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The paper discusses the performance of the PDD1/2 control scheme, which is an extension of the classical PD scheme with the
introduction of the half-derivative term. The comparison between the PD and the PDD1/2 schemes is performed with reference to
a second-order purely inertial system, using a dimensionless approach for the sake of generality. The influences of the sampling
time and of the saturation are taken into account. The results show that the introduction of the half-derivative term, in proper
combination with the derivative term, reduces the settling time under the same conditions of maximum control output and null
overshoot.

1. Introduction

Even though the introduction of Fractional Calculus dates
back to the eighteenth century, in the last years there is
a revival of interest about this theoretical issue, and new
possible fields of application are emerging.

Fractional Calculus is an extension of classical math-
ematics which considers derivatives and integrals to an
order which is not necessarily integer but can be rational,
irrational, or complex [1–3]. The theoretical possibility of
this extension was already discussed by Euler and Liouville;
nevertheless, most practical applications are recent and cover
many different areas: not only science and engineering
but also economics and finance. At present, researchers’
efforts have two distinct aims: investigating the mathematical
aspects of Fractional Calculus and widening the range of its
possible applications [4].

As regards physics, Fractional Calculus has been recog-
nized as a powerful tool in modelling multiscale problems,
characterized by wide time or length scales. An interesting
physical interpretation of fractional derivatives is proposed
in [5].

In the area of variational principles, it is possible to
replace the classical derivatives with the fractional ones; frac-
tional formulations of the Euler-Lagrange equations, of the

Hamilton equations, and of the Dirac equations have been
proposed and applied [6–8]. The recently introduced Nambu
dynamics is a generalization of Hamiltonian mechanics
involving multiple Hamiltonians [9]. Other applications of
Fractional Calculus in physics are described in [10].

In biology and bioengineering, Fractional Calculus is
used to predict macroscale behaviour from microscale
observations [11] and to model the neuron behaviour [12,
13].

In economics, Fractional Calculus can be applied to
technological change models to obtain generalized solutions
[14].

As regards engineering, Fractional Calculus plays an
important role, for example, in control system design [15–
19], electronics [20], and robotics [21–23].

Focussing on control system design, the most widespread
approach consists in generalizing the classical PID scheme
by introducing derivatives and integrals to an arbitrary
order, giving rise to the PIλDμ controller [24]: with this
approach there are two additional parameters (the orders λ
and μ) to tune the system behaviour besides the proportional,
derivative, and integral gains.

An alternative approach is not substituting a differential-
order derivative term for the first-order derivative term,
but using them in combination, giving rise to the PIDD1/2
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scheme [25, 26]. The main justification of this approach is
practical: control system designers are unlikely to discard
completely the universally used PID scheme, but probably
they will accept to add the half-derivative term as optional
if it brings significant benefits.

The positive effects of the introduction of the half-
derivative term have already been discussed in [25, 26], with
reference to second-order purely inertial linear systems and
to position control of some simple robotic architectures;
in these works the attention is focused on the comparison
between the PD scheme and the PDD1/2 scheme in the
transient state, and the integral term, which reduces the
steady state error, is not considered. In the present paper the
comparison between PD and PDD1/2 schemes is deepened
using a nondimensional approach for the sake of generality,
taking into account the influence of saturation and sampling
time.

2. Definition of Fractional-Order Derivative

There are different possible theoretical approaches to gener-
alize the concepts of derivative and integral to a noninteger
order α. The definitions that correspond to these approaches
are proved to be equivalent; nevertheless, the different
definitions lead to different discrete-time implementations,
with different performance in real-time control system
applications [27].

The discrete-time implementations that are based on the
Letnikov, Tustin, and Simpson definitions are compared in
[27]; these implementations are characterized by an infinite
number of terms, which requires a proper truncation.
The comparison shows that the definition by Letnikov
has several computational advantages in the discrete-time
implementation and is more robust in what concerns the
series truncation.

Letnikov defines the derivative of fractional order α of a
function of time x(t) according to the following equation:

Dαx(t) = lim
h→ 0

⎡
⎣ 1
hα

∞∑

k=0

(−1)k
Γ(α + 1)

Γ(k + 1)Γ(α− k + 1)
x(t − kh)

⎤
⎦.

(1)

In (1) h is the time increment and Γ is the Gamma function,
which is an extension of the factorial function to real and
complex numbers. The Gamma function is defined by the
following integral:

Γ(z) =
∫∞

0
tz−1e−tdt. (2)

It is possible to demonstrate that this integral converges for
complex numbers z with positive real part; however, this
definition can be extended to all complex numbers except
negative integers by analytic continuation [28].

The connection to the factorial function is represented by
the fact that if n is a positive integer, then

Γ(n) = (n− 1)! (3)

Equation (1) can be implemented in discrete-time by
replacing the limit of the function as h approaches zero
with the function evaluation at a sufficiently small sampling
time; therefore, considering (3) it is possible to obtain the
following expression in the z-domain [27]:

Dα
(
z−1) = 1

Tα
s

∞∑

k=0

(−1)k
Γ(α + 1)

k!Γ(α− k + 1)
z−k, (4)

where Ts is the sampling time. The influence of the
approximation introduced by the use of a finite sampling
time on the control system behaviour will be discussed in
Section 4.5.

Moreover, (4) is characterized by an infinite number of
terms; in the real implementation the number of terms must
be truncated. The influence of this truncation is discussed in
[27].

The derivative with fractional order α = 1/2 is called
half-derivative; using (4), its sixth-order approximation is
expressed by the following transfer function in the z-domain:

D1/2(z−1) =
√

1
Ts

(
1− 1

2
z−1 − 1

8
z−2 − 1

16
z−3

− 5
128

z−4 − 7
256

z−5 − 21
1024

z−6
)
.

(5)

The ratio between the sixth-order term and the zero-order
term is 0.0205; the ratio between the seventh-order term and
the zero-order term is 0.0161; therefore we have decided to
neglect the terms beyond the sixth, with relative amplitude
lower than 2%. In the following of the work, (5) will be
used to implement in discrete-time the half-derivative in the
digital control system.

3. Discrete-Time PDD1/2 Control with
Saturation of a Second-Order Linear System

Let us consider the scheme of a second-order linear rota-
tional system controlled by a discrete-time PDD1/2 control
system with finite output (Figure 1); it is composed of

(i) a zero-order hold,

(ii) a PDD1/2 control with proportional gain Kp, deriva-
tive gain Kd, and half-derivative gain Khd,

(iii) a saturation block which limits the control torque τ
in the interval [−τmax, τmax], where τmax is the output
saturation value,

(iv) a continuous-time second-order linear rotational
system.

The Laplace transfer function of the rotational system is

θ(s)
τ(s)

= 1
Js2

, (6)

where θ is the angular position and J is the mass moment of
inertia of the rotor.

Since the digital control is in discrete time, the error e =
θr−θ is sampled by a zero-order hold with sampling time Ts;
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Figure 1: PDD1/2 control with saturation of a second-order linear
system.

the z-transfer function of the half-derivative is given by (5),
while the first-order derivative is obtained by the well-known
z-transfer function:

D1(z−1) = 1− z−1

Ts
. (7)

The SI units of the system parameters are collected in Table 1.
The system behaviour is analyzed using dimensionless

parameters for sake of generality (dimensional analysis).
To this aim, the following dimensionless parameters are
introduced:

ζ = Kd

2
√
JKp

, (8)

ψ = Khd
Kp

ω1/2
n = Khd

Kp
3/4J1/4

, (9)

λ = Tsωn, (10)

σ = τmax

Kpθr
. (11)

In (9) and (10) ωn is the natural angular frequency:

ωn =
√
Kp

J
, (12)

and θr is the amplitude of the commanded step. The
physical meanings of these dimensionless parameters are the
following:

(i) ζ corresponds to the damping ratio of the second-
order mechanical systems; if we consider that in this
case, the elastic return force and the damping force
are, respectively, applied by the proportional and
derivative terms; therefore ζ represents nondimen-
sionally the derivative gain Kd;

(ii) ψ represents nondimensionally the half-derivative
gain Khd;

(iii) λ (dimensionless sampling time) represents nondi-
mensionally the sampling time Ts;

(iv) σ(dimensionless saturation torque) represents nondi-
mensionally the saturation torque τmax.

In the following the step response of the system is dis-
cussed; the system state is described in terms of dimensionless
angle θad and dimensionless torque τad:

θad = θ

θr
, (13)

τad = τ

τmax
. (14)

Using this approach, the time histories of θad and τad as
function of the dimensionless time tad = ωnt depend only on
the four dimensionless parameters ζ , ψ, λ, σ .

4. Discrete-Time PDD1/2 Control with
Saturation of a Second-Order Linear
System: Simulation Results

In the following the influence of the introduction of the half-
derivative term and the proper combination of derivative and
half-derivative terms are discussed. To this aim, the section is
organized as follows.

(i) Section 4.1 shows the effects of saturation (parameter
σ) on the step response of the system with PD control
(ψ = 0).

(ii) Section 4.2 shows the effects of the introduction
of the half-derivative term, keeping constant the
derivative term (ζ), the sampling rate (λ), and the
maximum control output (σ).

(iii) Section 4.3 shows that a proper combination of the
half-derivative and derivative terms (parameters ψ
and ζ) allows to reduce remarkably the settling time
keeping constant λ and σ and respecting the con-
dition of null overshoot (“null-overshoot/minimum
settling time” ψ-ζ combination, n.o.m.s.t. ψ-ζ combi-
nation ).

(iv) Section 4.4 discusses the influence of the parameter
σ on the system behaviour and on the n.o.m.s.t. ψ-ζ
combination.

(v) Section 4.5 discusses the influence of the sampling
time (parameter λ) on the n.o.m.s.t. ψ-ζ combina-
tion.

All the simulations are performed using the Matlab
package Simulink.

4.1. Effects of Saturation on the PD Control. First of all, we
analyze the system behaviour without half-derivative term
(ψ = 0) in order to discuss the influence of the dimensionless
parameters σ and ζ ; since ψ = 0, λ does not influence the
system behaviour, provided that it is sufficiently small: in
fact if λ tends to zero (i.e., the sampling time tends to be
negligible with respect to the system dynamics), the discrete-
time evaluation of the derivative tends to the continuous
time derivative; as we will see, this is not true if ψ > 0, because
of the approximation of the z-transfer function (5), which
has a finite number of terms.
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Table 1: SI units of the system parameters.

Parameter Symbol SI unit

mass moment of inertia of the rotor J kg·m2

proportional gain Kp Nm/rad

derivative gain Kd Nms/rad

half-derivative gain Khd Nms1/2/rad

saturation torque τmax Nm

sampling time Ts s
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Figure 2: θad − tad step response, PD control, σ = 1, ζ =
0.4, 0.6, 0.8, 1, 1.2.

Figure 2 shows the system step response (null initial
conditions: θ(0) = 0, θ̇(0) = 0) with σ = 1 and five different
values of ζ : 0.4, 0.6, 0.8, 1, 1.2; for the first three values of ζ
the system has overshoot.

Table 2 shows the dimensionless settling time to within 2%
(tad,s2%) as a function of ζ and σ ; five values of ζ (0.4, 0.6,
0.8, 1, 1.2) and six values of σ (4, 2, 1, 0.5, 0.25, 0.125)
are considered. The simulations show that the system has
overshoot only for ζ = 0.4, 0.6, 0.8, and that for ζ = 0.8 there
are the lower settling times, independently from σ . Moreover,
it is possible to note that tad,s2% increases with the decrease of
σ : in particular, Figure 3 shows the time histories of θad for
the six systems of the third column of Table 2(ζ = 0.8).

The increase of settling time with the decrease of σ is due
to the lower saturation torque; it can be observed by the time
histories of τad (Figure 4) and στad = τ/(Kpθr) (Figure 5);
the second dimensionless value is more significant in this
comparison because it is not nondimensionalized using the
saturation torque.

4.2. Effects of the Introduction of the Half-Derivative Term.
Let us consider now the system behaviour keeping constant
the derivative term (ζ = 0.8) and the saturation (σ =
0.5), but introducing the half-derivative term (ψ /= 0); the
dimensionless sampling time is constant (λ = 0.05). The
introduction of ψ causes an increase of the overshoot and
higher settling times (Figure 6), with a more oscillating input
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Figure 3: θad − tad step response, PD control, ζ = 0.8, σ =
4, 2, 1, 0.5, 0.25, 0.125.
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Figure 4: τad − tad step response, PD control, ζ = 0.8, σ =
4, 2, 1, 0.5, 0.25, 0.125.

torque (Figure 7); therefore the half-derivative term in this
comparison is not advantageous.

4.3. Combined Effects of the Half-Derivative and Derivative
Terms (“Null-Overshoot/Minimum Settling Time” ψ-ζ Com-
bination). On the other hand, the introduction of the half-
derivative term with a proper adjustment of the derivative
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Table 2: PD control: dimensionless settling time to within 2% tad,s2% as a function of σ and ζ ; (o.s.): stabilization with overshoot.

σ ↓ ξ → 0.4 0.6 0.8 1 1.2

4 8.09(o.s.) 5.61(o.s.) 3.60(o.s.) 5.81 7.87

2 8.19(o.s.) 5.72(o.s.) 3.72(o.s.) 5.92 7.97

1 8.24(o.s.) 5.77(o.s.) 3.77(o.s.) 5.97 8.03

0.5 8.50(o.s.) 5.99(o.s.) 3.96(o.s.) 6.13 8.15

0.25 9.41(o.s.) 6.54(o.s.) 4.49(o.s.) 6.54 8.50

0.125 14.66(o.s.) 8.41(o.s.) 5.21(o.s.) 7.30 9.16
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Figure 5: στad − tad step response, PD control, ζ = 0.8, σ =
4, 2, 1, 0.5, 0.25, 0.125.
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Figure 6: θad − tad step response, PDD1/2 control, ζ = 0.8, σ = 0.5,
λ = 0.05, as function of ψ.

term can lead to benefits when it is necessary to minimize
the settling time while avoiding overshoot (two frequent
requirements). Let us consider the system with the same
saturation level and sampling time of Section 4.2 (σ =
0.5; λ = 0.05); now we determine the minimum derivative
coefficient ζ that provides stabilization without overshoot as
function of the half-derivative coefficient ψ. This minimum
value is ζ = 0.96 for the PD control (ψ = 0); for ψ > 0 the
value of ζ has to be properly increased to avoid overshoot,
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Figure 7: τad − tad step response, PDD1/2 control, ζ = 0.8, σ = 0.5,
λ = 0.05, as function of ψ.

and it is possible to associate a value of ζ to any value of
ψ; in the following this ψ-ζ combination will be named
n.o.m.s.t. ψ-ζ combination (null-overshoot/minimum settling
time). This combination depends on σ and λ, as will be
discussed in Sections 4.4 and 4.5.

Figure 8 shows the time histories of θad as a function of
tad in case of seven n.o.m.s.t. ψ-ζ combinations (ψ = 0 (PD),
0.5, 1, 2, 3, 4, 8) and the corresponding dimensionless settling
times tad,s2%: the reduction of settling time that corresponds
to the increase of ψ is remarkable (up to −55% for ψ = 8
with respect to ψ = 0). This reduction is due to the fact
that with high half-derivative gain the control output tends
to be similar to the one of a bang-bang control (Figure 9),
and the bang-bang control (maximum positive torque for
acceleration and maximum negative torque for deceleration)
minimizes the settling time of a second-order linear system
for a given maximum control output.

It is possible to demonstrate that the settling time
for a second-order linear system and the corresponding
dimensionless settling time with bang-bang control are,
respectively,

tbb = 2

√
Jθr
τmax

,

tad,bb = 2

√
1
σ
.

(15)

Equations (15) provide the time to complete the step; for
a comparison to the proposed control system it is more
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Figure 8: θad − tad step response, λ = 0.05, σ = 0.5, different
n.o.m.s.t. ψ-ζ combinations.
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Figure 9: τad − tad step response, λ = 0.05, σ = 0.5, different
n.o.m.s.t. ψ-ζ combinations.

correct to consider the settling time to within 2% and the
dimensionless settling time to within 2% with bang-bang
control, which are the following:

tbb2% = 1.8

√
Jθr
τmax

, (16)

tad,bb2% = 1.8

√
1
σ
. (17)

(The expressions (15) to (17) can be demonstrated consider-
ing a constant acceleration with τmax for 0 ≤ θ ≤ θr/2 and a
constant deceleration with −τmax for θr/2 < θ ≤ θr .)

With ψ ≥ 4 the dimensionless settling time is very
close to the theoretical minimum tad,bb2% (2.55 for σ = 0.5);
therefore a further increase of ψ and ζ is not profitable,
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Figure 10: θad − tad step response, λ = 0.05, σ = 0.125, different
n.o.m.s.t. ψ-ζ combinations.
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Figure 11: τad − tad step response, λ = 0.05, σ = 0.125, different
n.o.m.s.t. ψ-ζ combinations.

also because high values of the damping coefficient lead to
instability in the real implementation.

4.4. Effects of σ on the n.o.m.s.t. ψ-ζ Combination. Figures 10
and 11 show the system behaviour with σ = 0.125 (lower
saturation torque than in the case of Section 4.3) and λ =
0.05, with the n.o.m.s.t. ψ-ζ combinations corresponding to
ψ = 0, 0.5, 1, 2, 3, 4. In Figure 10 the graphs with ψ ≥ 1
are very similar and superimposed to the bang-bang graph.
Let us note that the values of ζ in the ψ-ζ combinations are
changed with respect to the case of Section 4.3 (σ = 0.5; λ =
0.05) due to the different values of σ (Table 3).

Since the saturation torque is low, all the systems with
the exception of the one with ψ = 0 reach the saturation
in both directions (Figure 11); all the settling times are close
to the minimum value tad,bb2% = 5.09, (17), with moderate
influence of ψ (Figure 10).

On the contrary, the influence of ψ on the settling
time increases with higher values of σ . Figures 12 and 13
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Table 3: n.o.m.s.t.ψ-ζ combinations, λ = 0.05, variable σ.

ψ
ζ

σ = 0.125 σ = 0.25 σ = 0.5 σ = 1 σ = 2 σ = 4

0 0.96 0.96 0.96 0.96 0.96 0.96

0.5 1.12 1.09 1.09 1.09 1.09 1.09

1 1.38 1.18 1.18 1.18 1.18 1.18

2 1.94 1.38 1.29 1.29 1.29 1.29

3 2.52 1.72 1.34 1.34 1.34 1.34

4 3.11 2.09 1.43 1.36 1.36 1.36
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Figure 12: θad − tad step response, λ = 0.05, σ = 4, different
n.o.m.s.t. ψ-ζ combinations.

show the system behaviour with σ = 4, λ = 0.05, and
different n.o.m.s.t. ψ-ζ combinations (ψ = 0, 0.5, 1, 2, 3, 4):
the increment of ψ causes a remarkable reduction of settling
time (−60% with respect to ψ = 0 for ψ = 4).

The histogram of Figure 14 shows the influence on
the settling time of the parameters σ and ψ adopting
the corresponding n.o.m.s.t. ψ-ζ combinations and keeping
constant λ = 0.05: for all the values of σ , the increment of ψ
causes a reduction of the settling time, but this reduction is
larger for high values of σ , that is, when the saturation torque
is relatively high.

Let us note that for σ ≥ 1 the n.o.m.s.t. ψ-ζ combinations
are equal (Table 3); also the n.o.m.s.t. ψ-ζ combination with
σ = 0.5 is very similar to the ones with σ ≥ 1. This
means that for all the operative conditions in which σ ≥ 1
the PDD1/2 control can be tuned optimally with a unique
n.o.m.s.t. ψ-ζ combination. Since σ is usually higher than
1 in normal operative conditions, because τmax � Kpθr ,
we can neglect the influence of σ and adopt always the ψ-ζ
combination for σ ≥ 1; this combination will be named in
the following “n.o.m.s.t.(hσ) ψ-ζ combination” for brevity.
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Figure 13: τad − tad step response, λ = 0.05, σ = 4, different
n.o.m.s.t. ψ-ζ combinations.

4.5. Effects of λ on the n.o.m.s.t. ψ-ζ Combination. The pre-
vious simulations have shown that the n.o.m.s.t. ψ-ζ combi-
nation tends to the constant n.o.m.s.t.(hσ) ψ-ζ combination
when σ tends to high values. Nevertheless, all the considered
simulations are characterized by a constant value of λ; then
it is necessary to study the influence of this parameter on the
system behaviour. As a matter of fact, the half-derivative term
is calculated by (5), which is a discrete-time approximation
with a finite number of terms; therefore the influence of the
sampling time is not negligible.

The simulation results show that

(i) λ influences the n.o.m.s.t.(hσ) ψ-ζ combination:
Figure 15 shows the n.o.m.s.t.(hσ) ψ-ζ combination
for λ = 0.01, 0.03, 0.05, 0.07;

(ii) for the same value of ψ, variations of λ do
not affect significantly the sampling time if the
n.o.m.s.t.(hσ) ψ-ζ combination is properly changed
according to λ, as shown in Figure 16 (the small
fluctuations are due to the numerical approximations
of (5)).
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Figure 14: Dimensionless settling time tad,s2% as function of σ and
ψ, n.o.m.s.t. ψ-ζ combinations, λ = 0.05.
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5. Conclusions

A comparison between the classical PD and the proposed
PDD1/2 control scheme has been performed with reference
to a linear second-order inertial system. The PDD1/2 control
scheme derives from the PD control scheme with the
addition of the half-derivative term. The effects of the
saturation and of the sampling time have been considered.

A dimensionless approach has been adopted for sake of
generality, by introducing four dimensionless parameters: ζ ,
which represents the derivative gain; ψ, which represents the
half-derivative gain; λ, which represents the sampling time;
and σ , which represents the control saturation.

The simulation results can be summarized as follows.
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Figure 16: Dimensionless settling time tad,s2% as function of ψ and
λ, in case of n.o.m.s.t.(hσ) ψ-ζ combinations.

(i) The introduction of the half-derivative term (ψ) in
proper combination with the derivative term (ζ)
allows to reduce the settling time of a step response
under the same limitation of maximum torque (σ)
respecting the condition of null overshoot.

(ii) The reduction of settling time is higher for high
values of maximum torque (σ).

(iii) The null overshoot/minimum settling time (n.o.m.s.t.)
ψ-ζ combination is characterized by the minimum
value of ζ that provides stabilization without over-
shoot as function of ψ, while keeping constant σ and
λ; for higher values of ζ the settling time increases;
for lower values of ζ there is overshoot, which is
unwanted. Therefore we consider this combination as
the optimum combination of the derivative and half-
derivative terms.

(iv) The n.o.m.s.t. ψ-ζ combination depends on σ and λ;
nevertheless, the n.o.m.s.t. combination tends to be
constant if σ tends to high values, and σ is usually
high in normal operative conditions (τmax � Kpθr);
therefore the influence of σ on the tuning of the gains
can be neglected. This leads to the n.o.m.s.t.( hσ)
ψ-ζ combination.

(v) On the contrary, the influence of λ on the n.o.m.s.t.
ψ-ζ combination is not negligible; fortunately, λ
depends on the sampling time, on the system inertia
(which are constant), and on the proportional gain,
but not on the operative conditions (i.e., the ampli-
tude of the commanded step).

(vi) For all of these reasons, the n.o.m.s.t. ψ-ζ combina-
tion can be selected only on the basis of λ.

In conclusion, the results show that the introduction of
the half-derivative term can reduce the settling time of a
second-order linear system under the same conditions of
maximum control output and null overshoot; moreover,
the selection of the half-derivative gain is quite simple and
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can be based on the graph of Figure 15, which provides
the n.o.m.s.t.(hσ) ψ-ζ combinations for different values
of λ.

These advantages of the PDD1/2 scheme with respect to
the PD scheme in the control of the transient behaviour of
purely inertial systems are quite interesting from a technical
and industrial point of view: as a matter of fact, the
systems that are (exactly or approximately) purely inertial are
remarkably widespread (e.g., rotors).

Another common case is when a rotor is connected to
a viscous load, proportional to the angular speed; also in
this case it is possible to use the proposed control scheme
adopting the same criteria to select the half-derivative gain:
the viscous load and the derivative control term have the
same mathematical expression and can be added up to obtain
the overall system damping; as a consequence, the system
model and the corresponding control tuning criteria are the
same.

Also in case of more complex mechanical systems,
characterized by nonlinear inertial effects (e.g., serial robots)
the introduction of the half-derivative term can improve the
dynamic performance [25, 26].

In the following of the research the application of
the half-derivative term will be experimentally tested on a
physical system; moreover, there are several issues that must
be investigated, such as the extension to the PIDD1/2 scheme
and the control stability in presence of disturbances and
nonlinear friction effects. Moreover, although the nondi-
mensional approach provides general results, an analytical
study of the influence of the half-derivative term is necessary.
However, the introduction of the halfderivative term seems
to be an interesting option to improve the performance of the
classical PID control in terms of settling time, with potential
benefits in a wide range of automation and mechatronic
applications.
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