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We consider an insurance company whose surplus follows a diffusion process with proportional
reinsurance and impulse dividend control. Our objective is to maximize expected discounted
dividend payouts to shareholders of the company until the time of bankruptcy. To meet some
essential requirements of solvency control (e.g., bankruptcy not soon), we impose some constraints
on the insurance company’s dividend policy. Under two types of constraints, we derive the value
functions and optimal control policies of the company.

1. Introduction

Reinsurance is an effective tool for insurance companies tomanage and control their exposure
to risk, and distributions of dividends are used by firms as a vehicle for distributing some of
their profits to their shareholders. The problem of determining an optimal dividend policy
can be formulated as a singular/regular stochastic control problem in absence of fixed
transaction costs, or an impulse control consisting of lump sum dividends distributed at
discrete moments of time with fixed transaction cost. For details, interested readers may refer
to Gerber [1], Asmussen and Taksar [2], Paulsen [3], Benkherouf and Bensoussan [4], and
Cadenillas et al. [5].

Recently, optimizing dividends payouts with solvency constraints have receivedmuch
attention. For example, Paulsen [6] and He et al. [7] studied optimal singular dividend
problems under barrier constraints with no reinsurance and proportional reinsurance,
respectively. Choulli et al. [8] investigated an optimal singular dividend problem under
constrained proportional reinsurance. Bai et al. [9] and Ormeci et al. [10] considered optimal
impulse dividend problems under different constraints. By these ideas we further discuss
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an optimal impulse control of an insurance company with proportional reinsurance policy
under some different solvency constraints.

The paper is organized as follows. In Section 2 we establish optimal impulse control
problems of the insurance company with proportional reinsurance policy and discrete
dividends. In Section 3, we derive the value function and an optimal policy under some
constraints of liquid reserves at impulse times. With some constraints of dividends amounts,
we obtain the value function and an optimal policy in Section 4. The final section gives
concluding remarks.

2. The Model

We fix a complete, filtered probability space (Ω,F, {Ft},P) on which a real-valued, ({Ft},P)-
standard Brownian motion is defined, where P is a real-world probability as usual. Consider
the following controlled process:

Xt = x +
∫ t

0
μu(s)ds +

∫ t

0
σu(s)dWs −

∞∑
n=1

I{τn<t}ξn, (2.1)

where μ > 0, σ > 0, u(t) ∈ [0, 1], and {τi; i = 1, 2, . . .} is an increasing sequence of stopping
times and {ξi; i = 1, 2, . . .} is a sequence of random variables, associated with amounts of the
dividends paid to shareholders of an insurance company.

Definition 2.1. A pair

π ≡ {u;S} ≡ {u; τ1, τ2, . . . , τn, . . . ; ξ1, ξ2, . . . , ξn, . . .} (2.2)

is an admissible policy of an insurance company with initial capital x if it satisfies the
following conditions:

(1) for each i = 1, 2, . . . and each t ≥ 0, {τi ≤ t} ∈ Ft and ξi ∈ Fτi ;

(2) the induced dividend process, say Q, defined by

Qt :=
∞∑
n=1

I{τn<t}ξn (2.3)

is {Ft} adapted, increasing, and càdlàg;

(3) 0 < ξi ≤ Xτi−;

(4) the stochastic differential equation for X := {Xt | t ≥ 0} admits a unique strong
solution;

(5) u(t) ∈ [0, 1];

(6) P(limn→∞τn ≤ T) = 0, for all T ≥ 0.

We write Π(x) for the space of these admissible policies.
For each π ∈ Π(x), we write {Xπ

t | t ≥ 0} for the surplus process of the insurance
company associated with π . Here the superscript π is added to emphasize the dependence
of the surplus process Xπ on the strategy π . The ruin time corresponding to π is defined as

τπ := inf
{
t ≥ 0 : Xπ

t ≤ 0
}

(2.4)

To simplify the notation, we suppress the superscript π and write τ := τπ .
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The goal of the insurance company is to select an optimal strategy π ∈ Π(x) so as to
maximize the expected present value of dividends before bankruptcy.

Let K, (K > 0), be the fixed transaction cost attributed to the advisory and consulting
fees and k, (0 < k < 1), the proportional transaction cost due to taxes on dividends. Then the
optimization problem of the insurance company is to select π ∈ Π(x) so as to maximize the
following performance function:

J(x, π) := E

[
∞∑
n=1

e−λτn(−K + kξn)I{τn≤τ}

]
, (2.5)

where λ is the impatient factor and λ > 0, that is, to determine the value function

V (x) := sup{J(x, π);π ∈ Π(x)}, (2.6)

and the optimal strategy π∗ such that V (x) = J(x, π∗).
The value function V (x) is also called an optimal return function.
Without imposing any constraints, Cadenillas et al. [5] investigated the model under

the performance function (2.5) and showed that the (s, S) dividend policy is optimal, that
is, when the surplus reaches a barrier level S, it is reduced to s via a dividend payment,
and the process continues. To meet some requirements of solvency control (e.g., bankruptcy
not soon), we impose some constraints on the insurance company’s dividend policy. Under
solvency constraints Xτi− ≥ ζ,Xτi ≥ ζ, and 0 ≤ ξi ≤ d, the optimal control problems are
presented in Sections 3 and 4, respectively

In what follows, we still use V (x) to denote the value function different cases of
constraints.

3. Case I Xτi− ≥ ζ, Xτi ≥ ζ

Without reinsurance, the constraints Xτi− ≥ ζ and Xτi ≥ ζ were considered by Bai et al. [9]. To
prove our main results, we first recall some results (Propositions 3.1–3.3)without constraints,
see Cadenillas et al. [5].

Proposition 3.1. The optimal return function V is a continuous, nondecreasing function in x
satisfying V (0) = 0.

To simplify our notation, we define

γ =
λ(

μ2/2σ2
)
+ λ

, x0 =

(
1 − γ

)
σ2

μ
,

θ+ =
−μ +

√
μ2 + 2λσ2

σ2
, θ− =

−μ −
√
μ2 + 2λσ2

σ2
,

a1 =
γx

γ−1
0 − θ−x

γ

0

θ+ − θ−
, a2 =

θ+x
γ

0 − γx
γ−1
0

θ+ − θ−
.

(3.1)
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Proposition 3.2. The function ν(x), subject to the linear growth condition ν(x) ≤ k(x + μ/c) , is
continuously differentiable on (0,∞) and is twice continuously differentiable on (0, xC̃1 ) ∪ (xC̃1 ,∞),
where

ν(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C̃xγ , 0 ≤ x < x0,

C̃
(
a1e

θ+(x−x0) + a2eθ−(x−x0)
)
, x0 ≤ x ≤ xC̃1 ,

k
(
x − x̃C̃

)
+ ν

(
x̃C̃

)
−K, x ≥ xC̃1 .

(3.2)

Here C̃, x̃C̃, and xC̃1 satisfy the following conditions:

ν′
(
x̃C̃

)
= ν′

(
xC̃1

)
= k, ν

(
xC̃1

)
− ν

(
x̃C̃

)
= k

(
xC̃1 − x̃C̃

)
−K. (3.3)

Proposition 3.3. The control

π∗ = (u∗,T∗, ξ∗) =
(
u∗; τ∗1 , τ

∗
2 , . . . , τ

∗
n, . . . ; ξ

∗
1, ξ

∗
2, . . . , ξ

∗
n, . . .

)
(3.4)

defined by

u∗(t) = u∗(X∗
t ) =

⎧⎨
⎩

μ

σ2
(
1 − γ

)X∗
t , 0 ≤ X∗

t ≤ x0,

1, X∗
t ≥ x0,

τ∗1 = inf
{
t ≥ 0 : X∗

t = x
C̃
1

}
,

ξ∗1 = x
C̃
1 − x̃C̃,

(3.5)

and for every n ≥ 2

τ∗n = inf
{
t ≥ τ∗n−1 : X

∗
t = x

C̃
1

}
,

ξ∗n = xC̃1 − x̃C̃,
(3.6)

where X∗ is the solution of the stochastic differential equation

X∗
t = x +

∫ t

0
μu∗(X∗

s)ds +
∫ t

0
σu∗(X∗

s)dWs −
(
xC̃1 − x̃C̃

) ∞∑
n=1

I{τ∗n≤t}, (3.7)

is the QVI control associated with the function ν(x) defined by (3.2). This control is optimal, and the
function ν(x) coincides with the value function. That is,

V (x) = ν(x) = J(x, π∗) = J(x;u∗,T∗, ξ∗). (3.8)
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For a function ψ(x), we define the operator by

Luψ(x) =
1
2
σ2u2ψ ′′(x) + μuψ ′(x) − λψ(x). (3.9)

Define, for ζ > x̃C̃,

νζ(x) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Cxγ , 0 ≤ x < x0,

C
(
a1e

θ+(x−x0) + a2eθ−(x−x0)
)
, x0 ≤ x ≤ ζ1,

k
(
x − ζ

)
+ νζ

(
ζ
)
−K, x > ζ1,

(3.10)

where C and ζ1 satisfy the following conditions:

ν′ζ

(
ζ1

)
= k, νζ

(
ζ1

)
− νζ

(
ζ
)
= k

(
ζ1 − ζ

)
−K. (3.11)

We can easily prove that ν′
ζ
(x) is convex on (0, ζ1) and ζ1 > x

C̃
1 .

Lemma 3.4. For ζ > x̃C̃,

(a) maxu∈[0,1]Luνζ(x) = 0 for 0 ≤ x ≤ ζ1 and maxu∈[0,1]Luνζ(x) < 0 for x > ζ1,

(b) for y ≥ x ≥ ζ, one has

νζ
(
y
)
− νζ(x) ≥ k

(
y − x

)
−K, (3.12)

and the equality holds when x = ζ and y ≥ ζ1.

Proof. (a) For x < x0,

u∗(x) = Argmax
u∈[0,1]

[
1
2
σ2u2γ

(
γ − 1

)
+ μuγx − λx2

]
= −

μx

σ2
(
γ − 1

) ,

max
u∈[0,1]

Luνζ(x) = Cxγ−2 max
u∈[0,1]

[
1
2
σ2u2γ

(
γ − 1

)
+ μuγx − λx2

]

= Cxγ−2
[
1
2
σ2u∗2γ

(
γ − 1

)
+ μu∗γx − λx2

]

= 0.

(3.13)

Let

x∗ = Argmin ν′ζ(x). (3.14)
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That is, x∗ satisfies

a1θ
2
+e

θ+(x∗−x0) + a2θ2−e
θ−(x∗−x0) = 0. (3.15)

For x0 < x < x∗,

u(x) = Arg max
u∈[−∞,∞]

Luνζ(x) = −
μ

σ2

a1θ+e
θ+(x−x0) + a2θ−eθ−(x−x0)

a1θ
2
+eθ+(x−x0) + a2θ2−eθ−(x−x0)

. (3.16)

We can easily show that u(x) is an increasing function of x on (x0, x∗) and u(x) ≥ u(x0) = 1.
For x∗ < x < ζ1, the function ν

′
ζ
(x) is increasing and ν′′

ζ
(x) > 0. Thus for x0 < x < ζ1,

u∗(x) = Argmax
u∈[0,1]

Luνζ(x) = 1,

max
u∈[0,1]

Luνζ(x) =
1
2
σ2C

[
a1θ

2
+e

θ+(x−x0) + a2θ2−e
θ−(x−x0)

]

+ μC
[
a1θ+e

θ+(x−x0) + a2θ−eθ−(x−x0)
]

− λC
[
a1e

θ+(x−x0) + a2eθ−(x−x0)
]

= 0.

(3.17)

From the above steps of the proof, we notice that (1/2)σ2ν′′ζ(ζ1−) + μk − λνζ(ζ1) = 0. Thus, for

x > ζ1,

max
u∈[0,1]

Luνζ(x) = max
u∈[0,1]

{
μuk − λ

[
k
(
x − ζ

)
+ νζ

(
ζ
)
−K

]}

= μk − λ
[
k
(
x − ζ

)
+ νζ

(
ζ
)
−K

]

≤ μk − λνζ
(
ζ1

)

= −1
2
σ2ν′′ζ

(
ζ1−

)

< 0.

(3.18)

(b) By the observation, ν′
ζ
(x) ≤ k on (ζ,∞). Consequently,

νζ
(
y
)
− νζ(x) − k

(
y − x

)
=
∫y

x

(
ν′ζ(z) − k

)
dz (3.19)

is smallest for x = ζ and y ≥ ζ1 with constrained condition y ≥ x ≥ ζ, and then it equals −K.
This completes the proof.
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To consider the case where Xτi− ≥ ζ and Xτi ≥ ζ, we first consider the case where
Xτi ≥ ζ.

Proposition 3.5. Assume the dividend policy has to satisfy Xτi ≥ ζ for some positive ζ, that is, the
surplus is not allowed to be less than ζ immediately after the dividend payout. Then,

(a) if ζ ≤ x̃C̃, the optimal policy and the value function are as in Proposition 3.3;

(b) if ζ > x̃C̃, the optimal policy and the value function are

u∗(t) = u∗(X∗
t ) =

⎧⎪⎨
⎪⎩

μ

σ2
(
1 − γ

)X∗
t , 0 ≤ X∗

t < x0,

1, x ≥ x0,

τ∗1 = inf
{
t ≥ 0 : X∗

t = ζ1
}
,

ξ∗1 = ζ1 − ζ,

(3.20)

and for every n ≥ 2

τ∗n = inf
{
t ≥ τ∗n−1 : X

∗
t = ζ1

}
,

ξ∗n = ζ1 − ζ,
(3.21)

and V (x) = νζ(x).

Proof. Part (a) is obvious since the optimal policy is feasible under the constraint.
The idea of the proof of Part (b) is similar to that of Corollary 2.2 of Alvarez and Lempa

[11].
Since νζ(x) is not twice continuously differentiable at ζ1, we cannot use Ito’s differen-

tiation rule directly. However, we can show that there exists a sequence {νζ,n}∞
n=1

of mappings
νζ,n ∈ C2(R+) such that as n → ∞

(1) νζ,n → νζ uniformly on compact subsets of R+;

(2) Lu(νζ,n) → Lu(νζ) uniformly on compact subsets of R+ \N, whereN is a subset of
R+ which of measure zero;

(3) {Lu(νζ,n)}∞
n=1

is locally bounded on R+.

Applying Ito’s differentiation rule to the mapping (t, x) �→ e−λtνζ,n(x), conditioning on
Fτj , and reordering terms yield

e−λτj νζ,n
(
Xτj

)
= EFτj

[
e−λτj+1νζ,n

(
Xτj+1−

)]
− EFτj

[∫ τj+1−

τj

e−λsLuνζ,n(Xs)ds

]
, (3.22)

where Xτj ≥ ζ.
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Letting n → ∞, applying Fatou’s theorem, and invoking the use of the variational
inequality Laνζ(x) ≤ 0 then result in the inequality

e−λτj νζ
(
Xτj

)
≥ EFτj

[
e−λτj+1νζ

(
Xτj+1−

)]
. (3.23)

Taking expectation in both sides, we have

E
[
e−λτj νζ

(
Xτj

)]
≥ E

[
e−λτj+1νζ

(
Xτj+1−

)]
. (3.24)

Letting τ0 = 0, summing over j, and applying the nonnegativity of the mapping νζ(x) give

νζ(x) ≥
n∑
j=1

E
[
e−λτj

(
νζ
(
Xτj−

)
− νζ

(
Xτj

))
I{τj<τ}

]
. (3.25)

Since Xτj = Xτj− − ξj , νζ(y) − νζ(x) ≥ k(y − x) −K with y ≥ x ≥ ζ, we find that

νζ(x) ≥ E

⎡
⎣ n∑
j=1

e−λτj
(
kξj −K

)
I{τj<τ}

⎤
⎦. (3.26)

Letting n → ∞ and invoking the use of the dominated convergence then imply that

νζ(x) ≥ E

⎡
⎣ ∞∑
j=1

e−λτj
(
kξj −K

)
I{τj<τ}

⎤
⎦. (3.27)

Using the strategy of Part (b) gives the equality

νζ(x) = E

⎡
⎣ ∞∑
j=1

e−λτ
∗
j

(
kξ∗j −K

)
I{τ∗j <τ}

⎤
⎦. (3.28)

Theorem 3.6. Assume the dividend policy has to satisfy Xτi− ≥ ζ and Xτi ≥ ζ for some positive ζ and

ζ. Then,

(a) if ζ ≤ x̃C̃ and ζ ≤ xC̃1 , the optimal policy and value function are as in Proposition 3.3;

(b) if ζ ≤ x̃C̃ and ζ > xC̃1 , the optimal policy and value function are

u∗(t) = u∗(X∗
t ) =

⎧⎨
⎩

μ

σ2
(
1 − γ

)X∗
t , 0 ≤ X∗

t < x0,

1, X∗
t ≥ x0,

τ∗1 = inf
{
t ≥ 0 : X∗

t = ζ
}
,

ξ∗1 = ζ − x̃
C̃,

(3.29)
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and for every n ≥ 2

τ∗n = inf
{
t ≥ τ∗n−1 : X

∗
t = ζ

}
,

ξ∗n = ζ − x̃C̃,

V (x) = νx̃C̃,ζ(x) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Cxγ , 0 ≤ x < x0,

C
(
a1e

θ+(x−x0) + a2eθ−(x−x0)
)
, x0 ≤ x ≤ ζ,

k
(
x − x̃C̃

)
+ νx̃C̃,ζ

(
x̃C̃

)
−K, x > ζ,

(3.30)

and C satisfies the following conditions:

νx̃C̃,ζ

(
ζ
)
− νx̃C̃,ζ

(
x̃C̃

)
= k

(
ζ − x̃C̃

)
−K; (3.31)

(c) if ζ > x̃C̃ and ζ ≤ ζ1, the optimal policy and value function are as in Proposition 3.5;

(d) if ζ > x̃C̃ and ζ > ζ1, the optimal policy and value function are

u∗(t) = u∗(X∗
t ) =

⎧⎪⎨
⎪⎩

μ

σ2
(
1 − γ

)X∗
t , 0 ≤ X∗

t < x0,

1, X∗
t ≥ x0,

τ∗1 = inf
{
t ≥ 0 : X∗

t = ζ
}
,

ξ∗1 = ζ − ζ,

(3.32)

and for every n ≥ 2

τ∗n = inf
{
t ≥ τ∗n−1 : X

∗
t = ζ

}
,

ξ∗n = ζ − ζ,

V (x) = νζ,ζ(x) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Cxγ , 0 ≤ x < x0,

C
(
a1e

θ+(x−x0) + a2eθ−(x−x0)
)
, x0 ≤ x ≤ ζ,

k
(
x − ζ

)
+ νζ,ζ

(
ζ
)
−K, x > ζ,

(3.33)

and C satisfies the following condition:

νζ,ζ

(
ζ
)
− νζ,ζ

(
ζ
)
= k

(
ζ − ζ

)
−K. (3.34)
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Proof. Parts (a) and (c) are obvious since the optimal policy is feasible under the constraint.
The proofs of parts (b) and (d) are similar to Theorem 3.2 in [9], so we state the result here
without giving the proof.

4. Case II 0 ≤ ξi ≤ d

Without reinsurance, the constraint 0 ≤ ξi ≤ d was considered by Ormeci et al. [10].
If d ≤ (K/k), by definition (2.5), we know that the optimal policy is τ∗1 = ∞. So we

only consider the case where d > K/k.

If ξ∗n = xC̃1 − x̃C̃ ≤ d, the control band policy that is optimal for the unconstrained
problem is also optimal for the constrained problem. If ξ∗n = xC̃1 − x̃C̃ > d, we will prove that a
control band policy is also an optimal policy for the constrained problem. To prove this result,
we use the Lagrangian relaxation, that is, to introduce a Lagrange multiplier δ ≥ 0. For each
scalar δ ≥ 0 and policy π , we define the Lagrangian function

J(x, π, δ) := E

[
∞∑
n=1

e−λτn[−K + kξn + δ(d − ξn)]I{τn≤τ}

]

= E

[
∞∑
n=1

e−λτn[−(K − δd) + (k − δ)ξi]I{τn≤τ}

]
.

(4.1)

The resulting unconstrained problem is equivalent to the original problem with
parameters K − δd and k − δ and gives an upper bound on the objective function of the
original constrained problem. That is,

J(x, π) ≤ J(x, π, δ), V (x) ≤ sup
0≤ξ≤d

J(x, π, δ), for 0 ≤ δ ≤ K/d. (4.2)

By conditions 0 ≤ δ ≤ K/d, d > K/k, we deduce that δ < k. In the following, we find a
control band policy that achieves this bound thereby proving its optimality.

For δ ∈ [0, K/d] , if there exists an x̃ ∈ (0, x0] satisfying

Cγx̃γ−1 = k − δ,

C
(
a1θ+e

θ+(x̃+d−x0) + a2θ−eθ−(x̃+d−x0)
)
= k − δ,

(4.3)

then x̃ satisfies

γx̃γ−1 = a1θ+eθ+(x̃+d−x0) + a2θ−eθ−(x̃+d−x0), (4.4)

C =
k − δ
γx̃γ−1

. (4.5)
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Define

f(δ) := (k − δ)d − (ν(x̃ + d) − ν(x̃))

= (k − δ)d − C
(
a1e

θ+(x̃+d−x0) + a2eθ−(x̃+d−x0) − γx̃γ−1
)
,

(4.6)

where C and ν(x) are given by (4.5) and (3.2), respectively.

Obviously, we have f(K/d) > 0. It can be shown that f(0) < I(C̃) = K, where I(C̃) can
be seen in Equation (5.25) of Cadenillas et al. [5]. For f(δ) being a decreasing function of δ,
the equation

f(δ) = K − δd (4.7)

has a unique solution δ∗ ∈ (0, K/d).
If there does not exist an x̃ ∈ (0, x0] satisfying (4.3), then theremust exist an x̃ ∈ (x0,∞)

such that

C
(
a1θ+e

θ+(x̃−x0) + a2θ−eθ−(x̃−x0)
)
= k − δ,

C
(
a1θ+e

θ+(x̃+d−x0) + a2θ−eθ−(x̃+d−x0)
)
= k − δ,

(4.8)

which results in x̃ satisfying

a1θ+e
θ+(x̃−x0) + a2θ−eθ−(x̃−x0) = a1θ+eθ+(x̃+d−x0) + a2θ−eθ−(x̃+d−x0),

C =
k − δ

a1θ+eθ+(x̃−x0) + a2θ−eθ−(x̃−x0)
.

(4.9)

Define

g(δ) := (k − δ)d − (ν(x̃ + d) − ν(x̃))

= (k − δ)d − C
[
a1e

θ+(x̃+d−x0) + a2eθ−(x̃+d−x0) − a1eθ+(x̃−x0) − a2eθ−(x̃−x0)
]
,

(4.10)

where C and ν(x) are given by (4.11) and (3.2), respectively.
By a similar analysis, we also can show that the equation

g(δ) = K − δd (4.11)

has a unique solution δ∗ ∈ (0, K/d).
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Theorem 4.1. Assume the dividend policy has to satisfy 0 ≤ ξn ≤ d. Then,
(a) if xC̃1 − x̃C̃ ≤ d, the optimal policy and value function are as in Proposition 3.3;

(b) if xC̃1 − x̃C̃ > d, the optimal policy and value function are

u∗(t) = u∗(X∗
t ) =

⎧⎪⎨
⎪⎩

μ

σ2
(
1 − γ

)X∗
t , 0 ≤ X∗

t < x0,

1, X∗
t ≥ x0,

τ∗1 = inf{t ≥ 0 : X∗
t = x̃ + d},

ξ∗1 = d,

(4.12)

and for every n ≥ 2

τ∗n = inf
{
t ≥ τ∗n−1 : X

∗
t = x̃ + d

}
,

ξ∗n = d,

V (x) = νd(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Cxγ , 0 ≤ x < x0,

C
(
a1e

θ+(x−x0) + a2eθ−(x−x0)
)
, x0 ≤ x ≤ x̃ + d,

(k − δ∗)(x − x̃) + νd(x̃) − (K − δ∗d), x > x̃ + d,

(4.13)

and C and x̃ satisfy the following conditions:

ν′d(x̃) = k − δ∗, ν′d(x̃ + d) = k − δ∗, νd(x̃ + d) − νd(x̃) = (k − δ∗)d − (K − δ∗d).
(4.14)

Proof. We only prove Part (b). By the above analysis and a similar proof of Cadenillas et al.
[5],

sup
0≤ξi<∞

J(x, π, δ∗) = E

[
∞∑
n=1

e−λτ
∗
n[−K + kξ∗n + δ

∗(d − ξ∗n)]I{τ∗n≤τ,ξ∗n=d}

]

= E

[
∞∑
n=1

e−λτ
∗
n[−K + kξ∗n]I{τ∗n≤τ,ξ∗n=d}

]

= J(x, π∗).

(4.15)

However,

J(x, π∗) ≤ V (x) ≤ sup
0≤ξ≤d

J(x, π, δ∗) ≤ sup
0≤ξi<∞

J(x, π, δ∗). (4.16)
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By (4.15) and (4.16), we obtain

J(x, π∗) = V (x), (4.17)

which results in the claim of the theorem.

5. Conclusion

We have discussed some important issues about the combined optimal reinsurance and
dividend problem in the presence of both fixed and proportional transaction costs. We
supposed that the goal of the insurance company is to maximize the expected present value
of dividends and formulated the problem into an optimal impulse control problem. Under
some cases of constraints, we provided a detailed mathematical analysis for the solution of
the problem and derived that the optimal dividend strategy is still an (s, S)-(band)-policy.
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