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We investigate a continuous-time version of the mean-variance portfolio selection model with
jumps under regime switching. The portfolio selection is proposed and analyzed for a market
consisting of one bank account andmultiple stocks. The random regime switching is assumed to be
independent of the underlying Brownian motion and jump processes. A Markov chain modulated
diffusion formulation is employed to model the problem.

1. Introduction

The jump diffusion process has come to play an important role in many branches of science
and industry. In their book [1], Øksendal and Sulem have studied the optimal control,
optimal stopping, and impulse control for jump diffusion processes. In mathematical finance
theory, many researchers have developed option pricing theory, for example, Merton [2]was
the first to use the jump processes to describe the stock dynamics, and Bardhan and Chao [3]
were amongst the first authors to consider market completeness in a discontinuous model.
The jump diffusion models have been discussed by Chan [4], Föllmer and Schweizer [5], El
Karoui and Quenez [6], Henderson and Hobson [7], and Merculio and Runggaldier [8], to
name a few.

On the other hand, regime-switching models have been widely used for price
processes of risky assets. For example, in [9] the optimal stopping problem for the perpetual
American put has been considered, and the finite expiry American put and barrier options
have been priced. The asset allocation has been discussed in [10], and Elliott et al. [11] have
investigated volatility problems. Regime-switching models with a Markov-modulated asset
have already been applied to option pricing in [12–14] and references therein. Moreover,
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Markowitz’s mean-variance portfolio selection with regime switching has been studied by
Yin and Zhou [15], Zhou and Yin [16], and Zhou and Li [17].

Portfolio selection is an important topic in finance; multiperiod mean-variance
portfolio selection has been studied by, for example, Samuelson [18], Hakansson [19], and
Pliska [20] among others. Continuous-time mean-variance hedging problems were attacked
by Duffie and Richardson [21] and Schweizer [22] where optimal dynamic strategies were
derived, based on the projection theorem, to hedge contingent claims in incomplete markets.

In this paper, we will extend the results of Yin and Zhou [15] to SDEs with jumps
under regime switching. After dealing with the difficulty from the jump processes, we obtain
similar results to those of Yin and Zhou [15].

2. SDEs under Regime Switching with Jumps

Throughout this paper, let (Ω,F, P) be a fixed complete probability space on which it
is defined a standard d-dimensional Brownian motion W(t) ≡ (W1(t), . . . ,Wd(t))′ and a
continuous-time stationary Markov chain α(t) taking value in a finite state space S =
{1, 2, . . . , l}. Let N(t, z) be as n-dimensional Poisson process and denote the compensated
Poisson process by

˜N(dt, dz) =
(

˜N1(dt, dz1), . . . ,˜Nn(dt, dzn)
)

′

= (N1(dt, dz1) − ν1(dz1)dt, . . . ,Nn(dt, dzn) − ν(dzn)dt)′,
(2.1)

where Nj , j = 1, . . . , n, are independent 1-dimensional Poisson random measures with
characteristic measure νj , j = 1, . . . , n, coming from n independent 1-dimensional Poisson
point processes. We assume that W(t), α(t), and N(dt, dz) are independent. The Markov
chain α(t) has a generator Q = (qij)l×l given by

P
{

α(t + Δ) = j | α(t) = i} =

⎧

⎨

⎩

qijΔ + o(Δ), if i /= j,

1 + qiiΔ + o(Δ), if i = j,
(2.2)

where Δ > 0. Here qij ≥ 0 is the transition rate from i to j if i /= j while

qii = −
∑

j /= i

qij , (2.3)

and stationary transition probabilities

pij(t) = P
(

α(t) = j | α(0) = i), t ≥ 0, i, j = 1, 2, . . . , l. (2.4)

Define Ft = σ{W(s), α(s),N(s, ·) : 0 ≤ s ≤ t}. Let | · | denote the Euclidean norm as well
as the matrix trace norm and M′ the transpose of any vector or matrix M. We denote by
L2
F(0,T ;Rm) the set of all R

m-valued, measurable stochastic processes f(t) adapted to {Ft}t≥0,
such that E

∫T

0 |f(t)|2dt < +∞.
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Consider a market in which d + 1 assets are traded continuously. One of the assets is
a bank account whose price P0(t) is subject to the following stochastic ordinary differential
equation:

dP0(t) = r(t, α(t))P0(t)dt, t ∈ [0, T],

P0(0) = p0 > 0,
(2.5)

where r(t, i) ≥ 0, i = 1, 2, . . . , l, are given as the interest rate process corresponding to different
market modes. The other d assets are stocks whose price processes Pm(t), m = 1, 2, . . . , d,
satisfy the following system of stochastic differential equations (SDEs):

dPm(t) = Pm(t)

⎧

⎨

⎩

bm(t, α(t))dt +
d
∑

n=1

σmn(t, α(t))dWn(t) +
n
∑

j=1

∫

R

ρmj
(

t, α(t), zj
)

˜Nj

(

dt, dzj
)

⎫

⎬

⎭

,

t ∈ [0, T],

Pm(0) = pm > 0,
(2.6)

where for each i = 1, 2, . . . , l, b : [0, T] × S → R
d×1, σ : [0, T] × S → R

d×d, ρ : [0, T] ×
S × R

n → R
d×n is the appreciation rate process, and σm(t, i) := (σm1(t, i), . . . , σmd(t, i)) are

adapted processes such that the integrals exist. And each column ρ(k) of the d × n matrix
ρ = [ρij] depends on z only through the kth coordinate zk, that is,

ρ(k)(t, i, z) = ρ(k)(t, i, zk), z = (z1, . . . , zn) ∈ R
n. (2.7)

Remark 2.1. Generally speaking, one uses noncompensated Poisson processes in a jump
diffusionmodel (see Kushner [23]). However, we use compensated Poisson processes in (2.6)
instead of using noncompensated Poisson processes, this is because firstly, using relationship
(2.1) we can easily transform a jump diffusion model driven by noncompensated Poisson
processes into a jump diffusion model driven by compensated Poisson processes; secondly,
using compensated Poisson processes we can keep the Riccati Equation (4.2) similar to
that of a diffusion model without jump processes, and then H(t, i) in (4.3) has a financial
interpretation.
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Define the volatility matrix, for each i = 1, . . . , l,

σ(t, i) :=

⎛

⎜

⎜

⎜

⎝

σ1(t, i)

...

σd(t, i)

⎞

⎟

⎟

⎟

⎠

≡ (σmn(t, i))d×d,

b(t, i) =

⎛

⎜

⎜

⎜

⎝

b1(t, i)

...

bd(t, i)

⎞

⎟

⎟

⎟

⎠

∈ R
d×1,

ρ(t, i, z) =

⎛

⎜

⎜

⎜

⎝

ρ1(t, i, z)

...

ρd(t, i, z)

⎞

⎟

⎟

⎟

⎠

∈ R
d×n,

(2.8)

where

ρm(t, i, z) =
(

ρm1(t, i, z), . . . , ρmn(t, i, z)
)

. (2.9)

We assume throughout this paper that the following nondegeneracy condition:

σ(t, i)σ(t, i)′ ≥ δI, ∀t ∈ [0, T], i = 1, 2, . . . , l, (2.10)

is satisfied for some δ > 0. We also assume that all the functions r(t, i), bm(t, i), and σmn(t, i),
ρmn(t, i, z) are measurable and uniformly bounded in t.

Suppose that the initial market mode α(0) = i0. Consider an agent with an initial
wealth x0 > 0. These initial conditions are fixed throughout the paper. Denote by x(t) the total
wealth of the agent at time t ≥ 0. Assume that the trading of shares takes place continuously
and that transaction cost and consumptions are not considered. Suppose the right portfolio
(π0(t), π1(t), . . . , πd(t)) exists, where π0(t) is the money invested in the bond, and πi(t) is the
money invested in the ith stock. Then

x(t) =
d
∑

i=0

πi(t) =
d
∑

i=0

ηi(t)Pi(t),

x(0) = x0,

(2.11)

where η0(t) is the number of bond units bought by the investor, and ηi(t) is the amount of
units for the ith stock. We call x(t) the wealth process for this investor in the market. Now
let us derive intuitively the stochastic differential equation (SDE) for the wealth process as
follows. Suppose the portfolio is self-financed, that is, in a short time dt the investor does not
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put in or withdraw any money from the market. Let the money x(t) change in the market
due to the market own performance, that is, self-finance produces

dx(t) = η0(t)dP0(t) +
d
∑

i=1

ηi(t)dPi(t). (2.12)

Now substituting (2.5) and (2.6) into the above equation, after a simple calculation we arrive
at

dx(t) = r(t, α(t))x(t)dt +
d
∑

m=1

πm(t)(bm(t, α(t)) − r(t, α(t)))dt

+
d
∑

m=1

d
∑

n=1

πm(t)σmn(t, α(t))dWn(t)

+
d
∑

m=1

n
∑

j=1

∫

R

πm(t)ρmj
(

t, α(t), zj
)

˜Nj

(

dt, dzj
)

,

x(0) = x0 > 0, α(0) = i0,

(2.13)

where π(t) = (π1(t), . . . , πd(t))′ which we call a portfolio of the agent. And πm(t) is the total
market value of the agent’s wealth in themth asset,m = 0, 1, . . . , d, at time t.

Setting

B(t, i) := (b1(t, i) − r(t, i), . . . , bd(t, i) − r(t, i)), i = 1, 2, . . . , l, (2.14)

we can rewrite the wealth equation (2.13) as

dx(t) = r(t, α(t))x(t)dt + B(t, α(t))π(t)dt + π ′(t)σ(t, α(t))dW(t)

+
∫

Rn

π ′(t)ρ(t, α(t), z)˜N(dt, dz),

x(0) = x0 > 0, α(0) = i0.

(2.15)

Definition 2.2. A portfolio π(·) is said to be admissible if π(·) ∈ L2
F(0, T ;R

d) and the SDE
(2.15) has a unique solution x(·) corresponding to π(·). In this case, we refer to (x(·), π(·)) as
an admissible (wealth, portfolio) pair.

Remark 2.3. Most works in the literature define a portfolio, say π(·), as the fractions of wealth
allocated to different stocks. That is,

u(t) =
π(t)
x(t)

, t ∈ [0, T]. (2.16)
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With this definition, (2.15) can be rewritten as

dx(t) = x(t)[r(t, α(t)) + B(t, α(t))u(t)]dt

+ x(t)u(t)′σ(t, α(t))dW(t)

+
∫

Rn

x(t)u(t)′ρ(t, α(t), z)˜N(dt, dz),

x(0) = x0 > 0, α(0) = i0.

(2.17)

It is well known that this equation has a unique solution (see [1, page 10, Theorem 1.19]. We
can use the same method in [18, Example 1.15, page 8] to show positivity of the solution of
(2.17) if the initial wealth x0 is positive and u(t)′ρ(t, i, z) > −1.Awealth process with possible
zero or negative values is sensible at least for some circumstances. The nonnegativity of
wealth process is better imposed as an additional constraint, rather than as a built-in feature.
In our formulation, a portfolio is well defined even if the wealth is zero or negative, and the
nonnegativity of the wealth could be a constraint.

The agent’s objective is to find an admissible portfolio π(·) among all the admissible
portfolios whose expected terminal wealth is Ex(T) = ζ for some given ζ ∈ R

1, so that the risk
measured by the variance of the terminal wealth

Varx(T) ≡ E[x(T) − Ex(T)]2 = E[x(T) − ζ]2 (2.18)

is minimized. Finding such a portfolio π(·) is referred to as the mean-variance portfolio
selection problem. Specifically, we have the following formulation.

Definition 2.4. The mean-variance portfolio selection is a constrained stochastic optimization
problem, parameterized by ζ ∈ R

1:

minimize JMV (x0, i0, π(·)) := E[x(T) − ζ]2,

subject to

⎧

⎨

⎩

Ex(T) = ζ,

(x(·), π(·)) admissible.

(2.19)

Moreover, the problem is called feasible if there is at least one portfolio satisfying all
the constraints. The problem is called finite if it is feasible and the infimum of JMV (x0, i0, π(·))
is finite. Finally, an optimal portfolio to the above problem, if it ever exists, is called an efficient
portfolio corresponding to ζ; the corresponding (Varx(T), ζ) ∈ R

2 and (σx(T), ζ) ∈ R
2 are

interchangeably called an efficient point, where σx(T) denotes the standard deviation of x(T).
The set of all the efficient points is called the efficient frontier.
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For more details of mean-variance portfolio selection see [15, 16], We need more
notations; let Δij be consecutive, left closed, right open intervals of the real line each having
length γij such that

Δ12 =
[

0, q12
)

,

Δ13 =
[

q12, q12 + q13
)

,

...

Δ1l =

⎡

⎣

l−1
∑

j=2

q1j ,
l

∑

j=2

q1j

⎞

⎠,

Δ21 =

⎡

⎣

l
∑

j=2

q1j ,
l

∑

j=2

q1j + q21

⎞

⎠,

Δ23 =

⎡

⎣

l
∑

j=2

q1j + q21,
l

∑

j=2

q1j + γ21 + q23

⎞

⎠,

...

Δ2l =

⎡

⎣

l
∑

j=2

q1j +
l−1
∑

j=1,j /= 2

q2j ,
l

∑

j=2

q1j +
l

∑

j=1,j /= 2

q2j

⎞

⎠.

(2.20)

For future use, we cite the generalized Itô lemma (see [1, 24, 25]) as the following lemma.

Lemma 2.5. Given a d-dimensional process y(·) satisfying

dy(t) = f
(

t, y(t), α(t)
)

dt + g
(

t, y(t), α(t)
)

dW(t) +
∫

Rn

γ
(

t, y(t), α(t), z
)

˜N(dt, dz), (2.21)

where f, g, and γ satisfy Lipschitz condition with appropriate dimensions, each column γ (k) of the
matrix γ = [γij] depends on z only through the kth coordinate zk. Let ϕ(t, x, i) ∈ C1,2([0, T] × R

n ×
S;R), one then has

dϕ
(

t, y(t), α(t)
)

= Γϕ
(

t, y(t), α(t)
)

dt + ϕx
(

t, y(t), α(t)
)′
g
(

t, y(t), α(t)
)

dW(t)

+
n
∑

k=1

∫

R

{

ϕ
(

t, y(t) + γ (k)(t, α(t), zk), α(t)
)

− ϕ(t, y(t), α(t))

−ϕx
(

t, y(t), α(t)
)′γ (k)(t, α(t), z)

}

ν(dzk)dt

+
n
∑

k=1

∫

R

{

ϕ
(

t, y(t) + γ (k)(t, α(t), z), α(t)
)

− ϕ(t, y(t), α(t))
}

˜Nk(dt, dzk)

+
∫

R

(

ϕ
(

t, y(t), α(0) + h
(

α(t), l
))

− ϕ(t, y(t), α(t))
)

μ
(

dt, dl
)

,

(2.22)
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where

Γϕ(t, x, i) := ϕt(t, x, i) + ϕx(t, x, i)
′f(t, x, i)

+
1
2
trace

[

g(t, x, i)′’xx(t, x, i)g(t, x, i)
]

+
l

∑

j=1

qij’
(

t, x, j
)

+
n
∑

k=1

∫

R

{

ϕ
(

t, y(t) + γ (k)(t, α(t), zk), α(t)
)

− ϕ(t, y(t), α(t))

−ϕx(t, y(t), α(t))′γ (k)(t, α(t), z)
}

ν(dzk),

(2.23)

where μ is a martingale measure,

h
(

i, y
)

=

⎧

⎨

⎩

j − i, if y ∈ Δij ,

0, otherwise,
(2.24)

and μ(dt, dl) = γ(dt, dl) − μ(dl)dt is a martingale measure. And γ(dt, dy) is a Poisson random
measure with intensity dt × μ(dy), in which μ is the Lebesgue measure on R.

3. Feasibility

Since the problem (2.19) involves a terminal constraint Ex(T) = ζ, in this section, we derive
conditions under which the problem is at least feasible. First of all, the following generalized
Itô lemma [25] for Markov-modulated processes is useful.

The associated wealth process x0(·) satisfies

dx0(t) = r(t, α(t))x0(t)dt,

x0(0) = x0 > 0, α(0) = i0,
(3.1)

with its expected terminal wealth

ζ0 := Ex0(T) = Ee
∫T
0 r(s,α(s))dsx0. (3.2)

Lemma 3.1. Let ψ(·, i), i = 1, 2, . . . , l, be the solutions to the following system of linear ordinary
differential equations (ODEs):

ψ̇(t, i) = −r(t, i)ψ(t, i) −
l

∑

j=1

qijψ
(

t, j
)

,

ψ(T, i) = 1, i = 1, 2, . . . , l.

(3.3)
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Then the mean-variance problem (2.19) is feasible for every ζ ∈ R
1 if and only if

 := E

∫T

0

∣

∣ψ(t, α(t))B(t, α(t))
∣

∣

2
dt > 0. (3.4)

Proof. To prove the “if” part, construct a family of admissible portfolios πβ(·) = βπ(·) for
β ∈ R

1 where

π(t) = B(t, α(t))′ψ(t, α(t)). (3.5)

Assume that xβ(t) is the solution of (2.15). Let xβ(t) = x0(t)+βy(t), where x0(·) satisfies (3.1),
and y(·) is the solution to the following equation:

dy(t) =
[

r(t, α(t))y(t) + B(t, α(t))π(t)
]

dt + π(t)′σ(t, α(t))dW(t)

+
∫

Rn

π(t)′ρ(t, α(t), z)˜N(dt, dz),

y(0) = 0, α(0) = i0.

(3.6)

Therefore, problem (2.19) is feasible for every ζ ∈ R
1 if there exists β ∈ R such that

ζ = Exβ(T) ≡ Ex0(T) + βEy(T). Equivalently, (2.19) is feasible for every ζ ∈ R if Ey(T)/= 0.
Applying the generalized Itô formula (Lemma 2.5) to ϕ(t, x, i) = ψ(t, i)x, we have

d
[

ψ(t, α(t))y(t)
]

= ψ̇(t, α(t))y(t)dt + ψ(t, α(t))
[

r(t, α(t))y(t) + B(t, α(t))π(t)
]

dt

+
l

∑

j=1

qα(t)jψ
(

t, j
)

y(t)dt + π(t)′σ(t, α(t))dW(t)

+
n
∑

k=1

∫

R

{

ψ(t, α(t))
(

y(t) + π(t)′ρ(k)(t, α(t), z)
)

− ψ(t, α(t))y(t)

−ψ(t, α(t))π(t)′ρ(k)(t, α(t), z)
}

ν(dz)dt

+
n
∑

k=1

∫

R

{

ψ(t, α(t))
(

y(t) + π(t)′ρ(k)(t, α(t), z)
)

−ψ(t, α(t))π(t)′ρ(k)(t, α(t), z)
}

˜Nk(dt, dzk)

+
∫

R

{

ψ
(

t, α(0) + h
(

α(t), l
))

y(t) − ψ(t, α(t))y(t)
}

μ
(

dt, dl
)
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= −r(t, α(t))ψ(t, α(t))y(t)dt −
l

∑

j=1

qα(t)jψ
(

t, j
)

y(t)dt

+ r(t, α(t))ψ(t, α(t))y(t)dt + B(t, α(t))π(t)ψ(t, α(t))dt

+
l

∑

j=1

qα(t)jψ
(

t, j
)

y(t)dt + π(t)′σ(t, α(t))dW(t) +
n
∑

k=1

∫

R

{

ψ(t, α(t))y(t)
}

˜Nk(dt, dzk)

+
∫

R

{

ψ
(

t, α(0) + h
(

α(t), l
))

y(t) − ψ(t, α(t))y(t)
}

μ
(

dt, dl
)

= B(t, α(t))π(t)ψ(t, α(t))dt + π(t)′σ(t, α(t))dW(t) +
n
∑

k=1

∫

R

{

ψ(t, α(t))y(t)
}

˜Nk(dt, dzk)

+
∫

R

{

ψ
(

t, α(0) + h
(

α(t), l
))

y(t) − ψ(t, α(t))y(t)
}

μ
(

dt, dl
)

.

(3.7)

Integrating from 0 to T , taking expectation, and using (3.5), we obtain

Ey(T) = E

∫T

0
ψ(t, α(t))B(t, α(t))π(t)dt

= E

∫T

0

∣

∣ψ(t, α(t))B(t, α(t))
∣

∣

2
dt.

(3.8)

Consequently, Ey(T)/= 0 if (3.4) holds.
Conversely, suppose that problem (2.19) is feasible for every ζ ∈ R

1. Then for each
ζ ∈ R, there is an admissible portfolio π(·) so that Ex(T) = ζ. However, we can always
decompose x(t) = x0(t) + y(t) where y(·) satisfies (3.6). This leads to Ex0(T) + Ey(T) = ζ.
However, Ex0(T) ≡ ζ0 is independent of π(·); thus it is necessary that there is a π(·) with
Ey(T)/= 0. It follows then from (3.8) that (3.4) is valid.

Theorem 3.2. The mean-variance problem (2.19) is feasible for every ζ ∈ R if and only if

E

∫T

0
|B(t, α(t))|2dt > 0. (3.9)

Proof. By virtue of Lemma (3.1), it suffices to prove that ψ(t, i) > 0 ∀t ∈ [0, T], i = 1, 2, . . . , l.
To this end, note that (3.3) can be rewritten as

ψ̇(t, i) =
[−r(t, i) − qii

]

ψ(t, i) −
l

∑

j /= i

qijψ
(

t, j
)

,

ψ(T, i) = 1, i = 1, 2, . . . , l.

(3.10)
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Treating this as a system of terminal-valued ODEs, a variation-of-constant formula yields

ψ(t, i) = e−
∫T
t [−r(s,i)−qii]ds +

∫T

t

e−
∫s
t [−r(τ,i)−qii]dτ

l
∑

j /= i

qijψ
(

s, j
)

ds, i = 1, 2, . . . , l. (3.11)

Construct a sequence ψ(k)(·, i) (known as the Picard sequence) as follows:

ψ(0)(t, i) = 1, t ∈ [0, T], i = 1, 2, . . . , l,

ψ(k+1)(t, i) = e−
∫T
t [−r(s,i)−qii]ds +

∫T

t

e−
∫s
t [−r(τ,i)−qii]dτ

l
∑

j /= i

qijψ
(k)(s, j

)

ds,

t ∈ [0, T], i = 1, 2, . . . , l, k = 0, 1, . . . .

(3.12)

Noting that qij ≥ 0 for all j /= i, we have

ψ(k)(t, i) ≥ e−
∫T
t [−r(s,i)−qii]ds > 0, k = 0, 1, . . . . (3.13)

On the other hand, it is well known that ψ(t, i) is the limit of the Picard sequence ψ(k)(t, i) as
k → ∞. Thus ψ(t, i) > 0. This proves the desired result.

Corollary 3.3. If (3.9) holds, then for any ζ ∈ R, an admissible portfolio that satisfies Ex(T) = ζ is
given by

π(t) =
ζ − ζ0


B(t, α(t))′ψ(t, α(t)), (3.14)

where x0 and  are given by (3.2) and (3.4), respectively.

Proof. This is immediate from the proof of the “if” part of Lemma (3.1)

Ex(T) = ζ

= x0(T) + Ey(T),

ζ − ζ0 = Ey(T)

= E

∫T

0
ψ(t, α(t))B(t, α(t))π(t)dt.

(3.15)

Then one has

π(t) =
ζ − ζ0


B(t, α(t))′ψ(t, α(t)). (3.16)
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Corollary 3.4. If E
∫T

0 |B(t, α(t))|2dt = 0, then any admissible portfolio π(·) results in Ex(T) = ζ0.

Proof. This is seen from the proof of the “only if” part of Lemma (3.1)

Ex(T) = Ex0(T) + Ey(T)

= ζ0 + ψ(t, α(t))B(t, α(t))π(t)dt

= ζ0

(3.17)

since E
∫T

0 |B(t, α(t))|2dt = 0.

Remark 3.5. Condition (3.9) is very mild. For example, (3.9) holds as long as there is one
stock whose appreciation-rate process is different from the interest-rate process at anymarket
mode, which is obviously a practically reasonable assumption. On the other hand, if (3.9)
fails, then Corollary (3.4) implies that the mean-variance problem (2.19) is feasible only if
ζ = ζ0. This is pathological and trivial case that does not warrant further consideration.
Therefore, from this point on we will assume that (3.9) holds or, equivalently, the mean-
variance problem (2.19) is feasible for any ζ.

Having addressed the issue of feasibility, we proceed with the study of optimality. The
mean-variance problem (2.19) under consideration is a dynamic optimization problemwith a
constraint Ex(T) = ζ. To handle this constraint, we apply the Lagrange multiplier technique.
Define

J(x0, i0, π(·), λ) : = E

{

|x(T) − ζ|2 + 2λ[x(T) − ζ]
}

= E[x(T) + λ − ζ]2 − λ2, λ ∈ R.

(3.18)

Our first goal is to solve the following unconstrained problem parameterized by the
Lagrange multiplier λ:

minimize J(x0, i0, π(·), λ) = E[x(T) + λ − ζ]2 − λ2,
subject to (x(·), π(·)) admissible.

(3.19)

This turns out to be a Markov-modulated stochastic linear-quadratic optimal control
problem, which will be solved in the next section.

4. Solution to the Unconstrained Problem

In this section we solve the unconstrained problem (3.19). Firstly define

γ(t, i) := B(t, i)
[

σ(t, i)σ(t, i)′ +
∫

Rn

ρ(t, i, z)ρ(t, i, z)′ν(dz)
]−1

B(t, i)′, i = 1, 2, . . . , l. (4.1)
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Consider the following two systems of ODEs:

Ṗ(t, i) =
[

γ(t, i) − 2r(t, i)
]

P(t, i) −
l

∑

j=1

qijP
(

t, j
)

, 0 ≤ t ≤ T,

P(T, i) = 1, i = 1, 2, . . . , l,

(4.2)

Ḣ(t, i) = r(t, i)H(t, i) − 1
P(t, i)

l
∑

j=1

qijP
(

t, j
)[

H
(

t, j
) −H(t, i)

]

, 0 ≤ t ≤ T,

H(T, i) = 1, i = 1, 2, . . . , l.

(4.3)

The existence and uniqueness of solutions to the above two systems of equations are evident
as both are linear with uniformly bounded coefficients.

Proposition 4.1. The solutions of (4.2) and (4.3) must satisfy P(t, i) > 0 and 0 < H(t, i) ≤ 1,
∀t ∈ [0, T], i = 1, 2, . . . , l. Moreover, if for a fixed i, r(t, i) > 0, a.e., t ∈ [0, T], then H(t, i) < 1,
∀t ∈ [0, T).

Proof. The assertion P(t, i) > 0 can be proved in exactly the same way as that of ψ(t, i) > 0;
see the proof of Theorem 3.2. Having proved the positivity of P(t, i), one can then show that
H(t, i) > 0 using the same argument because now P(t, j)/P(t, i) > 0.

To prove thatH(t, i) ≤ 1, first note that the following system of ODEs:

d

dt
˜H(t, i) = − 1

P(t, i)

l
∑

j=1

qijP
(

t, j
)

[

˜H
(

t, j
) − ˜H(t, i)

]

,

˜H(T, i) = 1, i = 1, 2, . . . , l,

(4.4)

has the only solutions ˜H(t, i) ≡ 1, i = 1, 2, . . . , l, due to the uniqueness of solutions. Set

̂H(t, i) := ˜H(t, i) −H(t, i) ≡ 1 −H(t, i), (4.5)

which solves the following equations:

d

dt
̂H(t, i) = r(t, i)̂H(t, i) − r(t, i) − 1

P(t, i)

l
∑

j=1

P
(

t, j
)

[

̂H
(

t, j
) − ̂H(t, i)

]

=

⎡

⎣r(t, i) +
1

P(t, i)

l
∑

j /= i

P
(

t, j
)

⎤

⎦̂H(t, i) − r(t, i) − 1
P(t, i)

l
∑

j=1

P
(

t, j
)

̂H
(

t, j
)

,

̂H(T, i) = 0, i = 1, 2, . . . , l.

(4.6)
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A variation-of-constant formula leads to

̂H(t, i) =
∫T

t e
− ∫s

t [r(τ,i)+(1/P(τ,i))
∑l

j /= i P(τ,j)]dτ

[

r(s, i) +
1

P(s, i)

l
∑

j=1
P
(

s, j
)

̂H
(

s, j
)

]

ds. (4.7)

A similar trick using the construction of Picard’s sequence yields that ̂H(t, i) ≥ 0. In addition,
̂H(t, i) > 0, ∀t ∈ [0, T), if r(t, i) > 0, a.e., t ∈ [0, T]. The desired result then follows from the
fact that ̂H(t, i) = 1 −H(t, i).

Remark 4.2. Equation (4.2) is a Riccati type equation that arises naturally in studying the
stochastic LQ control problem (3.19) whereas (4.3) is used to handle the nonhomogeneous
terms involved in (3.19); see the proof of Theorem 4.3. On the other hand, H(t, i) has a
financial interpretation: for fixed (t, i),H(t, i) is a deterministic quantity representing the risk-
adjusted discount factor at time t when the market mode is i (note that the interest rate itself
is random).

Theorem 4.3. Problem (3.19) has an optimal feedback control

π∗(t, x, i) = −
[

σ(t, i)σ(t, i)′ +
∫

Rn

ρ(t, i, z)ρ(t, i, z)′ν(dz)
]−1

B(t, i)′[x + (λ − ζ)H(t, i)]. (4.8)

Moreover, the corresponding optimal value is

inf
π(·) admissible

J(x0, i0, π(·), λ)

=
[

P(0, i0)H(0, i0)2 + θ − 1
]

(λ − ζ)2 + 2[P(0, i0)H(0, i0)x0 − ζ](λ − ζ) + P(0, i0)x2
0 − ζ2,

(4.9)

where

θ := E

∫T

0

l
∑

j=1

qα(t)jP
(

t, j
)[

H
(

t, j
) −H(t, α(t))

]2
dt

=
l

∑

i=1

l
∑

j=1

∫T

0
P
(

t, j
)

pi0i(t)qij
[

H
(

t, j
) −H(t, i)

]2
dt ≥ 0,

(4.10)

with the transition probabilities pi0i(t) given by (2.4).

Proof. Let π(·) be any admissible control and x(·) the corresponding state trajectory of (2.15).
Applying the generalized Itô formula (Lemma 2.5) to

ϕ(t, x, i) = P(t, i)[x + (λ − ζ)H(t, i)]2, (4.11)
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we obtain

d
{

P(t, α(t))[x(t) + (λ − ζ)H(t, α(t))]2
}

= Ṗ(t, α(t))[x(t) + (λ − ζ)H(t, α(t))]2dt

+ 2P(t, α(t))(λ − ζ)[x(t) + (λ − ζ)H(t, α(t))]Ḣ(t, α(t))dt

+ 2{r(t, α(t))x(t) + B(t, α(t))π(t)}

× P(t, α(t))[x(t) + (λ − ζ)H(t, α(t))]dt

+
l

∑

j=1

qα(t)jP
(

t, j
)[

x(t) + (λ − ζ)H(

t, j
)]2

dt

+
1
2
2P(t, α(t))π(t)′

[

σ(t, α(t))σ(t, α(t))′
]

π(t)dt

+ P(t, α(t))π(t)′
{∫

Rn

ρ(t, α(t), z)ρ(t, α(t), z)′ν(dz)
}

π(t)dt

+ 2P(t, α(t))x(t)2π(t)′σ(t, α(t))dW(t)

+
n
∑

k=1

∫

R

P(t, α(t))
{

2[x(t) + (λ − ζ)H(t, α(t))]ρ(k)(t, α(t), z) + ρ(k)(t, α(t), z)2
}

d˜N(dt, dz)

+
∫

R

{

P
(

t, α(0) + h
(

α(t), l
))[

x(t) + (λ − ζ)H(t, α(0) + h(α(t), (l)))
]2

−P(t, α(t))[x(t) + (λ − ζ)H(t, α(t))]2
}

μ
(

dt, dl
)

= P(t, α(t))
{

π(t)′
[

σ(t, α(t))σ(t, α(t))′ +
∫

Rn

ρ(t, α(t), z)ρ(t, α(t), z)′ν(dz)
]

π(t)

+ 2π(t)′B(t, α(t))′[x(t) + (λ − ζ)H(t, α(t))]

+γ(t, α(t))[x(t) + (λ − ζ)H(t, α(t))]
}

dt

+ (λ − ζ)2
l

∑

j=1

qα(t)jP
(

t, j
)[

H
(

t, j
) −H(t, i)

]2
dt

+ 2P(t, α(t))x(t)2π(t)′σ(t, α(t))dW(t)

+
n
∑

k=1

∫

R

P(t, α(t))
{

2[x(t) + (λ − ζ)H(t, α(t))]ρ(k)(t, α(t), z) + ρ(k)(t, α(t), z)2
}

d˜N(dt, dz)

+
∫

R

{

P
(

t, α(0) + h
(

α(t), l
))[

x(t) + (λ − ζ)H(t, α(0) + h(α(t), (l)))
]2

−P(t, α(t))[x(t) + (λ − ζ)H(t, α(t))]2
}

μ
(

dt, dl
)
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= P(t, α(t))[π(t)−π∗(t, x(t), α(t))]′
[

σ(t, α(t))σ(t, α(t))′+
∫

Rn

ρ(t, α(t))ρ(t, α(t), z)′ν(dz)
]

× [π(t) − π∗(t, x(t), α(t))]dt

+ (λ − ζ)2
l

∑

j=1

qα(t)jP
(

t, j
)[

H
(

t, j
) −H(t, i)

]2
dt

+ 2P(t, α(t))x(t)2π(t)′σ(t, α(t))dW(t)

+
n
∑

k=1

∫

R

P(t, α(t))
{

2[x(t) + (λ − ζ)H(t, α(t))]ρ(k)(t, α(t), z) + ρ(k)(t, α(t), z)2
}

d˜N(dt, dz)

+
∫

R

{

P
(

t, α(0) + h
(

α(t), l
))[

x(t) + (λ − ζ)H(t, α(0) + h(α(t), (l)))
]2

−P(t, α(t))[x(t) + (λ − ζ)H(t, α(t))]2
}

μ
(

dt, dl
)

,

(4.12)

where π∗(t, x, i) is defined as the right-hand side of (4.8). Integrating the above from 0 to T
and taking expectations, we obtain

E[x(T) + λ − ζ]2

= P(0, i0)[x0 + (λ − ζ)H(0, i0)]
2 + θ(λ − ζ)2

+ E

∫T

0
P(t, α(t))[π(t) − π∗(t, x(t), α(t))]′

×
[

σ(t, α(t))σ(t, α(t))′ +
∫

Rn

ρ(t, α(t), z)ρ(t, α(t), z)′ν(dz)
]

× [π(t) − π∗(t, x(t), α(t))]dt.

(4.13)

Consequently,

J(x0, i0, π(·), λ)

= E[x(T) + λ − ζ]2 − λ2

= [P(0, i0)H(0, i0) + θ − 1](λ − ζ)2

+ 2[P(0, i0)H(0, i0)x0 − ζ](λ − ζ) + P(0, i0)x2
0 − ζ2

+ E

∫T

0
P(t, α(t))[π(t) − π∗(t, x(t), α(t))]′

×
[

σ(t, α(t))σ(t, α(t))′ +
∫

Rn

ρ(t, α(t), z)ρ(t, α(t), z)′ν(dz)
]

× [π(t) − π∗(t, x(t), α(t))]dt.

(4.14)



International Journal of Stochastic Analysis 17

Since P(t, α(t)) > 0 by Proposition (4.1), it follows immediately that the optimal feedback
control is given by (4.8) and the optimal value is given by (4.9), provided that the
corresponding equation (2.15) under the feedback control (4.8) has a solution. But under
(4.8), the system (2.15) is a nonhomogeneous linear SDE with coefficients modulated by
α(t). Since all the coefficients of this linear equation are uniformly bounded and α(t) is
independent of W(t), the existence and uniqueness of the solution to the equation are
straightforward based on a standard successive approximation scheme.

Finally, since

θ : = E

∫T

0

l
∑

j /= i

qα(t)jP
(

t, j
)[

H
(

t, j
) −H(t, α(t))

]2
dt (4.15)

and qij ≥ 0 for all i /= j, we must have θ ≥ 0. This completes the proof.

5. Efficient Frontier

In this section we proceed to derive the efficient frontier for the original mean-variance
problem (2.19).

Theorem 5.1 (efficient portfolios and efficient frontier). Assume that (3.9) holds. Then one has

P(0, i0)H(0, i0)
2 + θ − 1 < 0. (5.1)

Moreover, the efficient portfolio corresponding to z, as a function of the time t, the wealth level x, and
the market mode i, is

π∗(t, x, i) = −
[

σ(t, i)σ(t, i)′ +
∫

Rn

ρ(t, i, z)ρ(t, i, z)′ν(dz)
]−1

B(t, i)′[x + (λ∗ − ζ)H(t, i)], (5.2)

where

λ∗ =
ζ − P(0, i0)H(0, i0)x0
P(0, i0)H(0, i0)2 + θ − 1

+ ζ. (5.3)

Furthermore, the optimal value of Varx(T), among all the wealth processes x(·) satisfyingEx(T) = ζ,
is

Varx∗(T) =
P(0, i0)H(0, i0)2 + θ

1 − θ − P(0, i0)H(0, i0)2

[

ζ − P(0, i0)H(0, i0)

P(0, i0)H(0, i0)2 + θ
x0

]2

+
P(0, i0)θ

P(0, i0)H(0, i0)2 + θ
x2
0.

(5.4)

Proof. By assumption (3.9) and Theorem 3.2, the mean-variance problem (2.19) is feasible for
any ζ ∈ R

1. Moreover, using exactly the same approach in the proof of Theorem 4.3, one can
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show that problem (2.19) without the constraint Ex(T) = ζ must have a finite optimal value,
hence so does the problem (2.19). Therefore, (2.19) is finite for any ζ ∈ R

1. Now we need to
prove that JMV (x0, i0, π(·)) is strictly convex in π(·). We can easily get

E(2x1x2) ≤ E

(

x2
1 + x

2
2

)

,

E(2κ(1 − κ)x1x2) ≤ E

(

κ(1 − κ)x2
1 + κ(1 − κ)x2

2

)

,

E

(

κ2x2
1 + (1 − κ)2x2

2 + 2κ(1 − κ)x1x2
)

≤ E

(

κx2
1 + (1 − κ)x2

2

)

,

E(κx1 + (1 − κ)x2 − ζ)2 ≤ E

(

κ(x1 − ζ)2
)

+ E

(

(1 − κ)(x2 − ζ)2
)

,

(5.5)

where κ ∈ [0, 1]. So, we obtain

E(κx1 − κζ + (1 − κ)x2 − (1 − κ)ζ)2 ≤ E

(

κ(x1 − ζ)2
)

+ E

(

(1 − κ)(x2 − ζ)2
)

, (5.6)

which proves JMV (x0, i0, π(·)) is strictly convex in π(·). that Affine space means the
complement of points at infinity. It can also be viewed as a vector space whose operations
are limited to those linear combinations whose coefficients sum to one. Since JMV (x0, i0, π(·))
is strictly convex in π(·) and the constraint function Ex(T) − ζ is affine in π(·), we can apply
the well-known duality theorem (see [26, page 224, Theorem 1]) to conclude that for any
ζ ∈ R

1, the optimal value of (2.19) is

sup
λ∈R1

inf
π(·)admissible

J(x0, i0, π(·), λ)

= max
ζ∈R1

inf
π(·)admissible

(J(x0, i0, π(·), λ) + 〈ζ, ζ∗〉)

> −∞.

(5.7)

By Theorem 4.3, infπ(·)admissibleJ(x0, i0, π(·), λ) is a quadratic function (4.9) in λ − ζ. It follows
from the finiteness of the supremum value of this quadratic function that

P(0, i0)H(0, i0)2 + θ − 1 ≤ 0. (5.8)

Now if

P(0, i0)H(0, i0)2 + θ − 1 = 0, (5.9)

then again by Theorem 4.3 and (5.7)we must have

P(0, i0)H(0, i0)x0 − ζ = 0, (5.10)

for every ζ ∈ R
1, which is a contradiction. This proves (5.1). On the other hand, in view of

(5.7), we maximize the quadratic function (4.9) over λ − ζ and conclude that the maximizer
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is given by (5.3) whereas the maximum value is given by the right-hand side of (5.4).
Finally, the optimal control (5.2) is obtained by (4.8) with λ = λ∗.The efficient frontier
(5.4) reveals explicitly the tradeoff between the mean (return) and variance (risk) at the
terminal. Quite contrary to the case without Markovian jumps [17], the efficient frontier
in the present case is no longer a perfect square (or, equivalently, the efficient frontier in
the mean-standard deviation diagram is no more a straight line). As a consequence, one is
not able to achieve a risk-free investment. This, certainly, is expected since now the interest
rate process is modulated by the Markov chain, and the interest rate risk cannot be perfectly
hedged by any portfolio consisting of the bank account and stocks [27], because the Markov
chain is independent of the Brownian motion. Nevertheless, expression (5.4) does disclose
the minimum variance, namely, the minimum possible terminal variance achievable by an
admissible portfolio, along with the portfolio that attains this minimum variance.

Theorem 5.2 (minimum variance). The minimum terminal variance is

Varx∗
min(T) =

P(0, i0)θ

P(0, i0)H(0, i0)2 + θ
x2
0 ≥ 0 (5.11)

with the corresponding expected terminal wealth

ζmin :=
P(0, i0)H(0, i0)

P(0, i0)H(0, i0)2 + θ
x0 (5.12)

and the corresponding Lagrange multiplier λ∗min = 0. Moreover, the portfolio that achieves the above
minimum variance, as a function of the time t, the wealth level x, and the market mode i, is

π∗
min(t, x, i) = −

[

σ(t, i)σ(t, i)′ +
∫

Rn

ρ(t, i, z)ρ(t, i, z)′ν(dz)
]−1

B(t, i)′[x − ζminH(t, i)]. (5.13)

Proof. The conclusions regarding (5.11) and (5.12) are evident in view of the efficient frontier
(5.4). The assertion λ∗min = 0 can be verified via (5.3) and (5.12). Finally, (5.13) follows from
(5.2).

Remark 5.3. As a consequence of the above theorem, the parameter s can be restricted to
ζ ≥ ζmin when one defines the efficient frontier for the mean-variance problem (2.19).

Theorem 5.4 (mutual fund theorem). Suppose that an efficient portfolio π∗
1(·) is given by (5.2)

corresponding to ζ = ζ1 > ζmin. Then a portfolio π∗(·) is efficient if and only if there is a μ ≥ 0 such
that

π∗(t) =
(

1 − μ)π∗
min(t) + μπ

∗
1(t), t ∈ [0, T], (5.14)

where π∗
min(·) is the minimum variance portfolio defined in Theorem 5.2.

Proof. We first prove the “if” part. Since both π∗
min(·) and π∗

1(·) are efficient, by the explicit
expression of any efficient portfolio given by (5.2), π∗(t) = (1−μ)π∗

0(·)+μπ∗
1(t)must be in the
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form of (5.2) corresponding to ζ = (1 − μ)ζmin + μζ1 (also noting that x∗(·) is linear in π∗(·)).
Hence π∗(t)must be efficient.

Conversely, suppose that π∗(·) is efficient corresponding to a certain ζ ≥ ζmin. Write
ζ = (1 − μ)ζmin + μζ1 with some μ ≥ 0. Multiplying

π∗
min(t)

= −
[

σ(t, α(t))σ(t, α(t))′ +
∫

Rn

ρ(t, i, z)ρ(t, i, z)′ν(dz)
]−1

B(t, α(t))′
[

x∗
min(t) − ζminH(t, α(t))

]

(5.15)

by (1 − μ), multiplying

π∗
1(t)

= −
[

σ(t, α(t))σ(t, α(t))′ +
∫

Rn

ρ(t, i, z)ρ(t, i, z)′ν(dz)
]−1

B(t, α(t))′
[

x∗
1(t) +

(

λ∗1 − ζ1
)

H(t, α(t))
]

(5.16)

by μ, and summing them up, we obtain that (1 − μ)π∗
min(t) + μπ

∗
1(t) is represented by (5.2)

with x∗(t) = (1 − μ)x∗
min(t) + μx

∗
1(t) and ζ = (1 − μ)ζmin + μζ1. This leads to (5.14).

Remark 5.5. The above mutual fund theorem implies that any investor needs only to invest
in the minimum variance portfolio and another prespecified efficient portfolio in order to
achieve the efficiency. Note that in the case where all the market parameters are deterministic
[17], the corresponding mutual fund theorem becomes the one-fund theorem, which yields
that any efficient portfolio is a combination of the bank account and a given efficient risky
portfolio (known as the tangent fund). This is equivalent to the fact that the fractions of
wealth among the stocks are the same among all efficient portfolios. However, in the present
Markov-modulated case this feature is no longer available.

Since the wealth processes x(·) are with jumps, it is more complicated when we solve
the unconstrained problem (3.19). Firstly, we aim to derive conditions of feasibility. It is not
hard to prove feasibility of the constrained stochastic optimization problem (2.19), which we
get the unconstrained problem (3.19) from. Then we solve the unconstrained problem (3.19).
If we assume that

γ(t, i) := B(t, i)
[

σ(t, i)σ(t, i)′
]−1

B(t, i)′, i = 1, 2, . . . , l,

π∗(t, x, i) := −[σ(t, i)σ(t, i)′]−1B(t, i)′[x + (λ − ζ)H(t, i)],
(5.17)

we have

inf
π(·)admissible

J(x0, i0, π(·), λ) =
[

P(0, i0)H(0, i0)2 + θ − 1
]

(λ − ζ)2

+ 2[P(0, i0)H(0, i0)x0 − ζ](λ − ζ) + P(0, i0)x2
0 − ζ2,

(5.18)
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where

θ := E

⎧

⎨

⎩

∫T

0

l
∑

j=1

qα(t)jP
(

t, j
)[

H
(

t, j
) −H(t, α(t))

]2
dt

1

(λ − ζ)2

+P(t, α(t))π(t)′
{∫

Rn

ρ(t, α(t), z)ρ(t, α(t), z)′ν(dz)
}

π(t)dt
}

.

(5.19)

So, we added one item
∫

Rn ρ(t, i, z)ρ(t, i, z)′ν(dz) in optimal feedback control π∗(t, x, i) (see
(3.19)) to simplify the calculation.
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