2)
will get new ID-tag 0. In Node (2,1) , packet header B is
routed to S output port and is allocated by IDM to ID slot
0. Thus, the South IDM unit in this node will map all flits
having ID-tag 2 from West (W) input port to receive new
ID-tag 0. The bullets in the figure indicate that the ID slots
are being used (not free).

In Figure 3(b)(III), a packet header C coming from W
input port with ID-tag 0 is routed to the S output port.
The South IDM unit maps packet C into ID slot 1. Hence,
each payload flit having ID-tag 0 from W input port in
node (2,2) will get new ID-tag 1. While packet A coming
from N with ID-tag 0 is allocated by the South IDM unit
in node (2,1) to ID slot 1. Hence, it receives new ID-tag 1
before being forwarded from node (2, 1) into the next node.
Figure 3(b)(IV) describes also the same mechanism, where
packet C in node (2, 1) , which is coming from N input port
with ID-tag 1, will be mapped to receive the new ID-tag 2.

If a header flit requests a new ID slot allocation to reserve
link bandwidth, then the IDM unit in each output port
will search for a free ID-tag. After finding a new free ID-
tag, the IDM unit will identify and record the current ID
of the header and from which port it comes. Therefore,
each payload flit belonging to the same message (because
of having the same ID-tag) will be mapped by the IDM
unit to receive the new ID-tag by using ID-based look-up
table mechanism. Therefore, the XHiNoC approach is more
optimistic than Athereal in terms of optimal link bandwidth
allocations.

3. Interconnection and Links Setup

A message in XHiNoC is associated with a single packet.
For a unicast message, the packet will have only one header
flit, even if the size of the message is very large. The
packet format is presented in Figure 2. The 38-bit packet
consists of a header flit followed by payload flits. Two
additional 3-bit heads are type and (Identity ID) bits. The
flit type can be as header (1), message body (2), and
the end of message body or the last flit of the message
(3). Only one header flit is asserted for one message (as
one packet), even if the size of the message is extremely
large.

The 3D source and target address of the packet are
asserted in the header flit. The source and target Z are
dedicated for addressing the resource tiles of subnetworks
(e.g., in tree-based topologies) when our NoC will be

VLSI Design

extended to be a hierarchical NoC. The subnetworks will be
connected to a local port of each mesh node. Hence, each
resource tile located in the subnetwork will have (X,Y,Z)
address, where the (X,Y) denotes the address of the mesh
network, and the (Z) represents the address of the tile in
the subnetwork. Each flit belonging to the same message has
the same local identity number (ID-tag) to differentiate it
from other flits of different messages when it passes through
a communication link.

The local ID-tag of each data flit of a packet will vary
over different communication links in order to provide a
scalable concept. Dynamic variations of the message ID-tag
will be controlled and mapped by IDM units allocated at each
output port. This ID-tag will vary over the network links to
support a wire sharing methodology, which is described in
Section 4.2.

3.1. Interconnect Reconfiguration. Mapping an applica-
tion onto an NoC-based multiprocessor system-on-chip
(MPSoC) can be divided into pre- and postmanufacture
mappings. In the premanufacture mapping, interconnection
between processing elements is successively configured after
obtaining optimized configuration data from an optimized
mapping problem. The data represent an interconnect
configuration map that is used to implement the required
wire interconnection.

FLUX interconnnect [24], for instances, uses this
approach where on demand interconnections are estab-
lished before or during program excecution. The proposed
reconfigurable interconnections look more like point-to-
point connections. Therefore, the required number of links
increases exponentially related to the number of processing
elements. Certainly, the FLUX network cannot support the
postmanufacture implementation.

In the postmanufacture approach, link interconnects
have been wired in advance. Therefore, one possible way
to reconfigure the wire interconnects is by implementing
slot tables (programmable registers) over the on-chip router
which can be programmed by users to configure the required
interconnections between the processing elements.

An FPGA-based NoC by Bartic et al. [13] uses look-up
tables that have an entry for each IP in the NoC, and their
content can be dynamically changed by an OS at runtime.
PNoC [14] on FPGA fabric supports also a dynamic nodes
removal and insertion at runtime in the NoC system via
routing table updates. Certainly, the drawback of both is
that the required memory space for the routing tables grows
proportionally with the number of IPs.

Another approach is by introducing a parallel program-
ming model in software level to reconfigure the interconnec-
tions. In the parallel programming model, node addresses
of all processing elements or IPs are introduced. The users
will program the NoC by using a data parallel, multithread,
distributed shared-memory, or message passsing program-
ming model. The compilation result of the parallel program
will result in executable object files that will be written in
the instruction memories of each selected processing element
(PE) that will run the parallel program.

VLSI Design

\ AO0) |
Y=3 B
B0)
C(0) cB)) [§7BW
D0
3 E(0) E) E(0)
| F(1) F2) F(1) .
c)--1> - D(0) o FQ)
E)| || [F@ A()| §1--BQ2)
Y=1 | | L
I 1
F(1) D(0)
E(0) B(1
€(0) A(0)
Y=0
X=o| “© X=2

F1cure 4: Communication links setup based on dynamic wormhole packet identity.

Selecting the optimal object file code allocation for the
selected PE is preceeded by an optimal mapping problem
with constraints, for example, bandwidth requirements to
transfer data between two PEs or IPs. Heuristically, various
routing functions can be involved in this optimal problem
to find out whether the constraint can be satisfied or not.
The interconnections between processsing elements are then
set up locally at runtime by on-chip routers using static or
adaptive routing algorithms based on source-target address
information present in the header of packets being sent.

The postwired application mapping is not only suitable
for ASIC implementations, but also can be used for NoC-
based MPSoC applications running on FPGA platforms.
The interconnect reconfiguration in the XHiNoC is made
available by using runtime programmable ID-slots in a
routing table at each incoming port and in an ID-tag
management unit at each outgoing port. The working
organization between the routing table and the ID-tag
management units has enabled a flexible data multiplexing
over the on-chip network.

Initially, the routing tables and ID-slots of the ID-
management units are empty, which means that an intercon-
nect from source to target node has not been configured. The
links interconnection can be configured by sending a header
flit containing source and target addresses with a certain local
ID-tag. When a header flit is detected at the output of an
FIFO buffer, then a routing logic unit will compute a routing
direction. The routing direction is then copied into an ID-
slot of the routing table in accordance with the local ID-tag
number presents in the header. Hence, payload flits having
the same ID-tag with the header injected from the source

node will be routed to the similar path (see Figure 4). In
contrast, the links interconnection can be closed by sending
a flit with EndMsg type (see again Figure 2) to remove the
assignment and routing data from the routing tables and
from the ID-tag management units. Before entering the next
downstream communication channel, the local ID-tag of the
header and payload flits must be updated to support flexible
data multiplexing. Section 3.2 will present how to set up and
schedule the communication interconnects at runtime.

3.2. Communication Links Setup. An example of a commu-
nication link setup of a wormhole message packet based
on the dynamic local ID-tag mapping management in the
XHiNoC interconnection network is shown in Figure 4. The
(X, Y) address of each mesh node is denoted in the left and
bottom sides of the figure. We assume that all messages are
routed using a static XY routing algorithm. But certainly,
the communication link setup process is valid for static and
adaptive routing methods.

Messages A, B, and C with ID-tag 1, 2, and 3, respectively,
are injected from a processor in node (0,3). Messages E
and F with ID-tag 1 and 2, respectively, are injected from
a processor in node (3,2), while message D with ID-tag 1
is injected from node (2, 1). Each flit belonging to the same
message from the same processor will be injected with the
same ID-tag.

The ID-tag of each flit belonging to the same message will
vary over the communication links and can be controlled and
mapped by the IDM unit at each output port of the mesh
router node. For instance, the flits of message A have ID-tag
0 after passing East (E) output port of mesh node (0, 3) and

IDM unit East output
port node (0,3)

IDM unit South output
port node (0,2)

VLSI Design

IDM unit South output
port node (1,2)

IDM unit West output
port node (2,2)

1D (Old 1D, 1D (Old 1D, 1D (Old ID, 1D (Old ID,
state ID from) |Msg. state ID from) |Msg. state D from) |Msg. state ID from) |Msg.
@ o] (L) A @ | 0] (OLN) [C @ | 0] (0,E) |D @ (o] (0,L) [D
[©] 1 [2L |B (¢ 1 (0,E) |E [©] 1 (O,N) | A (¢ 1 (0,E) |E
2 @ [2] (LE) |F @ [2] (LN) |B ©@ [2| (LE) |F
3 3 3 3
4 4 4 4
5 5 5 5
6 6 6 6
7 7 7 7

@ ID tag is in use state.

(a) (b)

@ ID tag is in use state.

@D tag is in use state.

(c) (d)

@D tag is in use state.

LUT local input LUT West input LUT East input LUT North input LUT North input
port node (0,3) port node (1,3) port node (1,2) port node (0,1) port node (1,1)

ID |Dir. | Msg. ID | Dir. | Msg. ID | Dir. | Msg. ID | Dir. | Msg. ID | Dir. | Msg.

O E [A 0[S |A 0] S |D 0] S |C 0| L |D

1| E [B 11 S |B 1[{WIE 1L |E 11 S |A

2 S |C 2 2 WIF 2| L |F 2| L |B

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5

6 6 6 6 6

7 7 7 7 7

(e) (¢)] (8

(h) (i)

F1GURE 5: Routing and ID-mapping management tables of the LUT and IDM units, respectively, according to Figure 4. ID-tag is in use state;

E: East; N: North; W: West; S: South; L: Local port.

South (S) output port of node (1, 3) successively, then ID-tag
1 after passing S output port of mesh node (1,2). Afterwards
they have new ID-tag 0 after passing S output port of mesh
node (1,1). Finally, the message flits receive new ID-tag 0
after ejecting from the on-chip network via local (L) output
port of mesh node (1,0).

In our NoC infrastructure, different messages can be
injected from a processor in a overlapping-time. As shown in
Figure 4, for instance, the processor connected to node (0, 3)
injects three different messages, that is, messages A, B, and C.
The messages are destinated to target node (1,0), (1,1), and
(0,0), respectively. A flit injected with ID-tag 1 (belonging
to message A) will always arrive target node (1,0) and a flit
with ID-tag 2 (belonging to message B) will arrive target
node (1,1) as well as flits injected with ID-tag 3 (belonging
to message C) will also always arrive target node (0,0). It
means that a small group of flits of a message can be injected
in overlap injection time with other groups of the other flit
messages.

If the processor injects a last flit indicating the end of
packet body (its ID-tag is the same as ID-tag of the packet
body and header), then the last flit will close the connection
that has been set up in advance by the packet header and
get the reserved local IDs free. Afterwards, the free local ID-
tag can be then used by other messages injected from that
processor.

Figures 5(a), 5(b), 5(c), and 5(d) present the ID-tag
mapping tables of the selected IDM units in output ports.
For instance, IDM unit at South output port at node (0,2)
(see Figure 5(b)) has allocated its three new ID slots for three

different messages (i.e., messages C, E, and F). This IDM
unit has still five available ID slots. For example, message F
coming from East (E) input port with current ID-tag 1 will
be mapped into ID slot 2. It means that each flit with ID-
tag 1 coming from E input port (flits belong to message F)
will receive new ID-tag 2 before passing South output port of
node (0,2).

Figures 5(e), 5(f), 5(g), 5(h), and 5(i) represent the
routing tables of the selected LUT units in input ports. For
instance, the LUT unit at local input port in node (0,3)
has recorded the routing directions of messages A, B, and
C. The direction recording is undertaken after the RHL has
computed the routing direction based on target node address
stated in the header flit of each message. The direction is then
saved in the routing table of the LUT. For example, packet A
associated with ID-tag 0 has EAST (E) routing direction. It
means that each flit with ID-tag 0 (flits belong to message A)
will be routed to EAST direction.

4. Routing Algorithms and Switch Multiplexing

4.1. Exchangeable Routing Engine Modules. The XHiNoC
microarchitecture is developed based on a modular
approach. Some modules can be exchanged and instantiated
to form a new on-chip router prototype with a specific
characteristic. The routing engine (RE) is a reconfigurable
unit, which consists of combination of router hardware logic
(RHL) and router look-up table (LUT) units. The modular
RHL units enable us to easily design a new on-chip router

VLSI Design

Static XY Adaptive West-first (WF)

iy
L0

(a) (b)

Adaptive East-last (EL) Adaptive negative-first (NF)

F1GUrek 6: The turn model of the selected routing algorithms.

Xoffs=Xdest—Xsource;
Yoffs=Ydest—Ysource;

elseif Xoff>0 and Yoffs>0 then
if NumOfusedID(NORTH)<NumOfusedID(EAST) or
(NumOfUsedID(NORTH)=NumOfUsedID(EAST)
and NumOfDataInFIFO(NORTH)<NumOfDatain
FIFO(EAST)) then
route=north;
else route=east; end if;

end if;

ArcoriTHM 1: Adaptivity for making North or East routing.

prototype with a specific routing function implemented
on those units. Five optional routing algorithms proposed
in this paper, which are realized in the RHL module to
evalute the NoC performance, are static XY routing, adaptive
West-first (WF), negative-first (NF) (25, 26], odd-even (OE)
turn [27], and East-Last (EL) routing algorithms.

4.1.1. Static Routing Algorithm. Figure 6(a) shows the turn
model of XY static routing. The dotted lines denote the
prohibited turns, while the solid lines denote the allowed
turns. The diagram in the right side of each figure shows
the turn models when they are mapped into a mesh node
diagram. The turn models are introduced to avoid cyclic
dependency (to avoid deadlock). In mesh router prototype
with XY routing algorithm, message packet will always be
routed firstly in X (horizontal) direction, and then into Y
(vertical) direction. Therefore, turns from North to East,
North to West, South to East, and South to West are
prohibited as depicted in Figure 6(a).

4.1.2. Adaptive Routing Algorithm. Figures 6(a), 6(c), and
6(d) depict the turn model of the selected adaptive routing
algorithms. Some existing minimal adaptive routing algo-
rithms are used, where adaptiveness of the routing selection
depends on two signals. When there are two possible
directions to route a packet, then the router will consider

firstly the number of free ID slot of two possible output
links. The packet will be routed to the direction, where more
free ID slots are available. This runtime routing adaptivity is
also used by AdNoC [28] where routing decisions are made
locally depending on available bandwidth in each direction
to the neighboring router.

The main difference between AdNoC and XHiNoC is that
XHiNoC does not use virtual channels. The use of virtual
channels will increase logic gates consumption. Our routing
algorithms are also simpler resulting in a routing logic unit
with less than 300 logic gates per router in comparison with
2877 logic gates comsumed by a routing logic unit of AdNoC.
The XHiNoC routing logic will also consider the number of
free registers from the FIFO buffers in the next two adjacent
mesh nodes. If the numbers of free ID slots are the same for
two possible directions, then the router will select a direction,
where more free registers are available in the next output
link. If both values are the same, the routing logic will prefer
a nonturn direction. Algorithm 1 presents a cutsection of
an adaptive routing algorithm to make a NORTH or EAST
routing adaptively.

(1) West-First (WF) Routing Algorithm. The turns from
North to West and South to West are prohibited in WF
routing algorithm. Hence, packets are routed firstly to West
when the target nodes are located in North-West or South-
West quadrants. Packets can be adaptively routed when
destination nodes are located in North-East or South-East
quadrants.

(2) East-Last (EL) Routing Algorithm. In EL routing algo-
rithm, the turns from East to North and East to South
are prohibited. Hence, packets are routed to East at last
when the target nodes are located in North-East or South-
East quadrants. Packets can be adaptively routed when
destination nodes are located in North-West or South-West
quadrants.

(3) Odd-Even (OE) Routing Algorithm. The adaptive routing
with odd-even turn model selected in our prototype uses
combination of adaptive WF and EL routing algorithms.
In the even column, the routers use EL adaptive routing,
while in the odd column, the routers uses WF adaptive
routing. However, attention must be payed for the routing
adaptiveness in an even column. In an odd column, packet
cannot be routed to East when target node is located in
North-East or South-East quadrant of the next East column
(even column), because in the even column, the rule for EL
routing is regarded, for example, East to North and East to
South turns are prohibited.

(4) Negative-First (NF) Routing Algorithm. In NF routing
algorithm, the turns from West to South and South to
West are prohibited. Hence, packets are routed firstly to
negative direction when the target nodes are located in
South-East (Y-direction firstly) or North-West (X-direction
firstly) quadrants. Packets can be adaptively routed when

destination nodes are located in North-East or South-West
quadrants.

4.2. Dynamic Packet Identity Management. Figure 7 presents
how message packets can be mixed or interleaved in the same
FIFO buffer by using our proposed local ID-tag mapping
management method with wormhole packet switching. The
packet interleaving method is proposed for a fair output link
access and is very effective to tackle a deadlock problem in a
multicast data delivery [22]. For the sake of simplicity, only
LUT units of RE modules at West (W) and East (E) input
ports in node (2, 3) as well as LUT unit at North (N) input
port in node (2, 2) are presented. And only the IDM unit at
South (§) input port in mesh node (2, 3) is shown. Packet
A with ID-tag 3 enters mesh node (2, 3) from the E input
port, while packet B with ID-tag 2 comes from the W input
port.

As shown in Figure 7, we assume that the header of each
packet has been forwarded, and the RHL unit in the RE
module has computed the routing direction and recorded it
into the LUT register address based on its ID-tag number.
Hence, in mesh node (2, 3), flits coming from W input port
with ID-tag 2 will always be routed to South output port as
well as flits coming from E input port with ID-tag 3 will be
also routed to South (see East and West LUT in mesh node
(2,3)).

The IDM unit manages the link bandwidth utilization
and will guarantee that different flits of different packets
will not have the same ID-tag before entering the next
downstream mesh node. Thus, the LUT unit in the next
input port can route incoming flits with service based on
their ID-tags. As shown in Figure 7, the South IDM in mesh
node (2, 3) maps packet A into ID slot 0 and packet B into ID
slot 1. Hence, packets A and B will receive new ID-tag 0 and 1
respectively after leaving for mesh node (2, 3). Packets A and
B are interleaved in mesh node (2, 2) and are then routed by
the LUT unit at North input port based on their ID-tags. Flits
with ID-tag 0 (belonging to message packet A) will be routed
to South direction, while the flits with ID-tag 1 (belonging to
message packet B) will be routed to East.

5. XHiNoC Microarchitecture

5.1. General Mesh Switch Router Architecture. The XHiNoC
mesh router prototypes are developed using modular synthe-
sizable VHDL approach. The modular-based design enables
us to exchange some modules with other modules allowing
a partial architecture reconfiguration at design time. The
architecture is scalable to follow a required specification.
For instance, if we need only unicast or both unicast and
multicast support [22], then some modules can be easily
exchanged and inserted or removed without making a hard
or large modification.

Some modules in the XHiNoC are public units, which
are commonly used for many required prototypes. And the
others are flexible/exchangeable units, which can be replaced
by other units to obtain a certain router prototype. The router
hardware logic (RHL), for instance, as shown in Figure 8 is a

VLSI Design

exchangeable module. A routing algorithm is implemented
in this module. The selected routing algorithms that are used
in this paper are described in Section 4.1.

One routing engine is allocated at each incoming port
allowing up to 5 parallel simultaneous crossbar connections.
This approach will increase bandwidth capacity of the router.
Indeed, because our router architecture in this paper is made
for mesh NoC topology, then the bandwidth capacity of the
NoC can be scaled well.

The architecture of the NoC router can be classified into
three main groups that is, logical modules in each port, a
crossbar switch, and a centralized LCFS (link controller and
flow supervisor) module. For the sake of simplicity, only
components in the West port are presented in the figure. In
each port, there are some components such as an FIFO buffer,
a routing eingine, (RE), an ID-tag mapping manager (IDM)
unit, and link state controller (LSC).

The RE module consists of a combination of the
RHL and router look-up table (LUT) to support runtime
routing adaptivity and in-order delivery guarantee when
using a deadlock-free adaptive routing algorithm. The RHL
computes the required routing direction based on the target
address information stated in a header flit and the underlying
routing algorithm. The routing direction of the message is
then copied into the routing table registers of the LUT and is
indexed based on its ID-tag. Thus, each flit belonging to the
same message packet (because it has the same ID-tag) will
be routed to the same direction. By using that combination,
an extra reconfiguration unit to program the slot table of the
LUT unit is not required. The RE is allocated for each input
port to improve bandwidth capacity of each router (routing
parallelism).

Because of using a parallel pipelined wormhole packet
switching, the XHiNoC is equipped with network traffic
flow control. The use of the network flow control enables
variable determination of the number of registers in the
FIFO buffer (FIFO depth). The LSC is a state machine, which
controls the flow of a flit from the output port into the next
downstream FIFO buffer. If the next FIFO is full, then the
(link state controller LSC) unit will not let the flit enter the
next FIFO, until one space in the register of the next FIFO
is free. The central LCFS will be explained in Section 5.2.
The functionality of the IDM unit has been presented in
Section 2. Sections 3.2 and 4.2 have also explored how flits
of different messages can be interleaved in a communication

link.

5.2. Link Controller and Flow Supervisor. The LCFS func-
tionalities are to control the links in the crossbar switch
and to supervise neighbour congestion states. The structure
of the LCFS is depicted in Figure 9. It consists of direction
assignment, arbiter, winner flit encoder (EncWin), and multi-
plexor (Muxl1) units. The last tree modules are assigned for
each output port to enable parallel outport access which can
increase the bandwidth capacity of each router. The LCFS
receives routing direction requests from all routing engine
(RE) units, and a full flag from the network interface and the
neighbor nodes.

VLSI Design 9
LUT West N LUT East
node (2,3) (2,3) node (2,3) IDM South
D Diasii 1D |Direction node (2,3)
0 ---- 1508 D] Map
> South I kl- 2 IR BRES
3 out 3 | South T =
1 4 3
5 2 1
6 § 5
7 I T%
——————————————— 7
B2 Packet A \’\ New ID
-
Packet B New ID state
22 = (32
LUT North
node (2,2)
ID[Direction < <
e T
% East 1 0[0]
3
4
5
6
7 T T

FIGURE 7: Dynamic wormhole packet identity-tag mapping management controlled by LUT and IDM modules.

The direction assignment unit is used to assign the
routing directions from all RE units in the input ports,
to distribute properly the routing direction request signals
(EAST, NORTH, WEST, SOUTH, LOCAL) and to decode the
signals from 3-bit into 1-bit signals. These 1-bit signals are
then applied to the input ports of an arbiter unit. The arbiter
is in charge of selecting a winner flit of all flits requesting
the same output port. By detecting the high-level values of
those signals, then the arbiter will select a winner which has
right to access the output port. This mechanism is realised
by applying per flit round robin arbitration to support a
fair mechanism to access and to share the output links (see
Section 4.2). If the FIFO in the next node is full, then the
arbiter will not select a winner to access the requested ports
(link-level flit flow control).

The EncWin encodes the winner signals and passes
these signals to the MuxI units in all output ports. Signal
interconnect from output ports of the EncWin units into
input ports of the MuxI units is aimed to control the flit
traffic flows in the crossbar switch (cbswitch) module. The
Xout signals from EncWin units are connected to the chswitch
module to select a flit that will be forwarded to an output
port. The MuxI unit is in charge of granting the FIFO that
holds the winner flit to access the output port, thus the data
flit can be released from the FIFO queue.

6. Performance Evaluation

6.1. Selected Traffic Scenarios. The performance of the pro-
posed XHiNoC prototypes with different selected routing
algorithms as described in Section 4.1 is evaluated by using
four different traffic scenarios as shown in Figure 10. In
the matrix-transpose traffic scenarios as depicted in Figures
10(a) and 10(b), 6 different packets are injected into 6

different nodes. While in the complement traffic scenarios
as depicted in Figures 10(c) and 10(d), 8 different packets
are injected into 8 different nodes. Source and target nodes
are identified by alphabets S and T, respectively, followed by
numerical alphabet.

Each injected packet consists of 128 flits (1 header flit
followed by 127 payload flits). Therefore, in the transpose
traffic scenarios, the total number of 768 flits (6 x 128) is
injected in the network, while in the complement traffic
scenarios, the total number is 1024 flits (8 x 128). Each
message is well encoded, so that it can be easily recognised
in the networks. Each flit of the messages is then numbered
in-order, thus it is easy for us to check packet-loss, packet
integrity, and out-of-order delivery problem.

Certainly, the total number of required clock cycles for
packet transfer heavily depends on the NoC traffic load. But,
the purpose of these traffic scenarios is not only to measure
the number of required cycles to transfer the last flit of each
message packet under different traffic situations and different
routing algorithms, but also to observe the effectiveness and
the efficiency of using the local ID-tag mapping management
technique to schedule the link at runtime. The measurement
starts from injection time of the header flits from source
node until ejection time of the last flit of each packet in
the target node. The start time of the packet injections
is the same at every node, where after some cycles, the
congestion flags can probably trace back to the injection
nodes, because of the existing link sharing in the network for
instance. Afterwards, the injection rates can be automatically
controlled by network interfaces with similar mechanism as
the flit flow control at link-level.

6.2. Performance Measurement Results. Figure 11 shows the
table of total cycle requirements to transfer the last flit of each

10 VLSI Design
I RPN
; X .
i West routing engine (RE) Type7 ! GrantRn (E) «—] < gilg(};:;;
UsedID & | (east) Router hardware logic ' GrantRn (N)<— < Neighbor
emptylD . (z ' GrantRn (W) — Central full. (north)
north) . ST . <— Neighbor
signals from ‘W This block o GrantRn (S) <—— link full (west)
u :
IDMs in 'W can be o GrantRn (L) < controller < Neighbor
outports ,% replacid by ! Dir (E) & flow full (south)
 (east) another i . supervisor < Neighbor
ND & full ; h routing ! Dir (N) (LCFS) full (local)
flags from ﬂM) leorith dir out :: Dir (W)
neighbors o] (south) | FEOTRM TR LUT [T Xout (1)
g %: D — P Dir (S)
R O T Type — | Dir (L) —
I : | I
Full to [j DestY : '
west : Rn est)j{yp e : ReqWn (N)
GrantWn . FIFO GrantRn (W) | I Xout(N)
1
from west i Wn buffer i e l X (E)
i / 1-_ \T\YPE) i out
v/ D Se- !
! = 7
Flitin | / ~ RL :
(west) |,/ . Req (W) | ReqWn
g 1 . —> (E)
9[5] L | Q CB switch —
P > DestX < ! S
N > DegtY i
i \ 7 !
1 g
GrantWn| ID_from i
1
O e e J Rt 0w | —W ReqWa (L)
] !
1 T T~ : Xout (L)
Full | o 7 RN |
from D' ° L)CFS 7 RSN i Rqun)
— . Old_ID I out (S)
west 5 L’ IDM <~ |
1 7’ I
D 3 ’ L 7 : Xout (W)
Flit outi \B‘qw_ID = = < : EmptyID (west)
(west) : N R g = L UsedID (west)
! AN e !
1 N . 7z 1
| West port - |

F1GURE 8: Generic architecture of the XHiNoC mesh router.

packet from source nodes to target nodes. Figure 12 presents
the average cycle requirements to transfer the last flit of each
packet for the five selected routing algorithms. The average
number of cycles is calculated by summing the total cycle
to transfer the last flit of each packet divided by number
of packet. In this case, a number of 6 and 8 packets are
injected in the transpose and complement traffic scenarios,
respectively.

It looks that, the routing algorithm, which has the
best performance, differs from each traffic scenario. In the
transpose traffic 1, the WE, OE, and NF adaptive routing
functions show the best performance. In the transpose
traffic 2, the best performance is shown by the EL and NF
adaptive routing functions. In the complement traffic 1, the
static XY routing shows the best performance. While in
the complement traffic 2, the performance of the static XY,
the WE, and EL adaptive routing functions is the best. The
performance of each routing algorithm is strongly dependent
on the traffic condition.

In general, the RTL simulation experiments have proved
the effectiveness and the efficiency of using the local ID-

TaBLE 1: Synthesis results of the routers on a Virtex2 FPGA device
(flit size: 32 + 6 bits, FIFO buffer depth: 8).

Routing Al. XY WF EL OE NF
Number of slices 4884 5009 5016 5017 5114
Max. freq. (MHz) 83.39 91.02 89.43 88.57 100.51

tag mapping management to schedule the messages with
wormhole packet switching technique. The methodology has
successfully allocated one available ID-slot per communica-
tion link for each message at runtime. Therefore, as long as
the bandwidth requirement does not exceed the maximum
capacity of each communication link (as represented by the
available ID-slots), all flits of the messages can be scheduled
and transmitted from source to destination nodes.

7. Logic Synthesis

7.1. Synthesis on FPGA. The mesh router prototypes have
been synthesized on VirtexII-Pro (target device xc2vp30).

VLSI Design 11
CLK
L2E GRIfe GRefl
S 2 E 5o~ g [GR sfe GR efs _
N_2_E = & nfe ‘ €N s S / Grant
F \ Rn (E)
Full fromT \l/ /
east neighbgrL < Xout (E) Dir (E)
L2 N GR Ifn \ GRnfl
S 2 N R~ = [GRsfn GR nfs
W2N (| &E S [GRwn) GRnfw | %
E_2_N ;% £ E GR efn GR nfe = / Grant
— = \ / Rn (N)
Full from] l «)
Dir (B) | = north neighbor - Xou (N) “ 4' Dir(N)
= b3
pir(N) | B LL2W . & GRIfw ‘\(‘Q‘ GRwil
=5 & [Saw o3 = |GRstw ’\ /' GRwhs
: 2 L2 B ‘ =
Dir (W), g Now | B S E GR nfw “ GRwin |2 |5
Dir (S) _g E2 W << m |[GRefw / / GR wfe
—| 3 T "
Dir (L) B Full from \l, ()
> A/ west neighbor Kout (W) "
CLK
L2S GR Ifs / ‘ GR sfl
—~ =] / \
wos | B8 £ |GRwhs GR sfw
N 2_S 22 < |GRnfs _GR sfn
E2S <2 o= [GRefs GR sfe
Full fromT l
south neigh(l:)I(u)Ilé Xout (S) \
S 2L oY = |GRsfl 4 _GR Ifs
W2l (| &7% < [GRwil/j \ GRIfw (| %
N 2 L 3 S ;-:) GR nfl GR Ifn E Grant
E 2 L /l\v M | GRefl GR Ife Rn (L)
Full from .
NI Xout (L) Dir (L)
F1GURE 9: Detail structure of the LCFS.
Transpose Transpose TaBLE 2: Number of slices of the router with WF routing on a
traffic 1 traffic 2 Virtex2 FPGA device.

B
e
DEDS

BEED
5)

<1
&

BET)

0/) 2 /)
[0]
(b)
Complement Complement
traffic 1 traffic 2

EDUERESEE
IBDDD [DEDD
TEEERIECEE,
[0] (0f 1§ 2]3]

(d)

—

[9)

FiGURE 10: Selected traffic scenarios.

Table 1 shows the number of slices required to synthesis five
mesh router prototypes with different routing algorithms
as well as maximum working frequency. The table shows
also area overheads to implement adaptive routing over

Flit size FB depth = 4 FB depth =8 Overhead
16 + 6 bits 2809 3662 30.37%
24 + 6 bits 3136 4380 39.67%
32 + 6 bits 3468 5009 44.43%

static routing algorithm. The implementation of (negative-
first NF) routing algorithm gives the largest area, for example,
5114 slices and an overhead of 4.71% over static routing.

Table 2 presents the comparison number of slices by
varying the bit size of the packet flit and the depth of FIFO
buffer (the number of registers in the FIFO buffer). For
instance, if the bit size of the payload flit (words size) is
double increased (from 16 bits to 32 bits), then the number
of required slices increases 23.46% when FIFO depth is 4 and
increases 36.78% when FIFO depth is 8.

Table 2 shows also the overhead percentage of slices
number when the FIFO depth is increased from 4 to 8
registers. For instance, when the flit size is 32 + 6 bits (32-
bit words size), then the logic consumption will increase
44.43% if the FIFO depth is increased from 4 to 8 registers.

12

Transpose traffic 1

850
800 -
750 1
700 A
650
600 -
550 1
500
450 A
400 +
350 A
300 A
250 A
200 A
150 -
100
50 A1

O 4

Cycles required to transfer the last flit

G

s

Packet

XY O OE
E NF

B7ZO
=
=

(a)

Complement traffic 1
850

800 1
750 A
700 1
650 1
600 A
550 1
500 1
450 1
400 A
350
300 4
250 1
200 1
150 1
100 A

50 A

Cycles required to transfer the last flit

P5
Packet

O OE
[NF

(c)

VLSI Design

Transpose traffic 2

850
800 1
750 1
700 1
650 A
600 1
550 1
500 1
450 1
400 1
350 1
300 1
250 A
200 A
150 A
100 1

50 A

Cycles required to transfer the last flit

777 A

[

v

N

z

P4
Packet

XY O OE
B NF

(b)

Complement traffic 2

Cycles required to transfer the last flit

P1 P2 P3 P4 P5 P6 pP7 P8

Packet
O XY O OE
WE E NF
W EL

(d)

FiGurek 11: Total cycle requirements to transfer last flits.

TaBLE 3: Logic synthesis of router prototypes with adaptive routing
algorithms (flit size: 32 + 6 bits, FIFO depth: 4).

Router’s routing Alg. WF OE EL NF
Num. of logic cells 7149 7132 7119 7206
0.1058 0.1057 0.1054 0.1064

Total cell area (mm?)

Meanwhile, the logic consumptions increase 30.37% and
39.67%, if the word sizes are 16 bits and 24 bits, respectively.
The results show that FIFO buffers dominate logic gates
consumption.

The irregular circuit-switched PNoC [14] with 8 IO-
ports, 32-bit data width, consumes 1305 slices and can
be clocked at 126 MHz. The PNoC consumes less slices
than XHiNoC, because XHiNoC uses ID-tag management
units and link-level flow control. Furthermore, PNoC uses

a dynamic module replacement via routing table updates
that is suitable for FPGA implementation, but not for ASIC,
except that additional reconfiguration unit to update the
contents of the routing tables is provided.

7.2. Synthesis using CMOS Standard-Cell.

7.2.1. Synthesis Data. Table 3 presents the logic area eval-
uation of mesh router prototypes with adaptive routing
algorithms after synthesis using 130-nm CMOS standard-
cell technology from United Microelectronics Corporation
(UMC). In Table 3, total numbers of logic cells and cell areas
of four NoC prototypes with different routing algorithms
and the same FIFO buffer depth (4 registers) are presented.
It looks that the variation of the logic and area consumptions
of the adaptive mesh router prototypes is very small.

VLSI Design

800
750 -
700
650 -
600 -
550
500 ~
450 A
400 -
350 A
300
250 ~
200
150 -
100

50 A

Average cycle required to transfer the last flit

| I&

o

0 :
Transp. 1 Transp. 2 Comple. 1 Comple. 2
Traffic scenario
O XY O OE
WF B NF
H EL

FIGURE 12: Average last flits transfer latency.

TaBLE 4: Logic synthesis of the router prototype with static XY
routing algorithm (flit size: 32 + 6bits) using UMC 130-nm and
180-nm standard-cell technologies.

130-nm techn. FIFO depth: 2 FIFO depth: 4

Num. of logic cells 5363 6661
Total cell area (mm?) 0.0767 0.1018
Max. Freq. (MHz) 472 453
180-nm techn. FIFO depth: 2 FIFO depth: 4
Num. of logic cells 5033 6572
Total cell area (mm?) 0.123 0.168
Max. freq. (MHz) 264 247

TABLE 5: Power estimation at 200 MHz with UMC 180-nm
technology (1.8 V). (Flit size: 32 + 6 bits, FIFO depth: 4.)

Routing Alg.: XY WF NF

Net switching power (mW) 7.49 7.94 8.04
Cell internal power (mW) 63.98 60.87 66.43
Cell leakage power (uW) 0.89 0.99 0.84

Table 4 exhibits the logic cell consumptions, total cell
areas, and maximum working frequencies for NoC prototype
with static XY routing algorithm by varying the FIFO buffer
size (2 and 4 registers). Increasing the depth of FIFO will
not only increase the logic consumption but also degrade the
maximum working frequency. The synthesis results present
the synthesis data using 130-nm and 180-nm technologies.
The migration from 180-nm to 130-nm technology will
increase the maximum working frequency and reduce the
estimated logic area. Table 5 presents also the estimation of

13

power dissipation of the static and adaptive routers using
180-nm standard-cell technology.

Figure 13 represents a circuit layout of the mesh router
prototype using static XY routing algorithm with 4-depth
FIFO buffer. The cell area of the IDM units is highlighted
in the circuit layout. The standard-cell place and route are
made using silicon encounter tool from Cadence and 180-nm
standard-cell library from UMC. In the future, we will layout
the overall NoC-based on-chip multiprocessor using the
circuit layout prototype. We are now in progress to develop
the programming model of the on-chip multiprocessor using
our XHINoC interconnect platform.

7.2.2. Direct Comparison with other TDM-based NoCs. By
using a 130-nm standard-cell technology, the logic area of
Athereal on-chip router [23] is 0.2600 mm? (a queue depth
of 8 flits of 3 words of 32-bit). By using the same feature size
technology our XHiNoC router with static routing algorithm
has total cell area of 0.0767 mm? if the FIFO depth is 2,
and 0.1018 mm? if the FIFO depth is 4. While the XHiNoC
routers with adaptive routing and 4-depth FIFO have total
cell areas of about 0.106 mm?. The area of Athereal router is
mainly due to the use of virtual output channels to buffer
best-effort and guaranteed-throughput packets in different
FIFO bulffers.

The maximum frequency to transfer data in Athereal
router (32-bit word size) is 500 MHz resulting in an aggregate
bandwidth of 5 x 500 MHz x 32 bits = 80 Gbit/s. While the
aggregate bandwidth of the XHiNoC router (static routing,
2-depth FIFO, 32-bit word size) is 5 X 472 MHz X 32 bits X
1/2 = 37.76Gbit/s. The use of a routing engine with
combined router hardware logic and routing look-up table
gives contribution to the smaller maximum data frequency
compared to the maximum data frequency of the Athereal.
The XHiNoC aggregate bandwidth is divided by two because
of the use of two stage cycle pipeline data transmission.

When only a routing table was used to implement
the routing engine, there is still a potentiality to increase
the maximum data frequency of our NoC. In this case,
an additional reconfiguration unit to schedule the link at
compile time is needed. Even if the ID-based slot allocation
is done at compile time, the optimal ID-based slot allocation
does not required a global network view. Computing an
optimal time-based slot allocation for all connections at
compile time (as used by Athereal) requires the global
network view and may be expensive [23].

NOSTRUM NoC [4] has reported that its router con-
sumes 13896 equivalent NAND gates (independent from the
standard-cell technology). Without reporting the logic area,
SoCBUS NoC [5] can be clocked at 1.2GHz in a 180-nm
technology process. The DSPIN NoC router [12] with 90-
nm technology has gate area of about 0.082 mm? after gate-
level synthesis (4-depth (guaranteed-service GS) queue, 8-
depth (best-effort BE) queue, 34-bit flit size). On a 500 MHz
implementation, each GS channel in DSPIN has a bandwidth
of 8 Gbit/s (40 Gbit/s for 5 GS channels). The logic area and
data frequency of DSPIN compared with our XHiNoC are
approximately the same with similar 130-nm technolgy size.

F1Gure 13: The circuit layout of the router prototype using 180-nm
UMC technology with static XY routing and 4-depth FIFO buffer.

8. Conclusions

Our XHiNoC prototypes with the local ID-tag mapping
management technique have shown a good performance to
serve wormbhole packets and to schedule link interconnects
locally in each router at runtime. As explained in Section 2
before, the dynamic local ID-tag mapping management used
by our XHiNoC is more flexible than the TDM-based circuit
switching used by Athereal [23]. The XHiNoC’s ID-based
scheduling is easier and more effective to reconfigure links
interconnection both at runtime and compile time than the
TDM-based scheduling used by Athereal. Unfortunately, the
work in [23] did not show an experiment to verify the
TDM-based circuit switching by using an example of traffic
scenario.

In our experiment, all traffics can be accepted in the
target nodes for all traffic scenarios using static and adaptive
routing algorithms. There is no flit-loss, and all traffics are
accepted in order, because even if adaptive routing is used,
only the header flit is routed adaptively to find optimal link.
Payload flits will follow the links that have been reserved by
the header flits using wormhole switching.

Message delivery communication services can be divided
into connectionless (best-effort) and connection-oriented
(guaranteed-bandwidth) communication. In the connection-
oriented communication, a header flit must be injected
from a source node firstly to reserve links in the net-
work. After finding connection to its destinated node, a
response flit will be sent back to the source node. After
the response flits arrive the source node, payload flits start
being injected from source node. Hence, this approach
is also called the guaranteed-bandwidth service, because
the packet will not be injected to the network before a
guarantee exists, that is, one slot bandwidth of each link
connecting source and target nodes has been reserved for the
packet.

Our recent XHiNoC implementation uses connectionless
communication, where messages are sent like UDP packets

VLSI Design

in internet world. Therefore, the optimal resource placement
in the NoC platform should be undertaken, and the result
must guarantee that there will be no communication links,
which are consumed exceeding their maximum capacity in a
certain period of time. In this case, the maximum capacity is
related to available ID slots. Otherwise a message must wait
for other messages until one of them has closed the reserved
link or release one ID slot to be free.

The optimal problem could be undertaken, because
traffics are predictable in the context of SoC application. If
the solution of above optimal problem cannot be found, then
we must increase the number of available ID slots. In our
recent XHiNoC implementation, we use 3 bits for ID slot
identification. It means that there are 8 available ID slots.
By increasing ID tag bits to 4, 5 or, 6 bits, there will be 16,
32, or 64 ID slots available for link bandwidth consumption,
respectively.

The use of IDM units in our proposed ID-tag-based
multiplexing technique has given a significant contribution
to the logic consumption. The logic cell area of the IDM
units (e.g., in router with 4-depth FIFO and static routing)
is about 36% of the total logic cell area. Since the critical
path of router is found in the FIFO buffer and in the routing
engine unit, the IDM unit does not affect the maximum
allowed data frequency. However, there is an additional data
pipeline at the outgoing port in order to let the IDM unit
to update and to map the old and the new IDs of each
flit. Hence, flits flowing through the network router will
experience additional latency of one cycle period. Because
of the additional data pipeline, the latency will increase
proportionally to the number of hops.

The current XHiNoC implementation does not support
data error correction for quality of service (QoS), such as
cyclic redundancy code (CRC) calculation to detect errors
in data communication such as presented by GEXSPidergon
NoC [10]. The QoS in this level is certainly an interesting
topic for further implementation of the XHiNoC.

Acknowledgments

The authors gratefully acknowledge Deutscher Akademischer
Austausch Dienst DAAD, German Academic Exchange Ser-
vice for awarding F. A. Samman with scholarship pursuing
doctoral degree at Darmstadt University of Technology in
Germany, as well as the comments and suggestions made by
the reviewers.

References

[1] “The International Technology Roadmap for Semiconduc-
tors,” Design Technology Roadmap, Update 2006, http://www
.itrs.net.

[2] L. Benini and G. De Micheli, “Networks on chips: a new SoC
paradigm,” IEEE Computer, vol. 35, no. 1, pp. 70-78, 2002.

[3] A. Jantsch and H. Tenhunen, Networks on Chip, Kluwer
Academic Publishers, Hingham, Mass, USA, 2003.

[4] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, “Guaranteed
bandwidth using looped containers in temporally disjoint
networks within the Nostrum network on chip,” in Proceedings

VLSI Design

©

(10

(11

of the Conference on Design, Automation and Test in Europe
(DATE 04), vol. 2, pp. 890895, Paris, France, February 2004.
D. Wiklund and D. Liu, “SoCBUS: switched network on
chip for hard real time embedded systems,” in Proceedings
of 17th IEEE International Parallel and Distributed Processing
Symposium (IPDPS °03), p. 8, Nice, France, April 2003.

M. B. Taylor, J. Kim, J. Miller, et al., “The raw microprocessor:
a computational fabric for software circuits and general-
purpose programs,” IEEE Micro, vol. 22, no. 2, pp. 25-35,
2002.

F. Moraes, N. Calazans, A. Mello, L. Méller, and L. Ost,
“HERMES: an infrastructure for low area overhead packet-
switching networks on chip,” The VLSI Journal, vol. 38, no. 1,
pp. 69-93, 2004.

M. K.-E. Schifer, T. Hollstein, H. Zimmer, and M. Glesner,
“Deadlock-free routing and component placement for
irregular mesh-based networks-on-chip,” in Proceedings
of IEEE/ACM International Conference on Computer-Aided
Design (ICCAD °05), pp. 238-245, San Jose, Calif, USA,
November 2005.

F. Karim, A. Nguyen, and S. Dey, “An interconnect architecture
for networking systems on chips,” IEEE Micro, vol. 22, no. 5,
Pp. 36-45, 2002.

M. Zid, A. Zitouni, A. Baganne, and R. Tourki, “New generic
GALS NoC architecture with multiple QoS,” in Proceedings of
IEEE International Conference on Design and Test of Integrated
Systems in Nanoscale Technology (DTIS °06), pp. 345-349,
Gammarth, Tunisia, September 2006.

P. Guerrier and A. Greiner, “A generic architecture for on-
chip packet-switched interconnection,” in Proceedings of the
Conference on Design, Automation and Test in Europe (DATE
’00), pp. 250-256, Paris, France, March 2000.

I. M. Panades, A. Greiner, and A. Sheibanyrad, “A low
cost network-on-chip with guaranteed service well suited to
the GALS approach,” in Proceedings of the Ist International
Conference on Nano-Networks and Workshops (NanoNet *06),
pp- 1-5, Lausanne, Switzerland, September 2006.

T. A. Bartic, J.-Y. Mignolet, V. Nollet, et al., “Topology
adaptive network-on-chip design and implementation,” IEE
Proceedings: Computers and Digital Techniques, vol. 152, no. 4,
pp. 467-472, 2005.

C. Hilton and B. Nelson, “PNoC: a flexible circuit-switched
NoC for FPGA-based systems,” IEE Proceedings: Computers
and Digital Techniques, vol. 153, no. 3, pp. 181-188, 2006.

L. Benini and D. Bertozzi, “Network-on-chip architectures
and design methods,” IEE Proceedings: Computers and Digital
Techniques, vol. 152, no. 2, pp. 261-272, 2005.

J. Xu, W. Wolf, J. Henkel, and S. Chakradhar, “A design
methodology for application-specific networks-on-chip,”
ACM Transactions on Embedded Computing Systems, vol. 5,
no. 2, pp. 263280, 2006.

J. Bainbridge and S. Furber, “Chain: a delay-insensitive chip
area interconnect,” IEEE Micro, vol. 22, no. 5, pp. 16-23, 2002.
M. Amde, T. Felicijan, A. Efthymiou, D. Edwards, and L.
Lavagno, “Asynchronous on-chip networks,” IEE Proceedings:
Computers and Digital Techniques, vol. 152, no. 2, pp. 273-283,
2005.

I. Saastamoinen, D. Sigiienza-Tortosa, and J. Nurmi, “Inter-
connect IP node for future system-on-chip designs,” in
Proceedings of the 1st IEEE International Workshop on Electronic
Design, Test and Applications (DELTA °02), pp. 116-120,
Christchurch, New Zealand, January 2002.

E. Beigné, F. Clermidy, P. Vivet, A. Clouard, and M. Renaudin,
“An asynchronous NOC architecture providing low latency

(21]

[22]

15

service and its multi-level design framework,” in Proceedings
of the 11th IEEE International Symposium on Asynchronous
Circuits and Systems (ASYNC 05), pp. 54—63, New York, NY,
USA, March 2005.

T. Bjerregaard and J. Sparse, “Implementation of guaranteed
services in the MANGO clockless network-on-chip,” IEE
Proceedings: Computers and Digital Techniques, vol. 153, no. 4,
pp. 217-229, 2006.

FE A. Samman, T. Hollstein, and M. Glesner, “Multicast
parallel pipeline router architecture for network-on-chip,” in
Proceedings of the Conference on Design, Automation and Test in
Europe (DATE °08), pp. 1396-1401, Munich, Germany, March
2008.

E. Rijpkema, K. Goossens, A. Riddulescu, et al., “Trade-offs in
the design of a router with both guaranteed and best-effort
services for networks on chip,” IEE Proceedings: Computers and
Digital Techniques, vol. 150, no. 5, pp. 294-302, 2003.

S. Vassiliadis and I. Sourdis, “FLUX interconnection networks
on demand,” Journal of Systems Architecture, vol. 53, no. 10,
pp. 777-793, 2007.

C. J. Glass and L. M. Ni, “The turn model for adaptive
routing,” in Proceedings of the 19th International Symposium
on Computer Architecture, pp. 278-287, Gold Coast, Australia,
May 1992.

C.J. Glass and L. M. Ni, “Adaptive routing in mesh-connected
networks,” in Proceedings of the 12th International Conference
on Distributed Computing Systems (ICDCS ’92), pp. 12-19,
Yokohama, Japan, June 1992.

G.-M. Chiu, “The odd-even turn model for adaptive routing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 11,
no. 7, pp. 729-738, 2000.

M. A. Al Faruque, T. Ebi, and J. Henkel, “Run-time adaptive
on-chip communication scheme,” in Proceedings of [IEEE/ACM
International Conference on Computer-Aided Design (ICCAD
’07), pp- 26-31, San Jose, Calif, USA, November 2007.

- i

/> . =
= &

Advances in

Civil Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Chemical Engineering

The Scientific
WQrId Journal

International Journal of

Rotating
Machinery

Journal of

Sensors

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Y :-
.

VLSI Design

‘.
.

Internatio Urna
Antennas and
Propagation

Modelling &
Simulation
in Engineering

International Journal of
Navigation and
Observation

e

Active and Passive
Electronic Components

Shock and Vibration

International Journal of

Distributed
Sensor Networks

Journal of
Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering

