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We introduce the notion of weakly injective BCK-module and show that Baer’s criterion holds
for weakly injective BCK-modules but not for injective BCK-modules in general. We also provide
examples and counterexamples of weakly injective BCK-modules.

1. Introduction

Inspired by Meredith’s BCK-systems, Iséki and Imai introduced the notion of BCK-algebra in
1966. These pioneers developed major aspects of the theory in the late 1960s and the 1970s.
They were soon joined by many other researchers to develop various aspects of the BCK-
algebra theory. Since then, BCK-algebras have been a subject of intense research. The main
approach of this development has been trying to build a theory that is parallel to the standard
ring theory. In this order of ideas, Noetherian and Artinian BCK-algebras [1], BCK-modules
[2], injective and projective BCK-modules [2], and fractions BCK-algebras [3] have recently
been treated. So far, the only articles on BCK-modules have been [2, 4]. Considering the topics
covered by these two articles, it is quite clear that very little is known about the theory of
modules over BCK-algebras. For instance, the notion of injective modules over BCK-algebras
was introduced in [2], but not a single example was treated. In classical ring theory, injective
modules are studied using Baer’s criterion and divisible modules. Unfortunately, as we will
show, this criterion does not hold for injective BCK-modules, and there are no natural notion
of divisible modules over BCK-algebras.

The main goal of this work is to shed some light on the notion of injective modules over
BCK-algebras. We do this by introducing a new class of modules (weakly injective modules)
that strictly contains the above class and obtain a Baer’s criterion for this class. In order to
achieve this goal, we found ourselves imposing a new axiom to BCK-modules.
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Recall that the notion of left module over a bounded commutative BCK-algebra
(X,*,0,1) was first introduced in 1994 by Abujabal et al. [4]. We consider the class of left
BCK-modules that satisfy the following axiom in addition to the axioms of [4],

(x+y)m=xm+ym, (1.1)

forall x,y € X and m € M where x + y = (x xy) V (y * x).

We will refer to BCK-modules of this class as BCK-modules of type 2. The consider-
ation of this class is motivated not only by the fact that it makes BCK-modules more in line
with modules over rings, but also the fact that the main results obtained by the previous
authors remain valid for this class. Using this class of BCK-modules, we introduce weakly
injective BCK-modules. We prove that weakly injective BCK-modules are Characterized by
Baer’s criterion, which we use to prove that over principal bounded implicative BCK’s, every
module is weakly injective [Corollary 3.9]. We use these characterizations to build examples
of (weakly) injective modules over BCK-algebras and also find examples that prove that our
Baer’s criterion is the sharpest we can get.

2. Generalities on BCK-Modules

Recall that a BCK-algebra is an algebra (X, , <, 0) satisfying for all x,y,z € X

(i) (x*x2)x (xxy) <y*z,
(ii) xx (x*y) <y,
(iii) 0 < x,
(iv) x < «x,
(v) x <yand y < x implies x = y,
(vi) x <yifandonlyif x x y = 0.

In addition, if there exists an element 1 in X such that x <1 for all x € X, then X is said
to be bounded and we write Nx for 1 * x. Also,if x * (x xy) =y * (y*x) forall x,y € X, X is
said to be commutative. In addition, X is called implicative if x * (y * x) = x for all x,y € X.
As proved in [5, Theorem 10], implicative BCK-algebras are commutative. A subset I of a
BCK-algebra X is called an ideal of X if it satisfies (i) 0 € I and (ii) for every x,y € X such
thaty e Jand x*y €I, thenx € I.

As defined in [4, Definition 2.1], a left module over a bounded commutative BCK-
algebra (X, *,0,1) is an Abelian group (M, +) with a multiplication (x, m) — xm satisfying

(i) (xAy)ym =x(ym) forall x,y € Xand m € M,

(iii) Om =0 for all m € M,

)
(ii) x(m+n) =xm+xnforallx € Xand m,n € M,
)
(iv) Im=mforallm e M,

where x Ay =y * (i * x).
If in addition, M satisfy the axiom (v) below, we call M an X-module of type 2.

V) (x+yym=xm+ymforallx,y € Xand m € M. Where x + y = (x * y) V (y * x).
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Our terminology type 2 is motivated by the fact that every X-module satisfying (v) is as
Abelian group, of exponent 2.

Recall [4, Lemma 2.4] that if X is a bounded implicative BCK-algebra, then (X, +, A) is
a commutative ring. Therefore, X-module of type 2 are modules over the ring (X, +, A).

If M is a left X-module, a subset S of M is a submodule if (S, +) is a subgroup of (M, +)
such that xm € S whenever x € X and m € S.

Given two left X-modules M and N, an X-module homomorphism from M to N is a
map f: M — N satisfying

(i) fm+m') = f(m) + f(m') for all m,m' € M,

(ii) f(xm) = xf(m) for all x € X and m € M.

The set of all X-module homomorphisms from M to N is denoted by Homyx (M, N)

which has a natural structure of X-module via the multiplication (x f)(m) = x f (m).
We introduce the following definition.

Definition 2.1. A left X-module Q is weakly injective if for every left X-module M, N so that
N is of type 2, every injective homomorphism f : M — N and every homomorphism
g: M — Q, there exists a homomorphism ¢ : N — Q such that¢o f = g.

Note that injective X-modules as defined in [2] are clearly weakly injective. We have
the following lemma whose some parts have been proved by other authors, but which we
offer a proof here for the convenience of the reader.

Lemma 2.2. Let X be a bounded implicative BCK-algebra with unit 1. Then, for all x,y,z € X,
(i) x \y=x%*Ny,
(i) x*x (x \y) =x*y,
(iii) x A (y * z) = (x Ay) * (x A 2),
(iv) (x*xy) +(y*x) =x+y,
V) (x+y)Az=(xAz)+ (xAz).

Proof. (i) From [5, Proposition 6], we have x A Ny < x * y. In addition, x * y < x and x * y <
1xy=Ny,sox*y <xANy.Thus, x A Ny = x * y. Therefore, x A\ y = x ANNy = x x Ny.
For (ii), let x, y € X. By (i), we do have
x*x(xAy)=xx(x*xNy)=NyAx=x*y. (2.1)
For (iii), let x, y, z € X. We first prove that
xA(y*z)=(xAy)*z. (2.2)
In fact,

xA(y*z)=(y*z)*Nx
=(y*xNx)*z (2.3)

=(xAy) *z
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Now, we use (ii) and (2.2) to show (iii)
(xAy)*(xAz)=(x*Ny)*(xAz)

=(x*(xANz))*Ny
= (x*2)*x Ny by (i)

(2.4)
- (xeNy) oz
= (x/\y) *Z
=xA(y*z) by (22).
(iv) We have
(xxy) + (y*x) = [(xxy) * (y*xx)] v [(y*x) * (x )]
=((x*(y*x))*y) vV ((y* (x*y))*x) by [5 Equation (3)] 25)

(x*y) Vv (y*x) since X is implicative

x+y.

(v) Recall that being a bounded implicative BCK-algebra, (X, V, A) is a distributive lattice [5,
Theorem 12]. We have

(x+y)nz=((x*y)V(y*x)) Az
=((x*xy)Az)V ((y*x)Az)
=((xAz)x(yAnz)V((yrz)=(xAz) by (i)
=(xAz)+ (yAz).

(2.6)

O

Proposition 2.3. Every bounded implicative BCK-algebra has a natural structure of X-module of
type 2. Furthermore, under this structure, every ideal of X is a submodule of X.

Proof. Consider the operational system (X, +). Then, by [4, Proposition 2.5], (X,+) is an
Abelian group and together with the multiplication (x,y) — xy := x A y satisfying (i), (ii),
(iii), and (iv) of the definition of X-module above. It remains to verify that (X, +) satisfies
(v). But this is straightforward from the definition of the multiplication and Lemma 2.2 (v).
As for the proof that an ideal of X is a submodule, the argument is identical to the one
of [2, Theorem 2.1]. O

Example 2.4. Consider the bounded implicative BCK, X = (Z) with the standard operations.
Consider M; = Maps(Z,Z) and M, = Maps(Z, Z,), then under the multiplication (A, f)
1af (where 14 is the characteristic function of A), M; is an X-module that is not of type 2
while M is an X-module of type 2.
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Example 2.5. For every X-modules M and N so that N is of type 2, the X-module
Homy (M, N) is also of type 2. In particular, for every X-module M, Homx (M, X) is of type
2.

Remark 2.6. (X, +) is an Abelian group of exponent 2; therefore, finite bounded implicative
BCK-algebras have order a power of 2. This is not surprising as such BCKs are Boolean
algebras [5, Theorem 12].

3. Injective BCK-Modules and Baer’s Criterion

X will denote a bounded implicative BCK-algebra with unit 1. In addition, the term X-mod-
ule will refer to left X-module. We start by the following lemma which is crucial for the proof
of Baer’s criterion.

Lemma 3.1. Let N be an X-module of type 2 and M a submodule of N. For every n € N, define

I,={xeX|xneM}. (3.1)

Then, 1, is an ideal of X for alln € N.
Proof. Letn € N, then

(i) On = 0 € M as M is a submodule; therefore, 0 € I,,.

(ii) Let x,y € X such that x x y € I, and y € I,,. As X is implicative, y x x = y A Nx =
Nx Ay by Lemma 2.2 (i). Hence, (y * x)n = (Nx A y)n = Nx(yn) which is in M
as yn € M and M is a submodule, thus y * x € I,,. Therefore, x * v,y * x, y are all
in I,. Thus (x * y)n, (y * x)n and yn are all in M, hence as M is a submodule, then
(x*y)n+ (y * x)n +yn € M. But from the axiom (v) of X-module, it follows that

(exy)n+ (yxx)n+yn=((x*y) +(y*x) +y)n
=(x+y+y)n byLemma 2.2 (iv) (3.2)

=xn since y+y =0.

Thus, xn € M, consequently x € I, as desired.
Whence I, is an ideal of X as stated. O

Remark 3.2. Given an X-module M and m € M, then the set Xm := {xm | x € X} is a sub-
module of M, the submodule generated by m.

Theorem 3.3 (Baer’s Criterion). Let Q be an X- module.
Then, Q is weakly injective if and only if for every ideal I of X, every X-module homomorphism
from I — Q extends to a homomorphism from X — Q.

Proof. =) : This direction is obvious as X is an X-module of type 2, and every ideal of X is an
X-module [Proposition 2.3].
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&) : Assume that for every ideal I of X, every X-module homomorphism from I — Q

extends to a homomorphism from X — Q. Consider 0 — M L, Nand M % Q, where N is
type 2. Let X-Mod be the set of X-modules. Consider

> ={(C,¢):CeX-Mod, MCCCN;¢$p:C—Q; p|,, =g} (3.3)

First, note that X, #0 since (M, g) € >.. Define on X the relation < by (Cy,¢1) < (C1, 1) if
C1 € Gy and ¢y|c, = ¢1. Then, < is easily verified to be an order on ;. The usual argument
also show that every chain in (3, <) has an upper bound, and therefore, by the Zorn’s lemma,
(3., <) has a maximal element (D, ¢).

We show that D = N, and therefore, ¢ would be the required extension of g.

By definition, we have D € N. Conversely, let n € N, then by Lemma 3.1, as N is type
2, theset I, = {x € X | xn € D} is an ideal of X. Define, a : I, — Q by a(x) = ¢(xn).
Then a(x + y) = ¢((x + y)n) = p(xn + yn) = p(xn) + p(yn) = a(x) + a(y). In addition
a(xy) = a(x Ny) = p((x Ay)n) = p(x(yn)) = xp(yn) = xa(y). Hence, a is an X-module
homomorphism, and by hypothesis a extends to g : X — Q.

Define ¢’ : D+ Xn — Q by ¢'(d + xn) = ¢(d) + p(x). We need to verify that ¢' is a
well-defined homomorphism (which clearly extends ¢).

For the well-definition, suppose di+x11n = dy+xon, then d—d, = x1n+xn = (x1+x2)n.
So, (x1 + x2)n € D, hence (x1 + x;) € I,,. Now using the fact that ¢ is a homomorphism, we
obtain

¢(d1) — o(da) = p((x1 + x2)n) = a(x1 + x2) = a(x1) + a(x2) = f(x1) + P(x2). (3.4)

Hence, ¢(di1) + p(x1) = ¢(d1) + P(x1), because f(x1) + f(x1) = 0. Therefore, ¢'(d1 + x1n) =
¢'(dy + xon) and ¢’ is well defined. Next, we check that ¢’ is a homomorphism.
Letd,d € D and x,x' € X, then

@' ((d+xn)+(d +x'n))=¢ ((d+d) + (xn+x'n))
=¢'((d+d)+ (x+x')n)
=p(d+d)+p(x+x)
=(d) +(d') + p(x) + p(x')
=¢'(d+xn)+¢'(d +x'n),

¢'(x'(d+xn)) = ¢ ((x'd) + ' (xn))
=¢'(xX'd+ (x Ax')n)
— () + (¥ A %)
= x'gp(d) + x'p(x)
= X'/ (d + xn).

(3.5)

Thus, ¢ is a homomorphism as needed. Whence (D, ) < (D +Xn, ¢') and by the maximality
of (D, ), we obtain D = D + Xn, so n € D which shows that D = N as required. O
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The theory of modules over BCK-algebras displays some real pathologies as the re-
mark below explains. Before the remark, a couple of definitions.

Definition 3.4. As defined in [6], an element x of a BCK-algebra X is called a zero-divisor if
there exists a nonzero element y in X such that x A y = 0. If X has nontrivial zero-divisors,
then X is called cancellative. These correspond to domains in ring theory.

Remark 3.5. The natural approach for understanding injective modules over rings consists
of establishing the relationship with divisible modules. Unfortunately, what should be the
natural equivalent of divisible modules over BCK-algebras turns out to be useless. In fact, it
is straightforward to see that the only cancellative implicative BCK-algebra is {0,1} so that
every module over such is always divisible.

Remark 3.6. Recall [7, Theorem 3] that if X is a BCK-algebra (not necessarily implicative) and
a € X, the ideal of X generated by a is denoted by (a) is givenby {x € X | 3n > 0; x*a” = 0}.
In the case when X is implicative, this simplifiesto (a) = {x e X | xxa =0} = {x €e X | x < a}.

Definition 3.7. A BCK-algebra X is principal if every ideal of X is generated by one element.

Example 3.8. (1) X = {0,1,2,...,w} as defined in [5, Example 1] is a principal BCK-algebra.
In fact, it is easy to see that the only ideals of X are 0, X and {0,1,2,...}. Note that X is not
implicative.
(2) The BCK-algebra By »_3 from [8, Appendix] is bounded implicative and principal.
We now deduce from the above Baer’s criterion that all modules over principal
bounded implicative BCK-algebras are weakly injective.

Corollary 3.9. Let M be an X-module and suppose that X is bounded implicative and principal.
Then, M is weakly injective. In particular, every bounded implicative and principal BCK-algebra is
weakly injective as a module over itself.

Proof. Let M be an X-module, with X bounded implicative and principal, I an ideal of X, and
f:1=(a) — M an X-homomorphism. Define h : X — M by h(x) = f(aAx).Itis clear that
h is an X-homomorphism; in fact, using Lemma 2.2 (v), we obtain

h(x1 +x2) = f(an (x1+x2) = f((anx1) + (@A x)) = f(anxi)+ f(aAx) =h(x1) + h(x2),

h(y Ax) = f(an(yAx)) = f(yA(anx)) =yf(anx)=yh(x).
(3.6)

We claim that h extends f. In fact,letx € [ = (a). Then, x = aAx.So, h(x) = f(anx) = f(x).
Hence, M is weakly injective by Baer’s criterion. O

Example 3.10. Consider By»_3 as above which is a bounded implicative and principal BCK-
algebra. By Corollary 3.9, By_»_3 is weakly injective as a module over itself.

4. Examples

This section is devoted to constructing examples.
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Example 4.1 (A non weakly injective BCK-Module). Consider S any infinite set and the BCK-
algebra X = p(S) with the natural operations. Consider

I={XCS5:|X]|<oo}. 4.1)

Then, I is clearly an ideal of X and, therefore, an X-module by Proposition 2.3.

Claim 4.2. I is not weakly injective.

To see this, it is enough to produce an X-module homomorphism ¢ : I — I that does
not extend to X.

For this, consider any finite complement subset A of S and ¢ : I — I defined by
p(X) = XN A. Since N distributes over A and N is associative, it follows that ¢ is an X-module
homomorphism.

We assert that there is no homomorphism ¢ : X — I such that ¢|; = ¢. In fact, by
contradiction, suppose there is such an extension. Then, for every X C S, we have X = (X N
A) A (X N AC); therefore, since ¢ is a homomorphism, then

P(X) =p(XNA) A ¢(x N AC)
= (Xnp(4)) & (Xnp(Aa%))
= Xn (p(4) 2 p(A%))

=xnpA) (p(A°) =(A°) =0).

(4.2)

Let B = p(A), then since AN A® = @) and p is a homomorphism, then AN B = @, so B C A.
Note that B C A, because if B = A, then p(A) = AN A = Aand A ¢ I. Therefore, there exists
an element a of A that is not in B. We have p({a}) = ¢({a}), thatis {a} N A = {a} N B which
is a contradiction.

Whence, I is an X-module that is not weakly injective (much less injective).

Example 4.3 (A weakly injective BCK-module that is not injective). B,_1_1 denotes the unique
BCK-algebra with two elements: 0, 1.

First, observe that every Abelian group (M, +) has a natural structure of By_;_1-module
via0-m =0and 1-m = m for all m € M. We consider Z and Q in this view as B,_;_1-modules.
Consider the inclusion Z — Q and f : Z — B,_1_; defined by f(2k) = 0 and f(2k +1) = 1.
Then f is a By-1-1-module homomorphism. If B,_;_; was injective, then, there would exist a
homomorphism f : Q — By_;_; such that f(m) = f(m) for all m € Z. But such an extension
would satisfy 1 = f(1) = 7(1) = 7(1 /2) + 7(1 /2) =0, which is a contradiction. Therefore, as a
module over itself, B,_1_; is not injective.

On the other hand, B,_;_; is clearly weakly injective, as it has only two ideals making
Baer’s criterion obvious. Or more directly, use Corollary 3.9, since B,_;_; is principal.

Remark 4.4. The existence of weakly injective modules that are not injective (see Example 4.3),
shows that Baer’s criterion does not characterize injective BCK-modules. That is, being able to
extend homomorphisms from ideals to the whole BCK-algebra is weaker than being injective.
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Note also that the first example shows that not every type 2 module is weakly injective.
Finally, the proof of Baer’s criterion clearly works in the subcategory of X-modules of type 2
so that injective objects in this category are characterized by the criterion.
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