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A hybrid learning scheme (ePSO-BP) to train Chebyshev Functional Link Neural Network (CFLNN) for classification is presented.
The proposed method is referred as hybrid CFLNN (HCFLNN). The HCFLNN is a type of feed-forward neural networks which
have the ability to transform the nonlinear input space into higher dimensional-space where linear separability is possible.
Moreover, the proposed HCFLNN combines the best attribute of particle swarm optimization (PSO), back propagation learning
(BP learning), and functional link neural networks (FLNNs). The proposed method eliminates the need of hidden layer by
expanding the input patterns using Chebyshev orthogonal polynomials. We have shown its effectiveness of classifying the unknown
pattern using the publicly available datasets obtained from UCI repository. The computational results are then compared with
functional link neural network (FLNN) with a generic basis functions, PSO-based FLNN, and EFLN. From the comparative study,
we observed that the performance of the HCFLNN outperforms FLNN, PSO-based FLNN, and EFLN in terms of classification
accuracy.

1. Introduction

In recent years, higher-order neural networks [1], particu-
larly FLNN, have been widely used to classify nonlinearly
separable patterns and can be viewed as a problem of
approximating an arbitrary decision boundary. Broadly,
artificial neural networks have become one of the most
acceptable soft computing tools for approximating the
decision boundaries of a classification problem [2, 3]. In fact,
a multilayer perceptron (MLP) with a suitable architecture is
capable of approximating virtually any function of interest
[4]. This does not mean that finding such a network is easy.
On the contrary, problems, such as local minima trapping,
saturation, weight interference, initial weight dependence,
and overfitting, make neural network training difficult.

An easy way to avoid these problems consists in removing
the hidden layers. This may sound a little inconsiderate at
first, since it is due to them that nonlinear input-output
relationships can be captured. Encouragingly enough, the
removing procedure can be executed without giving up
nonlinearity, provided that the input layer is endowed with

additional higher-order units [5, 6]. This is the idea behind
higher-order neural networks (HONNs) [7] like functional
link neural networks (FLNNs) [8], ridge polynomial neu-
ral networks (RPNNs) [1, 7], and so on. HONNs are
simple in their architectures and require fewer number of
weights to learn the underlying approximating polynomials.
This potentially reduces the number of required training
parameters. As a result, they can learn faster since each
iteration of the training procedure takes less time. This
makes them suitable for complex problem solving where the
ability to retrain or adopt new data in real time is critical.
Currently, there have been many algorithms used to train the
functional link neural networks, such as back-propagation
learning algorithm [2], genetic algorithm [9], particle swarm
optimization [10], and so on. Back-propagation learning
algorithms have their own limitations. However, we can
advocate that if the search for the BP learning algorithms
starts from the near optimum with a small tuning of the
learning parameters, the searching results can be improved.

Genetic algorithms and particle swarm optimization
can be used for training the FLNN to reduce the local
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optimality and speed up the convergence. But training using
genetic algorithm is discouraging because of the following
limitations: in the training process, it requires encoding
and decoding operator which is commonly treated as a
long-standing barrier of neural networks researchers. The
important problem of applying genetic algorithms to train
neural networks may be unsatisfactory because recombina-
tion operators incur several problems, such as competing
conventions [11] and the epistasis effect [12]. For better
performance, real coded genetic algorithms [13, 14] have
been introduced. However, they generally employ random
mutations, and, hence, still require lengthy local searches
near a local optima. On the other hand, PSO has some
attractive properties. It retains previous useful information,
whereas GAs destroy the previous knowledge of the problems
once the population changes. PSO encourages constructive
cooperation and information sharing among particles, which
enhances the search for a global optimal solution. Successful
applications of PSO to some optimization problems such as
function minimization [15, 16] and neural networks design
[17, 18] have demonstrated its potential. It is considered to
be capable to reduce the ill effect of the BP learning algorithm
of neural networks, because it does not require gradient and
differentiable information.

Unlike the GA, the PSO algorithm has no complicated
operators such as cross-over and mutation. In the PSO
algorithm, the potential solutions, called as particles, are
obtained by flowing through the problem space by following
the current optimum particles. Generally speaking, the PSO
algorithm has a strong ability to find the most optimistic
result, but it has a disadvantage of easily getting into a
local optimum. After suitably modulating the parameters
for the PSO algorithm, the rate of convergence can be
speeded up, and the ability to find the global optimistic
result can be enhanced. The PSO algorithm search is based
on the orientation by tracing pbest, that is, each particle’s
best position in its history, and tracing gbest that is all
particles best position in their history, it can rapidly arrive
around the global optimum. However, because the PSO
algorithm has several parameters to be adjusted by empirical
approach, if these parameters are not appropriately set,
search will proceed very slow near the global optimum.
Hence, to cope up with this problem, we suggested a novel
evolvable PSO (ePSO) and back propagation (BP) algorithm
as a learning method of Chebyshev functional link neural
network (CFLNN) for fine tuning of the connection weights.

1.1. Outline. The remainder of this paper is organized as
follows. Some the recently proposed functional link neural
networks (FLNNs) are reviewed in Section 2. Section 3 pro-
vides the detailed algorithm of HCFLNN for classification.
In Section 4, we have presented experimental results with
a comparative study. Section 5 concludes the article with a
future research scope.

2. Functional Link Neural Networks

FLNNs are higher order neural networks without hidden
units introduced by Klassen et al. [19] in 1988. Despite their

linear nature, FLNNs can capture nonlinearly input-output
relationships, provided that they are fed with an adequate set
of polynomial inputs, or the functions might be a subset of a
complete set of orthonormal basis functions spanning an n-
dimensional representation space, which are constructed out
of the original input attributes [20].

In contrast to the linear weights of the input patterns
produced by the linear links of artificial neural network,
the functional link acts on an element of a pattern or
on the entire pattern itself by generating a set of linearly
independent functions, then evaluating these functions with
the pattern as an argument. Thus, class separability is
possible in the enhanced feature space. For a D-dimensional
classification problem, there are ((D + r)!/D! · · · r!) possible
polynomials up to degree r that can be constructed. For most
of the real life problems, this is too big number, even for
degree 2, which obviously discourages us from achieving our
goal. However, we can still resort to constructive and pruning
algorithms in order to address this problem. In fact, Sierra et
al. [21] have proposed a new algorithm for the evolution of
functional link networks which makes use of a standard GAs
[9] to evolve near minimal linear architectures. Moreover, the
complexity of the algorithm still needs to be investigated.

However, the dimensionality of many problems is itself
very high and further increasing the dimensionality to a
very large extent that may not be an appropriate choice. So,
it is advisable and also a new research direction to choose
a small set of alternative functions, which can map the
function to the desired extent with an output of significant
improvement. FLNN with a trigonometric basis functions
for classification, as proposed in [8], is obviously an example.
Chebyshev FLNN is also another improvement in this
direction, the detailed is discussed in Section 3. Some of
the potential contributions in FLNNs and their success for
application in variety of problems are given below.

Haring and Kok [22], has proposed an algorithm that
uses evolutionary computation (specifically genetic algo-
rithm and genetic programming) for the determination of
functional links (one based on polynomials and another
based on expression tree) in neural network. Patra and Pal
[23] have proposed a FLNN and applied to the problem of
channel equalization in a digital communication channel.
It relies on BP-learning algorithm. Haring et al. [24] were
presenting a different ways to select and transform features
using evolutionary computation and show that this kind of
selection of features is a special case of so-called functional
links.

Dash et al. [25] have proposed a FLNN with trigono-
metric basis functions to forecast the short-term electric
load. Panagiotopoulos et al. [26] have reported better
results by applying FLNN for planning in an interactive
environment between two systems: the challenger and the
responder. Patra et al. [27] have proposed a FLNN with back-
propagation learning for the identification of nonlinearly
dynamic systems.

With the encouraging performance of FLNN [23, 27],
Patra and van den Bos [28] further motivated and came
up with another FLNN with three sets of basis functions
such as Chebyshev, Legendre, and power series to develop
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an intelligent model of the CPS involving less computational
complexity. In the sequel, its implementation can be eco-
nomical and robust.

In [21], a genetic algorithm for selecting an appropriate
number of polynomials as a functional input to the network
has been proposed by Sierra et al. and applied to the
classification problem. However, their main concern was
the selection of optimal set of functional links to construct
the classifier. In contrast, the proposed method gives much
emphasis on how to develop the learning skill of the
classifier.

A Chebyshev functional link artificial neural networks
have been proposed by Patra and Kot [29] for nonlinearly
dynamic system identification. This is obviously another
improvement in this direction and also a source of inspi-
ration to further validate this method in other application
domain. The proposed method is clearly an example. Singh
and Srivastava [30] have estimated the degree of insecurity
in a power system with a set of orthonormal trigonometric
basis functions.

In [31], an evolutionary search of genetic type and
multiobjective optimization such as accuracy and complexity
of the FLNN in the Pareto sense is used to design a
generalized FLNN with internal dynamics and applied to
system identification.

Majhi and Shalabi [32] have applied FLNN for digital
watermarking, their results show that FLNN has better
performance than other algorithms in this line. In [33], a
comparative performance of three artificial neural networks
has been given for the detection and classification of gear
faults. Authors reported that FLNN is comparatively better
than others.

Misra and Dehuri [8] have used a FLNN for classification
problem in data mining with a hope to get a compact
classifier with less computational complexity and faster
learning. Purwar et al. [34] have proposed a Chebyshev
functional link neural network for system identification of
unknown dynamic nonlinearly discrete-time systems. Weng
et al. [35] have proposed a reduced decision feedback
Chebyshev functional link artificial neural networks (RDF-
CFLANN) for channel equalization.

Two simple modified FLANNs are proposed by Krishna-
iah et al. [36] for estimation of carrageenan concentration. In
the first model, a hidden layer is introduced and trained by
EBP. In the second model, functional links are introduced to
the neurons in the hidden layer, and it is trained by EBP. In
[37], a FLANN with trigonometric polynomial functions is
used in intelligent sensors for harsh environment that effec-
tively linearizes the response characteristics, compensates for
nonidealities, and calibrates automatically. Dehuri et al. [38]
have proposed a novel strategy for feature selection using
genetic algorithm and then used as the input in FLANN for
classification.

With this discussion, we can conclude that a very
few applications of HONNs have so far been made in
classification task. Although theoretically this area is rich, but
application specifically in classification is poor. Therefore,
the proposed contribution can be another improvement in
this direction.

3. Hybrid Chebyshev FLNN

3.1. Chebyshev Functional Link Neural Network. It is well
known that the nonlinearly approximation of the Chebyshev
orthogonal polynomial is very powerful by the approxi-
mation theory. Combining the characteristics of the FLNN
and Chebyshev orthogonal polynomial the Chebyshev func-
tional link neural network what we named as CFLNN is
resulted. The proposed method utilizes the FLNN input-
output pattern, the nonlinearly approximation capabilities
of Chebyshev orthogonal polynomial, and the evolvable
particle swarm optimization(ePSO)-BP learning scheme for
classification.

The Chebyshev FLNN used in this paper is a single-
layer neural network. The architecture consists of two parts,
namely transformation part (i.e., from a low-dimensional
feature space to high-dimensional feature space) and learn-
ing part. The transformation deals with the input feature
vector to the hidden layer by approximate transformable
method. The transformation is the functional expansion
(FE) of the input pattern comprising of a finite set of Cheby-
shev polynomial. As a result, the Chebyshev polynomial basis
can be viewed as a new input vector. The learning part uses
the newly proposed ePSO-BP learning.

Alternatively, we can approximate a function by a
polynomial of truncated power series. The power series
expansion represents the function with a very small error
near the point of expansion, but the error increases rapidly
as we employ it at points farther away. The computational
economy to be gained by Chebyshev series increases when
the power series is slowly convergent. Therefore, Chebyshev
series are frequently used for approximations to functions
and are much more efficient than other power series of the
same degree. Among orthogonal polynomials, the Cheby-
shev polynomials converge rapidly than expansion in other
set of polynomials [8]. Moreover, Chebyshev polynomials
are easier to compute than trigonometric polynomials. These
interesting properties of Chebyshev polynomial motivated us
to use CFLNN for approximation of decision boundaries in
the feature space.

3.2. Evolvable Particle Swarm Optimization (ePSO). Evolv-
able particle swarm optimization (ePSO) is an improvement
over the PSO [10]. PSO is a kind of stochastic algorithm
to search for the best solution by simulating the movement
and flocking of birds. The algorithm works by initializing
a flock of birds randomly over the searching space, where
every bird is called as a particle. These particles fly with a
certain velocity and find the global best position after some
iteration. At each iteration k, the ith particle is represented
by a vector xki in multidimensional space to characterize its
position. The velocity vki is used to characterize its velocity.
Thus, PSO maintains a set of positions:

S =
{
xk1 , xk2 , . . . , xkN

}
(1)

and a set of corresponding velocities

V =
{
vk1 , vk2 , . . . , vkN

}
. (2)
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Initially, the iteration counter k = 0, and the positions
x0
i and their corresponding velocities v0

i (i = 1, 2, . . . ,N) are
generated randomly from the search space Ω. Each particle
changes its position xki per iteration. The new position xk+1

i

of the ith particle (i = 1, 2, . . . ,N) is biased towards its best
position pki with minimized functional value f (·) referred to
as personal best or pbest, found by the particle so far, and the
very best position pkg , referred to as the global best or gbest,
found by its companions. The gbest is the best position in the
set

P =
{
pk1, pk2, . . . , pkN

}
, where p0

i = x0
i , ∀i. (3)

We can say a particle in P as good or bad depending on its
personal best being a good or bad point in P. Consequently,
we call the ith particle ( jth particle) in P the worst (the best)
if pki (pkj ) is the least (best) fitted, with respect to function

value in P. The pbest and gbest is denoted as pki and pkg ,
respectively.

At each iteration k, the position xki of the ith particle
is updated by a velocity vk+1

i which depends on three
components: its current velocity vki , the cognition term (i.e.,
the weighted difference vectors (pki −xki )), and the social term
(i.e., the weighted difference vector (pkg − xki )).

Specifically, the set P is updated for the next iteration
using

xk+1
i = xki + vk+1

i , (4)

where vk+1
i = vki + r1 · c1 · (pki − xki ) + r2 · c2 · (pkg − xki ).

The parameters r1 and r2 are uniformly distributed
in random numbers in [0, 1] and c1 and c2, known as
the cognitive and social parameters, respectively, and are
popularly chosen to be c1 = c2 = 2.0 [40]. Thus, the values
r1 · c1 and r2 · c2 introduce some stochastic weighting in the
difference vectors (pki −xki ) and (pkg−xki ), respectively. The set

P is updated as the new positions xk+1
i that are created using

the following rules with a minimization of the cost function:

pk+1
i = xk+1

i if f
(
xk+1
i

)
< f

(
pki
)

, otherwise pk+1
i = pki .

(5)

This process of updating the velocities vki , positions xki ,
pbest pki , and the gbest pkg is repeated until a user-defined
stopping condition is met.

We now briefly present a number of improved versions
of PSO and then show where our modified PSO can stand.

Shi and Eberhart [39] have done the first modification by
introducing a constant inertia ω, which controls how much a
particle tends to follow its current directions compared to the
memorized pbest pki and the gbest pkg . Hence, the velocity
update is given by

vk+1
i =ω · vki + r1·c1·

(
pki − xki

)
+ r2 · c2 ·

(
pkg − xki

)
, (6)

where the values of r1 and r2 are realized component wise.
Again Shi and Eberhart [40] proposed a linearly varying

inertia weight during the search. the inertia weight is linearly
reduced during the search. This entails a more globally search

during the initial stages and a more locally search during
the final stages. They also proposed a limitation of each
particle’s velocity to a specified maximum velocity vmax. The
maximum velocity was calculated as a fraction τ(0 < τ ≤ 1)
of the distance between the bounds of the search space, that
is, vmax = τ · (xu − xl).

Fourie and Groenwold [41] suggested a dynamic inertia
weight and maximum velocity reduction. In this modifi-
cation, an inertia weight and maximum velocity are then
reduced by fractions α and β, respectively, if no improvement
in pkg occur after a prespecified number of iterations h, that
is,

if f
(
pkg
)
= f

(
pk−1
g

)
then wk+1 = αωk and vmax

k = βvmax
k ,

(7)

where α and β are such that 0 < α, β < 1.
Clerc and Kennedy [42] introduced another interesting

modification to PSO in the form of a constriction coefficient
χ, which controls all the three components in velocity update
rule. This has an effect of reducing the velocity as the search
progress. In this modification, the velocity update is given by

vk+1
i = χ

(
vki + r1c1

(
pki
)

+ r2c2

(
pkg − xki

) )
,

where χ = 2∣∣∣2− φ −
√
φ2 − 4φ

∣∣∣
, φ = c1 + c2 > 4.

(8)

Da and Ge [18] also modified PSO by introducing
a temperature like control parameter as in the simulated
annealing algorithm. Zhang et al. [43] have modified the
PSO by introducing a new inertia weight during the velocity
update. Generally in the beginning stages of their algorithm,
the inertial weightω should be reduced rapidly, when around
optimum, the inertial weight ω should be reduced slowly.
They adopted the following rule:

ω = ω0 −
(

ω1

MAXITER1

)
∗ t, if 1 ≤ t ≤ MAXITER1,

ω = (ω0 − ω1)∗ exp
(

(MAXITER1− k)
ν

)
,

if MAXITER1 < k ≤ MAXITER,
(9)

where ω0 is the initial inertia weight, ω1 is the inertial weight
of linear section ending, MAXITER is the total searching
generations, MAXITER1 is the used generations that inertia
weight is reduced linearly, and k is a variable whose range
is [1, MAXITER]. By adjusting k, they are getting different
ending values of inertial weight.

In this work, the inertial weight is evolved as a part of
searching the optimal sets of weights. However, the evolution
of inertial weight is restricted between an upper limit (ωu)
and lower limit ωl. If it exceeds the boundary during the
course of training the network, then the following rule is
adopted for restricting the value of ω:

ω = ωl +
c−value

3ωu

(
ωu − ωl

)
, (10)

where c value is the exceeded value.
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In addition, the proposed method also uses the adaptive
cognitive acceleration coefficient (c1) and the social accelera-
tion coefficients (c2). c1 has been allowed to decrease from its
initial value of c1i to c1 f while c2 has been increased from c2i

to c2 f using the following equations as in [44]:

ck1 =
(
c1 f − c1i

) k

MAXITER
+ c1i,

ck2 =
(
c2 f − c2i

) k

MAXITER
+ c2i.

(11)

3.3. ePSO-BP Learning Algorithm. The ePSO-BP is an learn-
ing algorithm which combines the ePSO global searching
capability with the BP algorithm local searching capability.
Similar to the GA [9], the ePSO algorithm is a global
algorithm, which has a strong ability to find global optimistic
result, and this ePSO algorithm, however, has a disadvantage
that the search around global optimum is very slow. The BP
algorithm, on the contrary, has a strong ability to find local
optimistic result, but its ability to find the global optimistic
result is weak. By combining the ePSO with the BP, a new
algorithm referred to as ePSO BP hybrid learning algorithm
is formulated in this paper. The fundamental idea for this
hybrid algorithm is that at the beginning stage of searching
for the optimum, the PSO is employed to accelerate the
training speed. When the fitness function value has not
changed for some generations, or value changed is smaller
than a predefined number, the searching process is switched
to gradient descending searching according to this heuristic
knowledge. Similar to the ePSO algorithm, the ePSO BP
algorithm’s searching process is also started from initializing
a group of random particles. First, all the particles are
updated according to (4), until a new generation set of
particles are generated, and then those new particles are used
to search the global best (gbest) position in the solution
space. Finally, the BP algorithm is used to search around
the global optimum. In this way, this hybrid algorithm
may find an optimum more quickly. The procedure for this
ePSO BP algorithm can be summarized by the following
computational steps.

(1) Initialize the positions and velocities of a group of
particles randomly in the range of [0, 1]. Initialize
the cognitive and social acceleration initial and final
coefficients (i.e., c1i, c1 f , c2i, and c2 f ).

(2) Evaluate each initialized particle’s fitness value, and
pi is set as the positions of the current particles, while
pg is set as the best position of the initialized particles.

(3) If the maximal iterative generations are arrived, go to
Step 10, else, go to Step 4.

(4) The best particle of the current particles is stored.
The positions and velocities of all the particles are
updated according to (4) and (6), then a group of new
particles are generated.

(5) Adjust the value of c1 and c2 by using (11).

(6) Adjust the inertia weights ω according to equation
(10) if it flies beyond the boundary of ω.

(7) Evaluate each new particle’s fitness value, and the
worst particle is replaced with the stored best particle.
If the ith particle’s new position is better than pi, pi is
set as the new position of the ith particle. If the best
position of all new particles is better than pg , then pg
is updated.

(8) If the current pg is unchanged for 15 consecutive
generations, then go to Step 9; else, go to Step 3.

(9) Use the BP algorithm to search around pg for some
epochs, if the search result is better than pg , output
the current search result, or else, output pg .

(10) Output the global optimum pg .

The parameter ω, in the above ePSO BP algorithm,
evolves simultaneously with the weights of the CFLANN
during the course of training. The parameter MAXITER1 is
generally adjusted to an appropriate value by many repeated
experiments, then an adaptive gradient descending method
is used to search around the global optimum pg . The
BP algorithm based on gradient descending has parameter
called learning rate which controls the convergence of
the algorithm to an optimal local solution. In practical
applications, users usually employed theoretical, empirical,
or heuristic methods to set a good value for this learning rate.
In this paper, we adopted the following strategy for learning
rate:

μ = k ∗ exp
(−v ∗ epoch

)
, (12)

where μ is learning rate, k and ν are constants, epoch is a
variable that represents iterative times, through adjusting k
and ν and we can control the reducing speed of learning
rate.

3.4. ePSO-BP Learning Algorithm for CFLNN. Learning of
a CFLNN may be considered as approximating or inter-
polating a continuous multivariate function φ(X) by an
approximating function φW (X). In CFLNN architecture, a
set of basis functions ϕ and a fixed number of weight
parameters W are used to represent φW (X). With a specific
choice of a set of basis functions ψ, the problem is then to
find the weight parameters W that provide the best possible
approximation of ϕ on the set of input-output samples. This
can be achieved by iteratively updating W . The interested
reader about the detailed theory of FLNN can refer to
[21].

Let k training patterns be applied to the FLNN and can
be denoted by 〈Xi,Yi〉, i = 1, 2, . . . , k and let the weight
matrix be W . At the ith instant i = 1, 2, . . . , k, the D-
dimensional input pattern and the CFLNN output are given
by Xi = 〈xi1, xi2, . . . , xiD〉, i = 1, 2, . . . , k, and Ŷi = [ ŷi],
respectively. Its corresponding target pattern is represented
byYi = [yi], i = 1, 2, . . . , k. Hence∀i,X = [X1,X2, . . . ,Xk]T .
The augmented matrix of D-dimensional input pattern and
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the CFLNN output are given by

〈
X : Ŷ

〉
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x11 x12 . x1D : ŷ1

x21 x22 . x2D : ŷ2

. . . . : .

. . . . : .

xk1 xk2 . xkD : ŷk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

As the dimension of the input pattern is increased from
D to D′ by a set of basis functions ϕ, given by ϕ(Xi) =
[Ch1(xi1),Ch2(xi1),. . . ,Ch1(xi2),Ch2(xi2) . . . ,Ch1(xiD),Ch2

(xiD) , . . .]. The k × D′ dimensional weight matrix is given
by W = [W1,W2, . . . ,Wk]T , where Wi is the weight vector
associated with the ith output and is given by Wi =
[wi1,wi2,wi3, . . . ,wiD′]. The ith output of the CFLNN is given
by ŷi(t) = ρ(ΣD

′
j=1ψj(xi j) · wij)∀i. The error associated with

the ith output is given by ei(t) = yi(t)− ŷi(t). Using the ePSO
back-propagation (BP) learning, the weights of the CFLNN
can be optimized. The high-level algorithms then can be
summarized as follows.

(1) Input the set of given k training patterns.

(2) Choose the set of orthonormal basis functions.

(3) For i = 1 : k

(4) Expand the feature values using the chosen basis
functions.

(5) Calculated the weighted sum and then fed to the
output node.

(6) error = error + e(k)

(7) End for

(8) If the error is tolerable then stop otherwise go to (9).

(9) Update the weights using ePSO BP learning rules and
go to step (3).

4. Empirical Study

This section is divided into five subsections. Section 4.1
describes the datasets taken from UCI [45] repository of
machine learning databases. The parameters required for the
proposed method are given in Section 4.2. The performance
of the hybrid CFLNN using some of the datasets especially
considered by Sierra et al. [21] compared with the model
proposed by Sierra et al. in Section 4.3. In Section 4.4, the
classification accuracy of hybrid CFLNN is compared with
FLNN [8]. In Section 4.5, we compared the performance of
hybrid CFLNN with FLNN proposed in [8] using the cost
matrix analysis and then compared with the results obtained
by StatLog project [46].

4.1. Description of the Datasets. The availability of results,
with previous evolutionary and constructive algorithms (e.g.,
Sierra et al. [21], Preshelt [47]) has guided us the selection of
the following varied datasets taken from the UCI repository
of machine learning databases for the addressed neural
network learning. Table 1 presents a summary of the main
features of each database that has been used in this study.

Table 1: Summary of the datasets.

Dataset Patterns Attrib. Clas.
Patterns
in class
1

Patterns
in class
2

Patterns
in class
3

IRIS 150 4 3 50 50 50

WINE 178 13 3 71 59 48

PIMA 768 8 2 500 268 —

BUPA 345 6 2 145 200 —

HEART 270 13 2 150 120 —

CANCER 699 9 2 458 241 —

Table 2: Description of the parameters.

Symbol Purpose of the symbol

N Size of the swarm

ω Inertia weight

ωu Upper limit of the inertia

ωl Lower limit of the inertia

c1 Cognitive parameter

c1i Left boundary value of cognitive parameter

c1 f Right boundary value of cognitive parameter

c2 Social parameter

c2i Left boundary value of social parameter

c2 f Right boundary value of social parameter

MAXITER Maximum iterations for stopping an algorithm

4.2. Parameters. All the algorithms have some parameters
that have to be provided by the user. The parameters for
the proposed hybrid CFLNN are listed in Table 2. However,
the parameters for other algorithms are set based on the
suggestion. The parameters for EFLN were adopted as
suggested in [21]. Similarly, the parameters for FLNN were
set as suggested in [8].

The values of the parameters used in this paper are as
follows. We set N = 20 ∗ d, where d is the dimension of
the problem under consideration. The upper limit (ωu) and
lower limit (ωl) of the inertia are set to [0.2, 1.8]. Similarly,
the initial and final value of cognitive acceleration coefficients
are set to c1i = 2.5 and c1f = 0.5. The initial and final
value of social acceleration coefficients are set to c2i = 0.5
and c2f = 2.5. the maximum number of iteration is fixed to
MAXITER = 500.

In the case of BP learning, the learning parameter μ and
the momentum factor ν in hybrid CFLNN was chosen after a
several runs to obtain the best results. In the similar manner,
the functional expansion of the hybrid CFLNN was carried
out.

4.3. Hybrid CFLNN versus EFLN. In this subsection, we
will compare the results of hybrid CFLNN with the results
of EFLN with polynomial basis functions of degree 1, 2,
and 3. The choice of the polynomial degree is obviously
a key question in FLNN with polynomial basis functions.
However, Sierra et al. [21] have given some guidance to
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Table 3: Possible number of expanded inputs of degrees ONE,
TWO, and THREE.

Dataset Attributes Degree 1 Degree 2 Degree 3

IRIS 4 5 15 35

WINE 13 14 105 560

PIMA 8 9 45 165

BUPA 6 7 28 84

HEART 13 14 105 560

CANCER 9 10 55 220

Table 4: Comparative results of HCFLNN with EFLN for the cancer
and PIMA dataset by considering the average training error (MTre),
average validation error (MVe), and average test error (MTe).

Dataset HCFLNN EFLN

MTre MVe MTe MTre MVe MTe

Cancer 1 4.01 2.76 2.57 4.27 1.89 2.09

Cancer 2 3.95 3.97 4.66 4.37 2.96 3.96

cancer 3 4.13 3.51 4.43 3.29 3.01 4.65

BUPA 1 16.26 21.98 22.62 19.07 22.44 23.29

BUPA 2 17.90 24.12 22.35 19.84 18.63 20.37

BUPA 3 15.34 19.92 21.96 16.68 17.81 24.44

optimize the polynomial degree that can best suit to the
architecture. Considering degrees of the polynomial 1, 2,
and 3, the possible number of expanded inputs of the above
datasets are given in Table 3.

For the sake of convenience, we report the results of the
experiments conducted on CANCER and BUPA and then
compared with the methods EFLN [21]. We partitioned both
datasets into three sets: training, validation, and test sets.
Both the networks are trained for 1500 epochs (it should
be carefully examined) on the training set, and the error
on the validation set was measured after every 10 epochs.
Training was stopped when a maximum of 1500 epochs had
been trained. The test set performance was then computed
for that state of the network which had minimum validation
set error during the training process. This method called
early stopping is a good way to avoid overfitting of the
network to the particular training examples used, which
would reduce the generalization performance. The average
error rate corresponding to HCFLNN, and EFLN w.r.t.
training, validation, and testing of CANCER, and BUPA
datasets are shown in Table 4.

4.4. Hybrid CFLNN versus FLNN. Here, we will discuss the
comparative performance of hybrid CFLNN with FLNN
using three datasets IRIS, WINE, and PIMA. In this case,
the total set of samples are randomly divided into two equal
folds. Each of these two folds are alternatively used either
as a training set or as a test set. As the proposed learning
method ePSO BP learning is a stochastic algorithm, so 10
independent runs were performed for every single fold. The
training results obtained in the case of HCFLNN, averaged
over 10 runs, are compared with the single run of FLNN.

Table 5: Comparative average performance of HCFLNN and FLNN
[21] based on the confidence level (α = 95%).

Dataset HCFLNN FLNN

IRIS train 0.9964± 0.0136 0.9866± 0.0260

Test set 0.9864± 0.0262 0.9866± 0.0260

WINE train 0.9842± 0.0259 0.9605± 0.0405

Test set 0.9708± 0.0350 0.9550± 0.0431

PIMA train 0.8064± 0.0395 0.7877± 0.0409

Test set 0.7928± 0.0405 0.7812± 0.0414

Table 6: Comparative Average Performance of HCFLNN and
FLNN [8] based on the Confidence Level (α = 98%).

Dataset HCFLNN FLNN

IRIS Train 0.9964± 0.0161 0.9866± 0.0309

Test set 0.9864± 0.0312 0.9866± 0.0309

WINE Train 0.9842± 0.0308 0.9605± 0.0481

Test set 0.9708± 0.0416 0.9550± 0.0512

PIMA Train 0.8064± 0.0470 0.7877± 0.0486

Test set 0.7928± 0.0482 0.7812± 0.0492

Table 7: Weight Matrix of classes to Penalize.

Real Classification Model Classification

Class 1 Class 2

Class 1 0 ω2

Class 2 ω1 0

Similarly, the performance of both classifiers in test set is
illustrated herein.

The plotted results clearly indicate that the performance
of HCFLNN is competitive with FLNN, whereas in other
classification problems like WINE and PIMA, the HCFLNN
is showing a clear boundary.

The comparative performance of HCFLNN with FLNN
[8] is given in Tables 5 and 6 w.r.t to the different confidence
level (α) of 95% and 98%, respectively.

4.5. Performance of Hybrid CFLNN versus FLNN Based on
Heart Data. In this subsection, we will explicitly examine the
performance of the HCFLNN model by considering the heart
dataset with the use of the 9-fold cross validation method-
ology. The reason for using 9-fold cross validation is that to
compare the performance with the performance of few of the
representative algorithms considered in StatLog Project [46].
In 9-fold cross validation, we partition the database into nine
subsets (heart1.dat, heart2.dat,. . ., heart9.dat), where eight
subsets are used for training, and the remaining one is used
for testing. The process is repeated nine times in such a way
that each time a different subset of data is used for testing.
Thus, the dataset was randomly segmented into nine subsets
with 30 elements each. Each subset contains about 56% of
samples from class 1 (without heart disease) and 44% of
samples from class 2 (with heart disease).

The procedure makes use of a weight matrix, which is
described in Table 7.



8 Advances in Artificial Neural Systems

Table 8: Heart disease classification performance of FLANN
models.

Data subset Error in training set Error in test set Ctrain Ctest

Class 1 Class 2 Class 1 Class 2

Heart1 13/133 14/107 1/17 1/13 0.35 0.2

Heart2 14/133 12/107 2/17 1/13 0.31 0.23

Heart3 13/134 15/106 4/16 2/14 0.37 0.47

Heart4 13/133 10/107 1/17 4/13 0.26 0.7

Heart5 13/133 16/107 3/17 2/13 0.39 0.43

Heart6 13/134 14/106 6/16 0/14 0.35 0.2

Heart7 15/133 13/107 0/17 3/13 0.33 0.5

Heart8 18/133 17/107 1/17 0/13 0.43 0.03

Heart9 20/134 9/106 2/16 1/14 0.27 0.23

Mean 0.34 0.33

The purpose of such a matrix is to penalize wrongly
classified samples based on the weight of the penalty of the
class. In general, the weight of the penalty for class 2 samples
that are classified as class 1 samples is ω1, while the weight
of the penalty for class 1 records that are classified as class 2
samples is ω2. Therefore, the metric used for measuring the
cost of the wrongly classifying patterns in the training and
test dataset is given by (14).

Ctrain = (S1 × ω1 + S2 × ω2)
Strain

,

Ctest = (S1 × ω1 + S2 × ω2)
Stest

,

(14)

where Ctrain is the cost of the training set; Ctest is the cost
of test set; S1 and S2 denote the patterns that are wrongly
classified as belong to class 1 and 2, respectively; Strain and
Stest are the total number of training and test patterns,
respectively.

Table 8 presents the errors and costs of the training and
test sets for the FLANN model with a weight value of ω1 = 5
and ω2 = 1.

Table 9 illustrates the performance of HCFLANN based
on the above definition of cost matrix. The errors in training
and test set are explicitly given.

The classification results found by the HCFLNN for the
heart disease dataset were compared with the results found
in the StatLog project [46]. According to [46], comparison
consists of calculating the average cost produced by the nine
data subsets used for validation. Table 10 presents the average
cost for the nine training and test subsets. The result of the
HCFLNN is highlighted in bold.

5. Conclusions and Research Directions

In this paper, we developed a new hybrid Chebyshev
functional link neural network (HCFLNN). The hybrid
model is constructed using the newly proposed ePSO- back
propagation learning algorithm and functional link artificial
neural network with the orthogonal Chebyshev polynomials.
The model was designed for the task of classification in

Table 9: Heart disease classification performance of HCFLANN
models.

Data subset Error in training set Error in test set Ctrain Ctest

Class 1 Class 2 Class 1 Class 2

Heart1 13/133 14/107 1/17 1/13 0.35 0.2

Heart2 13/133 12/107 1/17 2/13 0.30 0.36

Heart3 12/134 13/106 5/16 1/14 0.32 0.33

Heart4 13/133 10/107 4/17 1/13 0.26 0.30

Heart5 13/133 15/107 3/17 2/13 0.37 0.43

Heart6 13/134 12/106 5/16 1/14 0.30 0.30

Heart7 14/133 13/107 1/17 2/13 0.33 0.37

Heart8 16/133 16/107 0/17 2/13 0.40 0.33

Heart9 18/134 10/106 2/16 1/14 0.28 0.23

Mean 0.32 0.31

Table 10: Comparative classification performance of HCFLNN,
FLNN with the algorithms considered in [46] using the heart
disease bench mark datset.

Methods Ctest Ctrain

HCFLNN 0.31 0.32

FLNN 0.33 0.34

HNFB−1 0.37 0.59

Bayes 0.37 0.35

data mining. The method was experimentally tested on
various benchmark datasets obtained from publicly avail-
able UCI repository. The performance of the proposed
method demonstrated that the classification task is quite
well in WINE and PIMA whereas showing a competitive
performance with FLNN in IRIS. Further, we compared this
model with EFLN and FLNN, respectively. The comparative
results of the developed model is showing a clear edge over
FLNN. Compared with EFLN, the proposed method has
been shown to yield state-of-the-art recognition error rate
for the classification problems such as CANCER and BUPA.

With this encouraging results of HCFLNN, our future
research includes: (i) testing the proposed method on a
more number of real life bench mark classification problems
with highly nonlinearly boundaries, (ii) mapping the input
features with other polynomials such as Legendre, Gaussian,
Sigmoid, power series, and so forth, for better approximation
of the decision boundaries, (iii) the stability and convergence
analysis of the proposed method, and (iv) the evolution of
optimal FLNN using particle swarm optimization.

The HCFLNN architecture, because of its simple archi-
tecture and computational efficiency, may be conveniently
employed in other tasks of data mining and knowledge dis-
covery in databases [4, 8] such as clustering, feature selection,
feature extraction, association rule mining, regression, and
so on. The extra calculation generated by the higher-order
units can be eliminated, provided that these polynomial
terms are stored in memory instead of being recalculated
each time the HCFLNN trained.
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