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The study of the multidimensional stochastic processes involves complex computations in
intricate functional spaces. In particular, the diffusion processes, which include the practically
important Gauss-Markov processes, are ordinarily defined through the theory of stochastic
integration. Here, inspired by the Lévy-Ciesielski construction of the Wiener process, we propose
an alternative representation of multidimensional Gauss-Markov processes as expansions on well-
chosen Schauder bases, with independent random coefficients of normal law with zero mean
and unit variance. We thereby offer a natural multiresolution description of the Gauss-Markov
processes as limits of finite-dimensional partial sums of the expansion, that are strongly almost-
surely convergent. Moreover, such finite-dimensional random processes constitute an optimal
approximation of the process, in the sense of minimizing the associated Dirichlet energy under
interpolating constraints. This approach allows for a simpler treatment of problems in many
applied and theoretical fields, and we provide a short overview of applications we are currently
developing.

1. Introduction

Intuitively, multidimensional continuous stochastic processes are easily conceived as sol-
utions to randomly perturbed differential equations of the form

Ẋt = f(Xt, t, ξt), (1.1)
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where the perturbative term ξt implicitly defines a probability space and f satisfies some
ad hoc regularity conditions. If the existence of such processes is well established for a
wide range of equations through the standard Itô integration theory (see, e.g., [1]), studying
their properties proves surprisingly challenging, even for the simplest multidimensional
processes. Indeed, the high dimensionality of the ambient space and the nowhere differ-
entiability of the sample paths conspire to heighten the intricacy of the sample paths spaces.
In this regard, such spaces have been chiefly studied formultidimensional diffusion processes
[2], and more recently, the development of rough paths theory has attracted renewed interest
in the field (see [3–7]). However, aside from these remarkable theoretical works, little em-
phasis is put on the sample paths since most of the available results only make sense in
distribution. This is particularly true in the Itô integration theory, where the sample path is
completely neglected for the Itô map being defined up to null sets of paths.

To overcome the difficulty of working in complex multidimensional spaces, it would
be advantageous to have a discrete construction of a continuous stochastic process as finite-
dimensional distributions. Since we put emphasis on the description of the sample paths
space, at stake is to write a process X as an almost surely pathwise convergent series of random
functions

Xt = lim
N→∞

XNt with XNt =
N∑

n=0

fn(t) · Ξn, (1.2)

where fn is a deterministic function and Ξn is a given random variable.
The Lévy-Ciesielski construction of the d-dimensional Brownian motion W (also

referred to as Wiener process) provides us with an example of discrete representation for
a continuous stochastic process. Noticing the simple form of the probability density of a
Brownian bridge, it is based on completing sample paths by interpolation according to the
conditional probabilities of the Wiener process [8]. More specifically, the coefficients Ξn are
Gaussian independent and the elements fn, called the Schauder elements and denoted by
sn, are obtained by time-dependent integration of the Haar basis elements: s0,0(t) = tId and
sn,k(t) = sn,k(t)Id, with for all n > 0

sn,k(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2(n−1)/2(t − ln,k), k2−n+1 ≤ t ≤ (2k + 1)2−n,

2(n−1)/2(rn,k − t), (2k + 1)2−n ≤ t ≤ (k + 1)2−n+1,

0, otherwise.

(1.3)

This latter point is of relevance since, for being a Hilbert system, the introduction of the
Haar basis greatly simplifies the demonstration of the existence of the Wiener process [9].
From another perspective, fundamental among discrete representations is the Karhunen-
Loève decomposition giving a representation of stochastic processes by expanding it on
a basis of orthogonal functions [10, 11]. The definition of the basis elements fn depends
only on the second-order statistics of the considered process and the coefficients ξn are
pairwise uncorrelated random variables. Incidentally, such a decomposition is especially
suited to study the Gaussian processes because the coefficients of the representation are
Gaussian and independent. For these reasons, the Karhunen-Loève decomposition is of
primary importance in exploratory data analysis, leading to methods referred to as “principal
component analysis,” “Hotelling transform” [12] or “proper orthogonal decomposition” [13]
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according to the field of application. In particular, it was directly applied to the study of the
stationary Gaussian Markov processes in the theory of random noise in radio receivers [14].

It is also important for our purpose to realize that the Schauder elements sn have
compact supports that exhibit a nested structure: this fact entails that the finite sums WN

are processes that interpolate the limit processW on the endpoints of the supports, that is, on
the dyadic points k2−N , 0 ≤ k ≤ 2N . One of the specific goal of our construction is to maintain
such a property in the construction of all multidimensional the Gauss-Markov processes X
(i.e., processes that are both Gaussian and satisfy the Markov property) of the form:

Xt = g(t)
∫ t

0
f(s) · dWs (1.4)

(covering all 1-dimensional Gauss-Markov processes thanks to Doob’s representation of
Gauss-Markov processes), being successively approximated by finite-dimensional processes
XN that interpolates X at ever finer resolution. In that respect, it is only in that sense
that we refer to our framework as a multiresolution approach as opposed to the wavelet
multiresolution theory [15]. Other multiresolution approaches have been developed for
certain Gaussian processes, most notably for the fractional Brownian motion [16].

In view of this, we propose a construction of the multidimensional Gaussian Markov
processes using a multiresolution Schauder basis of functions. As for the Lévy-Ciesielski
construction, and in contrast with Karhunen-Loève decomposition, our basis is not made
of orthogonal functions but the elements are of nested compact support and the random
coefficients Ξn are always independent and Gaussian (for convenience with law N(0, Id),
i.e., with zero mean and unitary variance). We first develop a heuristic approach for the
construction of stochastic processes reminiscent of the midpoint displacement technique
[8, 9], before rigorously deriving the multiresolution basis that we will be using the paper.
This set of functions is then studied as a multiresolution Schauder basis of functions: in
particular, we derive explicitly from the multiresolution basis an Haar-like Hilbert basis,
which is the underlying structure explaining the dual relationship between basis elements
and coefficients. Based on these results, we study the construction application and its
inverse, the coefficient applications, that relate coefficients on the Schauder basis to sample
paths. We follow up by proving the almost-sure and strong convergence of the process
having independent standard normal coefficients on the Schauder basis to a Gauss-Markov
process. We also show that our decomposition is optimal in some sense that is strongly
evocative of spline interpolation theory [17]: the construction yields successive interpolations
of the process at the interval endpoints that minimize the Dirichlet energy induced by the
differential operator associated with the Gauss-Markov process [18, 19]. We also provide a
series of examples for which the proposed Schauder framework yields bases of functions
that have simple closed form formulae: in addition to the simple one-dimensional Markov
processes, we explicit our framework for two classes of multidimensional processes, the
Gauss-Markov rotations and the iteratively integrated Wiener processes (see, e.g., [20–22]).

The ideas underlying this work can be directly traced back to the original work of
Lévy. Here, we intend to develop a self-contained Schauder dual framework to further the
description of multidimensional Gauss-Markov processes, and, in doing so, we extend some
well-known results of interpolation theory in signal processing [23–25]. To our knowledge,
such an approach is yet to be proposed. By restraining our attention to the Gauss-Markov
processes, we obviously do not assume generality. However, we hope our construction



4 International Journal of Stochastic Analysis

proves of interest for a number of points, which we tentatively list in the following. First,
the almost-sure pathwise convergence of our construction together with the interpolation
property of the finite sums allows to reformulate results of the stochastic integration in term
of the geometry of finite-dimensional sample paths. In this regard, we found it appropriate
to illustrate how in our framework, the Girsanov theorem for the Gauss-Markov processes
appears as a direct consequence of the finite-dimensional change of variable formula. Second,
the characterization of our Schauder elements as the minimizer of a Dirichlet form paves the
way to the construction of infinite-dimensional Gauss-Markov processes, that is, processes
whose sample points themselves are infinite-dimensional [26, 27]. Third, our construction
shows that approximating a Gaussian process by a sequence of interpolating processes relies
entirely on the existence of a regular triangularization of the covariance operator, suggesting
to further investigate this property for non-Markov Gaussian processes [28]. Finally, there
is a number of practical applications where applying the Schauder basis framework clearly
provides an advantage compared to standard stochastic calculus methods, among which
first-hitting times of stochastic processes, pricing of multidimensional path-dependant
options [29–32], regularization technique for support vector machine learning [33], and more
theoretical work on uncovering the differential geometry structure of the space of the Gauss-
Markov stochastic processes [34]. We conclude our exposition by developing in more detail
some of these direct implications which will be the subjects of forthcoming papers.

2. Heuristic Approach to the Construction

In order to provide a discrete multiresolution description of the Gauss-Markov processes, we
first establish basic results about the law of the Gauss-Markov bridges in the multidimension-
al setting. We then use them to infer the candidate expressions for our desired bases of func-
tions, while imposing its elements to be compactly supported on nested sequence segments.
Throughout this paper, we are working in a complete probability space (Ω,F,P).

2.1. Multidimensional Gauss-Markov Processes

After recalling the definition of the multidimensional Gauss-Markov processes in terms of
stochastic integral, we use the well-known conditioning formula for the Gaussian vectors to
characterize the law of the Gauss-Markov bridge processes.

2.1.1. Notations and Definitions

Let (Wt,Ft, t ∈ [0, 1]) be anm-dimensionalWiener process, consider the continuous functions
α : [0, 1] → R

d×d √Γ : [0, 1] → R
d×m, and define the positive bounded continuous function

Γ =
√
Γ ·√ΓT : [0, 1] → R

d×d. The d-dimensional Ornstein-Uhlenbeck process associated with
these parameters is solution of the equation

dXt = α(t) · Xtdt +
√
Γ(t) · dWt, (2.1)

and with initial condition Xt0 in t0, it reads

Xt = F(t0, t) · Xt0 + F(t0, t) ·
∫ t

t0

F(s, t0) ·
√
Γ(s) · dWs, (2.2)
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where F(t0, t) is the flow of the equation, namely, the solution in R
d×d of the linear equation:

∂F(t0, t)
∂t

= α(t)F(t),

F(t0, t0) = Id.
(2.3)

Note that the flow F(t0, t) enjoys the chain rule property:

F(t0, t) = F(t1, t) · F(t0, t1). (2.4)

For all t, s such that t0 < s, t, the vectors Xt and Xs admit the covariance

Ct0(s, t) = F(t0, t)

(∫ t∧s

t0

F(w, t0)Γ(w)F(w, t0)T dw

)
F(t0, s)T

= F(t0, t)ht0(s, t)F(t0, s)
T ,

(2.5)

where we further defined hu(s, t) the function

hu(s, t) =
∫ t

s

F(w,u) · Γ(w) · F(w,u)Tdw, (2.6)

which will be of particular interest in the sequel. Note that because of the chain rule property
of the flow, we have

hv(s, t) = F(v, u)hu(s, t)F(v, u)T . (2.7)

We suppose that the process X is never degenerated, that is, for all t0 < u < v, all the
components of the vector Xv taking into account Xu are nondeterministic random variables,
which is equivalent to saying that the covariance matrix of Xv taking into account Xu, denoted
by Cu(v, v) is symmetric positive definite for any u/=v. Therefore, assuming the initial
condition X0 = 0, the multidimensional centered process X has a representation (similar to
Doob’s representation for one-dimensional processes, see [35]) of form

Xt = g(t)
∫ t

0
f(s) · dWs, (2.8)

with g(t) = F(0, t) and f(t) = F(t, 0) ·
√
Γ(t).

Note that the processes considered in this paper are defined on the time interval [0, 1].
However, because of the time-rescaling property of these processes, considering the processes
on this time interval is equivalent to considering the process on any other bounded interval
without loss of generality.
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2.1.2. Conditional Law and Gauss-Markov Bridges

As stated in the introduction, we aim at defining a multiresolution description of Gauss-
Markov processes. Such a description can be seen as a multiresolution interpolation of the
process that is getting increasingly finer. This principle, in addition to the Markov property,
prescribes to characterize the law of the corresponding Gauss-Markov bridge, that is, the
Gauss-Markov process under consideration, conditioned on its initial and final values. The
bridge process of the Gauss process is still a Gauss process and, for a Markov process, its law
can be computed as follows.

Proposition 2.1. Let tx ≤ tz two times in the interval [0, 1]. For any t ∈ [tx, tz], the random variable
Xt conditioned on Xtx = x and Xtz = z is a Gaussian variable with covariance matrix Σ(t) and mean
vector μ(t) given by

Σ(t; tx, tz) = ht(tx, t)(ht(tx, tz))
−1ht(t, tz),

μ(t) = μl(t; tx, tz) · x + μr(t; tx, tz) · z,
(2.9)

where the continuous matrix functions μl(·; tx, tz) and μr(·; tx, tz) of R
d×d are given by

μl(t; tx, tz) = F(tx, t)htx(t, tz)(htx(tx, tz))
−1,

μr(t; tx, tz) = F(tz, t)htz(tx, t)(htz(tx, tz))
−1.

(2.10)

Note that the functions μl and μr have the property that μl(tx; tx, tz) = μr(tz; tx, tz) = Id
and μl(tz; tx, tz) = μr(tx; tx, tz) = 0 ensuring that the process is indeed equal to x at time tx and
z at time tz.

Proof. Let tx, tz be two times of the interval [0, 1] such that tx < tz, and let t ∈ [tx, tz]. We
consider the Gaussian random variable ξ = (Xt,Xtz) conditioned on the fact that Xtx = x. Its
mean can be easily computed from expression (2.2) and reads

(mt,mtz) = (F(tx, t)x,F(tx, tz)x) =
(
g(t) g−1(tx) x,g(tz) g−1(tx) x

)
, (2.11)

and its covariance matrix, from (2.5), reads

[
Ct,t Ct,tz

Ctz,t Ctz,tz

]
=

[
F(tx, t)htx(tx, t)F(tx, t)

T F(tx, t)htx(tx, t)F(tx, tz)
T

F(tx, tz)htx(tx, t)F(tx, t)
T F(tx, tz)htx(tx, tz)F(tx, tz)

T

]

=

[
ht(tx, t) ht(tx, t)F(t, tz)T

F(t, tz)ht(tx, t) F(t, tz)ht(tx, tz)F(t, tz)T

]
.

(2.12)

From there, we apply the conditioning formula for the Gaussian vectors (see, e.g., [36]) to
infer the law of Xt conditioned on Xtx = x and Xtz = z, that is the lawN(μ(t),Σ(t; tx, tz)) of Bt
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where B denotes the bridge process obtained by pinning X in tx and tz. The covariance matrix
is given by

Σ(t; tx, tz) = Cy,y − Cy,zC−1z,zCz,y

= ht(tx, t) − ht(tx, t)(ht(tx, tz))−1ht(tx, t)

= ht(tx, t)(ht(tx, tz))−1ht(t, tz),

(2.13)

and the mean reads

μ(t) = my + Cy,zC−1z,z (z −mz)

= F(tx, t)
(
Id − htx(tx, t)(htx(tx, tz))−1

)
x + F(tz, t)htz(tx, t)(htz(tx, tz))

−1z,

= F(tx, t) htx(t, tz) (htx(tx, tz))
−1

︸ ︷︷ ︸
μl(t;tx,tz)

· x + F(tz, t)htz(tx, t)(htz(tx, tz))
−1

︸ ︷︷ ︸
μr(t;tx,tz)

· z,
(2.14)

where we have used the fact that htx(tx, tz) = htz(tx, t) + htx(t, tz). The regularity of the
thus-defined functions μx and μz directly stems from the regularity of the flow operator F.
Moreover, since for any 0 ≤ t, u ≤ 1, we observe that F(t, t) = Id and hu(t, t) = 0; we clearly
have μx(tx) = μy(t) = Id and μx(t) = μy(tx) = 0.

Remark 2.2. Note that these laws can also be computed using the expression of the density
of the processes but involve more intricate calculations. An alternative approach also
provides a representation of Gauss-Markov bridges with the use of integral and anticipative
representation [37]. These approaches allow to compute the probability distribution of the
Gauss-Markov bridge as a process (i.e., allows to compute the covariances), but since this
will be of no use in the sequel, we do not provide the expressions.

2.2. The Multiresolution Description of Gauss-Markov Processes

Recognizing the Gauss property and the Markov property as the two crucial elements for a
stochastic process to be expanded to Lévy-Cesielski, our approach first proposes to exhibit
bases of deterministic functions that would play the role of the Schauder bases for the
Wiener process. In this regard, we first expect such functions to be continuous and compactly
supported on increasingly finer supports (i.e., subintervals of the definition interval [0, 1])
in a similar nested binary tree structure. Then, as in the Lévy-Ciesielski construction, we
envision that, at each resolution (i.e., on each support), the partially constructed process (up
to the resolution of the support) has the same conditional expectation as the Gauss-Markov
process when conditioned on the endpoints of the supports. The partial sums obtained
with independent Gaussian coefficients of law N(0, 1) will thus approximate the targeted
Gauss-Markov process in a multiresolution fashion, in the sense that, at every resolution,
considering these two processes on the interval endpoints yields finite-dimensional Gaussian
vectors of the same law.
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2.2.1. Nested Structure of the Sequence of Supports

Here, we define the nested sequence of segments that constitute the supports of the multi-
resolution basis. We construct such a sequence by recursively partitioning the interval [0, 1].

More precisely, starting from S1,0 = [l1,0, r1,0] with l1,0 = 0 and r1,0 = 1, we iteratively
apply the following operation. Suppose that, at the nth step, the interval [0, 1] is decomposed
into 2n−1 intervals Sn,k = [ln,k, rn,k], called supports, such that ln,k+1 = rn,k for 0 ≤ k < 2n−1.
Each of these intervals is then subdivided into two child intervals, a left-child Sn+1,2k and a
right-child Sn+1,2k+1, and the subdivision point rn+1,2k = ln+1,2k+1 is denoted bymn,k. Therefore,
we have defined three sequences of real ln,k,mn,k, and rn,k for n > 0 and 0 ≤ k < 2n−1 satisfying
l0,0 = 0 ≤ ln,k < mn,k < rn,k ≤ r0,0 = 1 and

ln+1,2k = ln,k, mn,k = rn+1,2k = ln+1,2k+1, rn+1,2k+1 = rn,k (2.15)

with the convention l0,0 = 0 and r0,0 = 1 and S0,0 = [0, 1]. The resulting sequence of supports
{Sn,k;n ≤ 0, 0 ≤ k < 2n−1} clearly has a binary tree structure.

For the sake of compactness of notations, we define I the set of indices

I =
⋃

n<N

In with IN =
{
(n, k) ∈ N

2 | 0 < n ≤N, 0 ≤ k < 2n−1
}
, (2.16)

and for N > 0, we define DN = {mn,k, (n, k) ∈ IN−1} ∪ {0, 1}, the set of endpoints of the
intervals SN,k. We additionally require that there exists ρ ∈ (0, 1) such that for all (n, k) ∈
Imax(rn,k −mn,k,mn,k − ln,k) < ρ(rn,k − ln,k)which in particular implies that

lim
n→∞

sup
k

rn,k − ln,k = 0 (2.17)

and ensures that the set of endpoints ∪N∈NDN is everywhere dense in [0, 1]. The simplest
case of such partitions is the dyadic partition of [0, 1], where the endpoints for (n, k) ∈ I read

ln,k = k 2−n+1, mn,k = (2k + 1)2−n, rn,k = (k + 1)2−n+1, (2.18)

in which case the endpoints are simply the dyadic points ∪NDN = {k2−N | 0 ≤ k ≤ 2N}.
Figure 1 represents the global architecture of the nested sequence of intervals.

The nested structure of the supports, together with the constraint of continuity of the
bases elements, implies that only a finite number of coefficients are needed to construct the
exact value of the process at a given endpoint, thus providing us with an exact schema to
simulate the sample values of the process on the endpoint up to an arbitrary resolution, as
we will further explore.

2.2.2. Innovation Processes for Gauss-Markov Processes

For Xt, a multidimensional Gauss-Markov process, we call the multiresolution description
of a process the sequence of conditional expectations on the nested sets of endpoints Dn.
In detail, if we denote by FN the filtration generated by {Xt; t ∈ DN}given the values of
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S21S20
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Figure 1: A sequence of nested intervals.

the process at the endpoints DN of the partition, we introduce the sequence of the Gaussian
processes (ZNt )N≥1 defined by:

ZNt = E[Xt | FN] = EN[Xt]. (2.19)

These processes ZN can be naturally viewed as an interpolation of the process X sampled at
the increasingly finer timesDN since for all t ∈ DN we have ZNt = XNt . The innovation process
(δNt ,Ft, t ∈ [0, 1]) is defined as the update transforming the process ZNt into ZN+1

t , that is,

δNt = ZN+1
t − ZNt . (2.20)

It corresponds to the difference the additional knowledge of the process at the points mN,k

make on the conditional expectation of the process. This process satisfies the following
important properties that found our multiresolution construction.

Proposition 2.3. The innovation process δNt is a centered Gaussian process independent of the
processes Znt for any n ≤ N. For s ∈ SN,k and t ∈ SN,p with k, p ∈ IN , the covariance of the
innovation process reads

EN

[
δNt ·

(
δNs

)T]
=

⎧
⎨

⎩
μN,k(t) · ΣN,k · μN,k(t)

T if k = p,

0 if k /= p,
(2.21)
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where

μN,k(t) =

⎧
⎨

⎩
μr(t; lN,k, mN,k), t ∈ [lN,k,mN,k],

μl(t; mN,k, rN,k), t ∈ [mN,k, rN,k].
(2.22)

with μl, μr and ΣN,k = Σ(mN,k; lN,k, rN,k) as defined in Proposition 2.1.

Proof. Because of the Markovian property of the process X, the law of the process ZN can be
computed from the bridge formula derived in Proposition 2.1 and we have

ZNt = μl(t; lN,k, rN,k) · XlN,k + μ
r(t; lN,k, rN,k) · XrN,k ,

ZN+1
t =

⎧
⎨

⎩
μl(t; lN,k, mN,k) · XlN,k + μ

r(t; lN,k, mN,k) · XmN,k , for t ∈ [lN,k,mN,k],

μl(t; mN,k, rN,k) · XmN,k + μ
r(t; mN,k, rN,k) · XrN,k , for t ∈ [lN,k,mN,k].

(2.23)

Therefore, the innovation process can be written for t ∈ SN,k as

δNt = μNN,k(t) · XmN,k + ν
N(t) ·QN

t , (2.24)

where QN
t is a FN measurable process νN(t) a deterministic matrix function and

μN,k(t) =

⎧
⎨

⎩
μr(t; lN,k, mN,k), t ∈ [lN,k,mN,k],

μl(t; mN,k, rN,k), t ∈ [mN,k, rN,k].
(2.25)

The expressions of ν and Q are quite complex but are highly simplified when noting that

E

[
δNt | FN

]
= E

[
ZN+1
t | FN

]
− ZNt

= E[E[Zt | FN+1] | FN] − ZNt
= 0

(2.26)

directly implying that ν(t) · QN
t = μN(t) · ZNmN,k

and yielding the remarkably compact ex-
pression

δNt = μN,k(t) ·
(
XmN,k − ZNmN,k

)
. (2.27)

This process is a centered Gaussian process. Moreover, observing that it is FN-measurable, it
can be written as

δNt = μN,k(t) ·
({

XmN,k | FN
} − ZNmN,k

)
, (2.28)
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and the process {XmN,k | FN} appears as the Gauss-Markov bridge conditioned at times lN,k

and rN,k, and whose covariance is given by Proposition 2.1 and that has the expression

ΣN,k = Σ(mN,k; lN,k, rN,k)

= hmn,k(ln,k,mn,k)
(
hmn,k(ln,k, rn,k)

)−1hmn,k(mn,k, rn,k).
(2.29)

Let (s, t) ∈ [0, 1]2, and assume that s ∈ SN,k and t ∈ SN,p. If k /= p, then, because of the Markov
property of the process X, the two bridges are independent and therefore the covariance

EN[δNt · (δNs )
T
] is zero. If k = p, we have

EN

[
δNt ·

(
δNs

)T]
= μN,k(t) · ΣN,k · μN,k(s)

T . (2.30)

Eventually, the independence property stems from the simple properties of the conditional
expectation. Indeed, let n ≤N. We have

E

[
Znt ·

(
δNs

)T]
= E

[
Znt ·

(
ZN+1
s − ZNs

)T]

= E

[
E[Xt | Fn] ·

(
E

[
XTs | FN+1

]
− E

[
XTs | FN

])]

= E

[
E[Xt | Fn] · E

[
XTs | FN+1

]]
− E

[
E[Xt | Fn] · E

[
XTs | FN

]]

= E

[
Znt (Z

n
s )
T
]
− E

[
Znt (Z

n
s )
T
]

= 0

(2.31)

and the fact that a zero covariance between twoGaussian processes implies the independence
of these processes concludes the proof.

2.2.3. Derivation of the Candidate Multiresolution Bases of Functions

We deduce from the previous proposition the following fundamental theorem of this paper.

Theorem 2.4. For all N ∈ N, there exists a collection of ψN,k : [0, 1] 
→ R
d×d that are zero outside

the subinterval SN,k such that in distribution one has:

δNt =
∑

k∈IN
ψN,k(t) · ΞN,k, (2.32)

where ΞN,k are independent d-dimensional standard normal random variables (i.e., of lawN(0, Id)).
This basis of functions is unique up to an orthogonal transformation.

Proof. The two processes δNt and dNt
def=

∑
k∈IN ψN,k(t) · ΞN,k are two Gaussian processes

of mean zero. Therefore, we are searching for functions ψN,k vanishing outside SN,k and
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ensuring that the two processes have the same probability distribution. A necessary and
sufficient condition for the two processes to have the same probability distribution is to have
the same covariance function (see, e.g., [36]). We therefore need to show the existence of a
collection of functions ψN,k(t) functions that vanish outside the subinterval SN,k and that
ensure that the covariance of the process dN is equal to the covariance of δN . Let (s, t) ∈ [0, 1]
such that s ∈ SN,k and t ∈ SN,p. If k /= p, the assumption fact that the functions ψN,k vanish
outside SN,k implies that

E

[
dNt ·

(
dNs

)T]
= 0. (2.33)

If k = p, the covariance reads

E

[
dNt ·

(
dNs

)T]
= E

[
ψN,k(t) · ΞN,k · ΞT

N,k ·
(
ψN,k(s)

)T]

= ψN,k(t) ·
(
ψN,k(s)

)T
,

(2.34)

which needs to be equal to the covariance of δN , namely,

ψN,k(t) ·
(
ψN,k(s)

)T
= μN,k(t) · ΣN,k ·

(
μN,k(s)

)T
. (2.35)

Therefore, since μN,k(mN,k) = Id, we have

ψN,k(mN,k) ·
(
ψN,k(mN,k)

)T
= ΣN,k. (2.36)

We can hence now define ψN,k(mN,k) as a square root σN,k of the symmetric positive matrix
ΣN,k, by fixing s = mN,k in (2.35)

ψN,k(t) · σTN,k = μ(t) · σN,k · σTN,k. (2.37)

Eventually, since by assumption we have that ΣN,k is invertible, so is σN,k, and the functions
ψN,k can be written as

ψN,k(t) = μN,k(t) · σN,k (2.38)

with σN,k being a square root of ΣN,k. Square roots of positive symmetric matrices are
uniquely defined up to an orthogonal transformation. Therefore, all square roots of ΣN,k are
related by orthogonal transformations σ ′N,k = σN,k ·ON,k, whereON,k ·OT

N,k = Id. This property
immediately extends to the functions ψN,k we are studying: two different functions ψN,k

and ψ ′
N,k

satisfying the theorem differ from an orthogonal transformation ON,k. We proved
that, for ψN,k(t) · ΞN,k to have the same law as δN(t) in the interval SN,k, the functions ψN,k

with support in SN,k are necessarily of the form μN,k(t) · σN,k. It is straightforward to show
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the sufficient condition that provided such a set of functions, the processes δNt and dNt are
equal in law, which ends the proof of the theorem.

Using the expressions obtained in Proposition 2.1, we can make completely explicit
the form of the basis in terms of the functions f, g, and h:

ψn,k(t) =

⎧
⎪⎨

⎪⎩

g(t)g−1(mn,k)hmn,k(ln,k, t)
(
hmn,k(ln,k,mn,k)

)−1
σn,k, for ln,k ≤ t ≤ mn,k,

g(t)g−1(mn,k) hmn,k(t, rn,k)
(
hmn,k(mn,k, rn,k)

)−1
σn,k, for mn,k ≤ t ≤ rn,k,

(2.39)

and σn,k satisfies

σn,k · σTn,k = hmn,k(ln,k,mn,k)
(
hmn,k(ln,k, rn,k)

)−1hmn,k(mn,k, rn,k). (2.40)

Note that σn,k can be defined uniquely as the symmetric positive square root, or as the lower
triangular matrix resulting from the Cholesky decomposition of Σn,k.

Let us now define the function ψ0,0 : [0, 1] 
→ R
d×d such that the process ψ0,0(t) · Ξ0,0

has the same covariance as Z0
t , which is computed using exactly the same technique as that

developed in the proof of Theorem 2.4 and that has the expression

ψ0,0(t) = g(t)h0(l0,0, t)(h0(l0,0, r0,0))
−1g−1(r0,0)σ0,0, (2.41)

for σ0,0, a square root of Cr0,0 the covariance matrix of Xr0,0 which from (2.5) reads

F(0, 1)h0(1, 1)F(0, 1)T = g(1)h0(1, 1)(g(1))T . (2.42)

We are now in position to show the following corollary of Theorem 2.4.

Corollary 2.5. The Gauss-Markov process ZNt is equal in law to the process

XNt =
N−1∑

n=0

∑

k∈In
ψn,k(t) · Ξn,k, (2.43)

where Ξn,k are independent standard normal random variablesN(0, Id).

Proof. We have

ZNt =
(
ZNt − ZN−1t

)
+
(
ZN−1t − ZN−2t

)
+ · · · +

(
Z2
t − Z1

t

)
+ Z1

t

=
N−1∑

n=1

δnt + Z1
t
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=
N−1∑

n=1

∑

k∈In
ψn,k(t) · Ξn,k + ψ0,0(t) · Ξ0,0

=
N−1∑

n=0

∑

k∈In
ψn,k(t) · Ξn,k.

(2.44)

We therefore identified a collection of functions {ψn,k}(n,k)∈I that allows a simple
construction of the Gauss-Markov process iteratively conditioned on increasingly finer
partitions of the interval [0, 1]. We will show that this sequence ZNt converges almost surely
towards the Gauss-Markov process Xt used to construct the basis, proving that these finite-
dimensional continuous functions ZNt form an asymptotically accurate description of the
initial process. Beforehand, we rigorously study the Hilbertian properties of the collection
of functions we just defined.

3. The Multiresolution Schauder Basis Framework

The above analysis motivates the introduction of a set of functions {ψn,k}(n,k)∈I we now
study in details. In particular, we enlighten the structure of the collection of functions ψn,k

as a Schauder basis in a certain space X of continuous functions from [0, 1] to R
d. The

Schauder structure was defined in [38, 39], and its essential characterization is the unique
decomposition property: namely that every element x in X can be written as a well-formed
linear combination

x =
∑

(n,k)∈I
ψn,k · ξn,k, (3.1)

and that the coefficients satisfying the previous relation are unique.

3.1. System of Dual Bases

To complete this program, we need to introduce some quantities that will play a crucial role
in expressing the family ψn,k as a Schauder basis for some given space. In (2.39), two constant
matrices R

d×d appear that will have a particular importance in the sequel for (n, k) in I with
n/= 0:

Ln,k = gT (mn,k)
(
hmn,k(ln,k,mn,k)

)−1
σn,k

= (h(ln,k,mn,k))
−1 g−1(mn,k)σn,k,

Rn,k = gT (mn,k)
(
hmn,k(mn,k, rn,k)

)−1
σn,k

= (h(mn,k, rn,k))−1g−1(mn,k)σn,k,

(3.2)
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where h stands for h0. We further define the matrix

Mn,k = gT (mn,k)σ−1n,k
T (3.3)

and we recall that σn,k is a square root of Σn,k, the covariance matrix of Xmn,k , conditionally
to Xln,k and Xrn,k , given in (2.29). We stress that the matrices Ln,k,Rn,k, Mn,k, and Σn,k are all
invertible and satisfy the important following properties.

Proposition 3.1. For all (n, k) in I, n/= 0, one has:

(i) Mn,k = Ln,k + Rn,k

(ii) Σ−1n,k = (hmn,k(ln,k,mn,k))
−1 + (hmn,k(mn,k, rn,k))

−1.

To prove this proposition, we first establish the following simple lemma of linear algebra.

Lemma 3.2. Given two invertible matricesA and B inGLn(R) such thatC = A+B is also invertible,
if one defines D = AC−1B, one has the following properties:

(i) D = AC−1B = BC−1A

(ii) D−1 = A−1 + B−1.

Proof.

(i) D = AC−1B = (C − B)C−1B = B − BC−1B = B(I − C−1B) = BC−1(C − B) = BC−1A.

(ii) (A−1 + B−1)D = A−1D + B−1D = A−1AC−1B + B−1BC−1A = C−1(B +A) = C−1C = I.

Proof of Proposition 3.1.

(ii) Directly stems from Lemma 3.2, item (ii) by posing A = hmn,k(ln,k,mn,k), B =
hmn,k(mn,k, rn,k), and C = A + B = hmn,k(ln,k, rn,k). Indeed, the lemma implies that

D−1 = A−1CB−1

= hmn,k(ln,k,mn,k)
−1hmn,k(ln,k, rn,k)hmn,k(ln,k,mn,k)

−1

= Σ−1n,k.

(3.4)

(i) We have

Ln,k + Rn,k = g(mn,k)T
(
h(ln,k,mn,k)

−1 + h(mn,k, rn,k)−1
)
σn,k

= g(mn,k)TΣ−1n,kσ
n,k

= g(mn,k)T
(
σ−1n,k

)T
,

(3.5)

which ends the demonstration of the proposition.
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Let us define L0,0 = (h(l0,0, r0,0))
−1g−1(r0,0) σ0,0. With this notations we define the func-

tions in a compact form as follows.

Definition 3.3. For every (n, k) in I with n/= 0, the continuous functions ψn,k are defined on
their support Sn,k as

ψn,k(t) =

⎧
⎨

⎩
g(t)h(ln,k, t) · Ln,k, ln,k ≤ t ≤ mn,k,

g(t)h(t, rn,k) · Rn,k, mn,k ≤ t ≤ rn,k,
(3.6)

and the basis element ψ0,0 is given on [0, 1] by

ψ0,0(t) = g(t)h(l0,0, t) · L0,0. (3.7)

The definition implies that ψn,k are continuous functions in the space of piecewise
derivable functions with piecewise continuous derivative which takes value zero at zero. We
denote such a space by C1

0([0, 1],R
d×d).

Before studying the property of the functions ψn,k, it is worth remembering that their
definitions include the choice of a square root σn,k of Σn,k. Properly speaking, there is thus a
class of basesψn,k and all the points we develop in the sequel are valid for this class. However,
for the sake of simplicity, we consider from now on that the basis under scrutiny results from
choosing the unique square root σn,k that is lower triangular with positive diagonal entries
(the Cholesky decomposition).

3.1.1. Underlying System of Orthonormal Functions

We first introduce a family of functions φn,k and show that it constitutes an orthogonal basis
on a certain Hilbert space. The choice of this basis can seem arbitrary at first sight, but the
definition of these function will appear natural for its relationship with the functions ψn,k

and Φn,k that is made explicit in the sequel, and the mathematical rigor of the argument lead
us to choose this apparently artificial introduction.

Definition 3.4. For every (n, k) in I with n/= 0, we define a continuous function φn,k : [0, 1] →
R
m×d which is zero outside its support Sn,k and has the expressions:

φn,k(t) =

⎧
⎨

⎩
f(t)T · Ln,k if ln,k ≤ t < mn,k,

f(t)T · Rn,k if mn,k ≤ t < rn,k.
(3.8)

The basis element φ0,0 is defined on [0, 1] by

φ0,0(t) = f(t)T · L0,0. (3.9)

Remark that the definitions make apparent the fact that these two families of functions
are linked for all (n, k) in I through the simple relation

ψ ′n,k = α · ψn,k +
√
Γ · φn,k. (3.10)
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Moreover, this collection of functions φn,k constitutes an orthogonal basis of functions, in the
following sense.

Proposition 3.5. Let L2
f be the closure of

{
u : [0, 1] −→ R

m | ∃ v ∈ L2
(
[0, 1],Rd

)
,u = fT · v

}
, (3.11)

equipped with the natural norm of L2([0, 1],Rm). It is a Hilbert space, and moreover, for all 0 ≤ j < d,
the family of functions cj(φn,k) defined as the columns of φn,k, namely

cj
(
φn,k

)
=

[(
φn,k

)
i,j

]

0≤i<m
, (3.12)

forms a complete orthonormal basis of L2
f .

Proof. The space L2
f is clearly a Hilbert space as a closed subspace of the larger Hilbert space

L2([0, 1],Rm) is equipped with the standard scalar product:

∀u,v ∈ L2
(
[0, 1],Rd

)
, (u,v) =

∫1

0
u(t)T · v(t)dt. (3.13)

We now proceed to demonstrate that the columns of φn,k form an orthonormal family which
generates a dense subspace of L2

f . To this end, we define M([0, 1],Rm×d) as the space of
functions

{
A : [0, 1] −→ R

m×d | ∀j : 0 ≤ j < d, t 
−→ [
Ai,j(t)

]
0≤i<m ∈ L2([0, 1],Rm)

}
, (3.14)

that is, the space of functions that take values in the set ofm × d-matrices whose columns are
in L2([0, 1],Rm). This definition allows us to define the bilinear function P :M([0, 1],Rm×d)×
M([0, 1],Rm×d) → R

d×d as

P(A,B) =
∫1

0
A(t)T · B(t)dt satisfying P(B,A) = P(A,B)T , (3.15)

and we observe that the columns of φn,k form an orthonormal system if and only if

∀((p, q), (n, k)) ∈ I × I, P(
φn,k, φp,q

)
=

∫1

0
φn,k(t)T · φp,q(t)dt = δn,kp,q Id, (3.16)

where δn,kp,q is the Kronecker delta function, whose value is 1 if n = p and k = q, and 0
otherwise.

First of all, since the functions φn,k are zero outside the interval Sn,k, the matrix
P(φn,k, φp,q) is nonzero only if Sn,k ∩ Sp,q /= ∅. In such cases, assuming that n/= p and, for
example, that n < p, we necessarily have Sn,k strictly included in Sp,q: more precisely, Sn,k



18 International Journal of Stochastic Analysis

is either included in the left-child support Sp+1,2q or in the right-child support Sp+1,2q+1 of Sp,q.
In both cases, writing the matrixP(φn,k(t), φp,q) shows that it is expressed as a matrix product
whose factors include P(φn,k, fT ). We then show that

P
(
φn,k, fT

)
=

∫1

0
φn,k(t)T · f(t)T

= LTn,k ·
∫mn,k

ln,k

f(u) · fT (u)du − RT
n,k ·

∫ rn,k

mn,k

f(u) · fT (u)du,

= LTn,k · h(ln,k,mn,k) − RT
n,k · h(mn,k, rn,k)

= σTn,k g−1(mn,k)T − σTn,k g−1(mn,k)T ,

(3.17)

which entails thatP(φn,k, fT ) = 0 if n < p. If n > p, we remark thatP(φn,k, φp,q) = P(φp,q, φn,k)T ,
andwe conclude thatP(φn,k, φp,q) = 0 from the preceding case. For n = p, we directly compute
for n > 0 the only nonzero term

P(
φn,k, φn,k

)
= LTn,k ·

∫mn,k

ln,k

f(u) · fT (u)du · Ln,k + RT
n,k ·

∫ rn,k

mn,k

f(u) · fT (u)du · Rn,k,

= σTn,kg
−1(mn,k)T (h(ln,k,mn,k))

−1g−1(mn,k)σn,k

+ σTn,k g−1(mn,k)T (h(mn,k, rn,k))−1g−1(mn,k)σn,k.

(3.18)

Using the passage relationship between the symmetric functions h and hmn,k given in (2.7),
we can then write

P(
φn,k, φn,k

)
= σTn,k

(
hmn,k(ln,k,mn,k)

)−1
σn,k

+ σTn,k
(
hmn,k(mn,k, rn,k)

)−1
σn,k.

(3.19)

Proposition 3.1 implies that hmn,k(ln,k,mn,k)
−1 + hmn,k(mn,k, rn,k)

−1 = Σ−1n,k = (σ−1n,k)
Tσ−1n,k which

directly implies thatP(φn,k, φTn,k) = Id. For n = 0, a computation of the exact same flavor yields
that P(φ0,0, φ0,0) = Id. Hence, we have proved that the collection of columns of φn,k forms an
orthonormal family of functions in L2

f (the definition of φn,k clearly states that its columns can
be written in the form of elements of L2

f ).
The proof now amounts showing the density of the family of functions we consider.

Before showing this density property, we introduce for all (n, k) in I the functions Pn,k :
[0, 1] → R

d×d with support on Sn,k defined by

Pn,k(t) =

⎧
⎨

⎩
Ln,k if ln,k ≤ t < mn,k,

−Rn,k if mn,k ≤ t < rn,k,
n /= 0, P0,0(t) = L0,0. (3.20)

Showing that the family of columns of φn,k is dense in L2
f is equivalent to show that the

column vectors of the matrices Pn,k seen as a function of t are dense in L2([0, 1],Rd). It is
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enough to show that the span of such functions contains the family of piecewise continuous
R
d-valued functions that are to be constant on Sn,k, (n, k) in I (the density of the endpoints

of the partition ∪N∈NDN entails that the latter family generates L2([0, 1],Rd)).
In fact, we show that the span of functions

VN = span
{
t 
−→ cj(Pn,k)(t) | 0 ≤ j < d, (n, k) ∈ IN

}
(3.21)

is exactly equal to the space KN of piecewise continuous functions from [0, 1] to R
d that are

constant on the supports SN+1,k, for any (N + 1, k) in I. The fact that VN is included inKN is
clear from the fact that the matrix-valued functions PN,k are defined constant on the support
SN+1,k, for (N,k) in I.

We prove that KN is included in VN by induction on N ≤ 0. The property is clearly
true at rankN = 0 since P0,0 is then equal to the constant invertible matrix L0,0. Assuming that
the proposition true at rankN − 1 for a givenN > 0, let us consider a piecewise continuous
function c : [0, 1] → R

d in KN−1. Remark that, for every (N,k) in I, the function c can only
take two values on SN,k and can have discontinuity jump in mN,k: let us denote these jumps
as

dN,k = c
(
m+
N,k

)
− c

(
m−N,k

)
. (3.22)

Now, remark that for every (N,k) in I, the matrix-valued functions PN,k take only twomatrix
values on SN,k, namely, LN,k and −RN,k. From Proposition 3.1, we know that LN,k + RN,k =
MN,k is invertible. This fact directly entails that there exist vectors aN,k, for any (N,k) in
I, such that dN,k = (LN,k + RN,k)(−aN,k). We then necessarily have that the function c′ =
c+Pn,k ·an,k is piecewise constant on the supports SN,k, (N,k) in I. By recurrence hypothesis,
c′ belongs to VN−1, so that c belongs to VN , and we have proved thatKN ⊂ VN . Therefore, the
space generated by the column vectors Pn,k is dense in L2[0, 1], which completes the proof
that the functions t 
→ [(φn,k(t))i,j]0≤i<m form a complete orthonormal family of L2[0, 1].

The fact that the column functions of φn,k form a complete orthonormal system of L2
f

directly entails the following decomposition of the identity on L2
f .

Corollary 3.6. If δ is the real delta Dirac function, one has

∑

(n,k)∈I
φn,k(t) · φTn,k(s) = δ(t − s)IdL2

f
. (3.23)

Proof. Indeed it easy to verify that, for all v in L2
f , we have for allN > 0

∫

U

∑

(n,k)∈IN

(
φn,k(t) · φTn,k(s)

)
v(s)ds =

∑

(n,k)∈IN
φn,k(t) · P

(
φn,k,v

)

=
∑

(n,k)∈IN

d−1∑

p=0

cp
(
φn,k

)(
cp

(
φn,k

)
,v

)
,

(3.24)
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where (cp(φn,k),v) denotes the inner product in L2
f between v and the p-column of ψn,k.

Therefore, by the Parseval identity, we have in the L2
f sense

∫

U

∑

(n,k)∈I

(
φn,k(t) · φTn,k(s)

)
v(s)ds = v(t). (3.25)

From now on, abusing language, we will say that the family of R
m×d-valued functions

φn,k is an orthonormal family of functions to refer to the fact that the columns of suchmatrices
form orthonormal set of L2

f . We nowmake explicit the relationship between this orthonormal
basis and our functions (ψn,k) derived in our analysis of the multidimensional Gauss-Markov
processes.

3.1.2. Generalized Dual Operators

The Integral OperatorK
The basis φn,k is of great interest in this paper for its relationship to the functions ψn,k that
naturally arise in the decomposition of the Gauss-Markov processes. Indeed, the collection
ψn,k can be generated from the orthonormal basis φn,k through the action of the integral
operatorK defined on L2([0, 1],Rm) into L2([0, 1],Rd) by

u 
→ K[u] =
{
t 
−→ g(t) ·

∫

U

1[0,t](s)f(s)u(s)ds
}
, (3.26)

whereU ⊃ [0, 1] is an open set and, for any set E ⊂ U, 1E(·) denotes the indicator function of
E. Indeed, realizing thatK acts onM([0, 1],Rm×d) intoM([0, 1],Rd ×d) through

∀A ∈M
(
[0, 1],Rm×d

)
, K[A] = [K[c0(A)], . . . ,K[cd−1(A)]], (3.27)

where cj(A) denotes the jth R
m-valued column function of A, we easily see that for all (n, k)

in I, 0 ≤ t ≤ 1,

ψn,k(t) = g(t) ·
∫ t

0
f(s) · φn,k(s)ds =K

[
φn,k

]
(t). (3.28)

It is worth noticing that the introduction of the operatorK can be considered natural since it
characterizes the centered Gauss-Markov process X through loosely writing X =K[dW].

In order to exhibit a dual family of functions to the basis ψn,k, we further investigate
the property of the integral operator K. In particular, we study the existence of an inverse
operator D, whose action on the orthonormal basis φn,k will conveniently provide us with
a dual basis to ψn,k. Such an operator does not always exist; nevertheless, under special
assumptions, it can be straightforwardly expressed as a generalized differential operator.
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The Differential OperatorD
Here, we make the assumptions that m = d, that, for all t, f(t) is invertible in R

d×d, and that
f and f−1 have continuous derivatives, which especially implies that L2

f = L2(Rd). In this
setting, we define the space D0(U,Rd) of functions in C∞0 (U,Rd) that are zero at zero and
denote by D′0(U,R

d) its dual in the space of distributions (or generalized functions). Under
the assumptions just made, the operator K : D0(U,Rd) 
→ D0(U,Rd) admits the differential
operator D : D0(U,Rd) 
→ D0(U,Rd) defined by

u ∈ D0

(
U,Rd

)

−→ D[u] =

{
t 
−→ f−1(t)

d

dt

(
g−1(t)u(t)

)}
(3.29)

as its inverse, that is, when restricted toD0(U,Rd), we haveD◦K =K◦D = Id onD0(U,Rd).
The dual operators ofK and D are expressed, for any u in D0(U,Rd), as

D∗[u] =
{
t 
−→ −

(
g−1(t)

)T d
dt

((
f−1(t)

)T
u(t)

)}
,

K∗[u] =
{
t 
−→ −f(t)T

∫

U

1[0,t](s)gT (s)u(s)ds
}
.

(3.30)

They satisfy (from the properties ofK and D) D∗ ◦K∗ =K∗ ◦ D∗ = Id on D0(U,Rd). By dual
pairing, we extend the definition of the operatorsK, D as well as their dual operators, to the
space of generalized function D′0(U,R

d). In details, for any distribution T in D′0(U,R
d) and

test function u in D0(U,Rd), defineK andK∗ by

(D[T],u) = (T,D∗[u]), (K[T],u) = (T,K∗[u]), (3.31)

and reciprocally for the dual operators D∗ andK∗.

Candidate Dual Basis

We are now in a position to use the orthonormality of φn,k to infer a dual family of the basis
ψn,k. For any function u in L2(U,Rd), the generalized function K[u] belongs to C0(U,Rd),
the space of continuous functions that are zero at zero. We equip this space with the uniform
norm and denote its topological dual R0(U,Rd), the set of d-dimensional Radon measures
with R0(U,Rd) ⊂ D′0(U,Rd). Consequently, operating in the Gelfand triple

C0

(
U,Rd

)
⊂ L2

(
U,Rd

)
⊂ R0

(
U,Rd

)
, (3.32)

we can write, for any function u, v in L2(U,Rd) ⊂ R0(U,Rd),

(u,v) = ((D ◦K)[u],v) = (K[u],D∗[v]). (3.33)

The first equality stems from the fact that, whenK and D are seen as generalized functions,
they are still inverse of each other, so that in particular D ◦ K = Id on L2(U,Rd). The dual
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pairing associated with the Gelfand triple (3.32) entails the second equality where D∗ is the
generalized operator defined on D′0(U,R

d) and where D∗[v] is in R0(U,Rd).
As a consequence, defining the functions δn,k in R0(U,Rd×d), the d × d-dimensional

space of Radon measures, by

δn,k = D∗
(
φn,k

)
=

[D∗[ci
(
φn,k

)]
, . . . ,D∗[cj

(
φn,k

)]]
(3.34)

provides us with a family of d × d-generalized functions which are dual to the family ψn,k in
the sense that, for all ((n, k), (p, q)) in I × I, we have

P
(
δn,k,ψp,q

)
= δn,kp,q Id, (3.35)

where the definition ofP has been extended through dual pairing: given anyA inR0(U,Rm×d)
and any B in C0(U,Rm×d), we have

P(A,B) = [(
ci(A), cj(B)

)]
0≤i, j<d (3.36)

with (ci(A), cj(B)) denoting the dual pairing between the ith column of A taking value in
R0(U,Rd) and the jth column of B taking value in C0(U,Rd). Under the favorable hypothesis
of this section, the d × d-generalized functions δn,k can actually be easily computed since
considering the definition of φn,k shows that the functions (f−1)T · φn,k have support Sn,k and
are constant on Sn+1,2k and Sn+1,2k+1 in R

d×d. Only the discontinuous jumps in ln,k, mn,k, and
rn,k intervene, leading to expressing for (n, k) in I, n/= 0

δn,k(t) =
(
g(t)−1

)T · (Mn,k δ(t −mn,k) − (Ln,k δ(t − ln,k) + Rn,k δ(t − rn,k))) (3.37)

and δ0,0(t) = (g(t)−1)T ·L0,0, where δ(·) denotes the standard delta Dirac function (centered in
0). These functions can be extended to the general setting of the paper since its expressions
do not involve the assumptions made on the invertibility and smoothness of f(t). We now
show that these functions, when defined in the general setting, still provide a dual basis of
the functions ψn,k.

3.1.3. Dual Basis of Generalized Functions

The expression of the basis δn,k that has been found under favorable assumptions makes no
explicit reference to these assumptions. It suggests defining functions δn,k formally as linear
combination of Dirac functions acting by duality on C0(U,Rd ×d).

Definition 3.7. For (n, k) in I, the family of generalized functions δn,k in R0(U,Rd ×d) is given
by (n/= 0)

δn,k(t) =
(
g(t)−1

)T · (Mn,k δ(t −mn,k) − (Ln,k δ(t − ln,k) + Rn,k δ(t − rn,k))), (3.38)

and δ0,0(t) = (g(t)−1)T · L0,0, where δ is the standard Dirac distribution.



International Journal of Stochastic Analysis 23

Notice that the basis δn,k is defined for the open set U. For the sake of consistency, we
extend the definition of the families ψn,k and φn,k on U by setting them to zero on U \ [0, 1],
except for ψ0,0, which is continued for t > 1 by a continuous function c that is compactly
supported in [1, a) for a given a inU, a > 1 and satisfies c(1) = ψ0,0(1).

We can now formulate the following.

Proposition 3.8. Given the dual pairing in C0(U) ⊂ L2(U) ⊂ R(U) where U is a bounded open set
of R containing [0, 1], the family of continuous functions ψn,k in C0(U) admits, for dual family in
R(U), the set of distributions δn,k.

Proof. We have to demonstrate that, for all ((n, k), (p, q)) in I × I,

P
(
δp,q,ψn,k

)
= δn,kp,q Id. (3.39)

Suppose first that n, p > 0. If p < n, P(δn,k,ψp,q) can only be nonzero if the support Sp,q is
strictly included in Sn,k. We then have

P
(
δp,q,ψn,k

)
= MT

p,q g−1
(
mp,q

)
ψn,k

(
mp,q

)

−
(
LTp,q g−1

(
lp,q

)
ψn,k

(
lp,q

)
+ RT

p,q g−1
(
rp,q

)
ψn,k

(
rp,q

))
.

(3.40)

Assume that Sp,q is to the left ofmn,k, that is, Sp,q is a left child of Sn,k in the nested binary tree
of supports and write

P
(
δp,q,ψn,k

)
=

(
MT

p,q

(
h
(
ln,k,mp,q

) − LTp,qh
(
ln,k, lp,q

)) − RT
p,qh

(
ln,k, rp,q

))
Ln,k. (3.41)

Using the fact that Mp,q = Lp,q + Rp,q and that the function h(x, y), as any integral between x
and y, satisfies the chain rule h(x, y) = h(x, z) + h(z, y) for all (x, y, z), we obtain

P
(
δp,q,ψn,k

)
=

(
−LTp,q

(
h
(
ln,k,mp,q

) − h(ln,k, lp,q
))

+RT
p,q

(
h
(
ln,k,mp,q

) − h(ln,k, rp,q
)))

Ln,k

=
(
−LTp,q h

(
lp,q,mp,q

)
+ RT

p,q h
(
rp,q,mp,q

))
Ln,k

=
(
−σTp,q

(
g−1

(
mp,q

))T(
h
(
lp,q,mp,q

)−1)T · h(lp,q,mp,q

)

+σTp,q
(
g−1

(
mp,q

))T(
h
(
mp,q, rp,q

)−1)T · h(mp,q, rp,q
)) · Ln,k

= 0.

(3.42)
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The same result is true if Sp,q is a right child of Sn,k in the nested binary tree of supports. If
p = n, necessarily the only nonzero term is for q = p, that is,

P
(
δp,q,ψn,k

)
= MT

n,k g−1(mn,k) ψ(mn,k)

= MT
n,k h(ln,k,mn,k) Ln,k

= σ−1p,q g(mn,k)h(ln,k,mn,k)h(ln,k,mn,k)
−1g−1(mn,k) σp,q

= Id.

(3.43)

If p > n, P(δn,k,ψp,q) can only be nonzero if the support Sn,k is included in Sp,q, but then ψn,k

is zero in lp,q,mp,q, rp,q so that P(δn,k,ψp,q) = 0.
Otherwise, if n = 0 and p > 0, we directly have

P
(
δp,q,ψ0,0

)
= MT

p,qg
−1(mp,q

)
ψ0,0

(
mp,q

)

−
(
LTp,q g−1

(
lp,q

)
ψ0,0

(
lp,q

)
+ RT

p,qg
−1(rp,q

)
ψ0,0

(
rp,q

))
,

=
(
−LTp,qh

(
lp,q,mp,q

)
+ RT

p,qh
(
mp,q, rp,q

))
L0,0,

=
(
−σTp,q g−1

(
mp,q

)T + σTp,qg−1
(
mp,q

)T)Ln,k,

= 0.

(3.44)

Finally, if p = 0, given the simple form of δ0,0 with a single Dirac function centered in r0,0, we
clearly have P(δ0,0,ψn,k) = 0, and if n > 0

P
(
δ0,0,ψ0,0

)
, = LT0,0h(l0,0, r0,0) L0,0,

= σT0,0
(
g−1(r0,0)

)T
L0,0,

= σT0,0
(
g−1(r0,0)

)T
(h(l0,0, r0,0)L0,0 )

−1 g−1(r0,0)σ0,0,

= σT0,0 C−1r0,0σ0,0,

(3.45)

and using the fact that (by definition of σ0,0) we have σ0,0 · σT0,0 = Cr0,0 , this last expression is
equal to

P
(
δ0,0,ψ0,0

)
= σT0,0

(
σT0,0

)−1 · (σ0,0)−1σ0,0 = Id, (3.46)

which completes the proof.

This proposition directly implies the main result of the section.
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Theorem 3.9. The collection of functions (ψn,k; (n, k) ∈ I) constitutes a Schauder basis of functions
onC0(U,Rd), that is, any element ofC0(U,Rd) can be written in a unique way as a sum of coefficients
an,k multiplied by ψn,k.

This theorem provides us with a complementary view of stochastic processes: in
addition to the standard sample paths view, this structure allows to see the Gauss-Markov
processes as coefficients on the computed basis. This duality is developed in the sequel.

3.2. The Sample Paths Space

3.2.1. The Construction Application

The Schauder basis of functions with compact supports constructed allows to define
functions by considering the coefficients on this basis, which constitute sequences of real
numbers in the space

ξΩ =
{
ξ =

{
ξn,k

}
I
; ∀(n, k) ∈ I, ξn,k ∈ R

d
}
=

(
R
d
)I
. (3.47)

We equip ξΩ with the uniform norm ‖ξ‖∞ = sup(n,k)∈I|ξn,k|, where we write |ξn,k| =
sup0≤i<d|(ξn,k)i|. We denote by B(ξΩ) the Borelian sets of the topology induced by the uniform
norm and we recall that C(ξΩ), the cylinder sets of ξΩ, form a generative family of Borelian
sets. Remark that not any sequence of coefficients provides a continuous function, and
one needs to assume a certain decrease in the coefficients to get convergence. A sufficient
condition to obtain convergent sequences is to consider coefficients in the space

ξΩ′ =
{
ξ ∈ξ Ω | ∃δ ∈ (0, 1), ∃N ∈ N, ∀(n, k) ∈ I \ IN,

∣∣ξn,k
∣∣ < 2nδ/2

}
. (3.48)

This set is clearly a Borelian set of ξΩ since it can be written as a countable intersection and
union of cylinder, namely, by denoting by J the set of finite subset of N and δp = 1 − 1/p,
p > 1,

ξΩ′ =
⋃

p>1

⋃

J∈J

⋂

n∈N\J

{
ξ ∈ξ Ω | max

0≤k<2n−1
∣∣ξn,k

∣∣ < 2nδp/2
}
. (3.49)

It is also easy to verify that it forms a vectorial subspace of ξΩ.
After these definitions, we are in position to introduce the following useful function.

Definition 3.10. One denotes by ΨN the partial construction application:

ΨN =

⎧
⎪⎨

⎪⎩

ξΩ, −→ C0
(
[0, 1],Rd

)
,

ξ, 
−→
∑

(n,k)∈IN
ψn,k(t) · ξn,k, (3.50)

where the C0([0, 1],Rd) is the d-dimensional Wiener space, which is complete under the
uniform norm ‖x‖∞ = sup0≤t≤1|x(t)|.
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This sequence of partial construction applications is shown to converge to the con-
struction application in the following.

Proposition 3.11. For every ξ in ξΩ′, ΨN(ξ) converges uniformly toward a continuous function in
C0([0, 1],Rd). One will denote this function Ψ(ξ), defined as

Ψ :

⎧
⎪⎨

⎪⎩

ξΩ′ −→ C0
(
[0, 1],Rd

)
,

ξ 
−→
∑

(n,k)∈I
ψn,k(t) · ξn,k,

(3.51)

and this application will be referred to as the construction application.

This proposition is proved in Appendix D. The image of this function constitutes a
subset of theWiener space continuous functionsC0([0, 1],Rd). Let us now define the vectorial
subspace xΩ′ = Ψ(ξΩ′) of C0([0, 1],Rd) so that Ψ appears as a bijection.

It is important to realize that, in the multidimensional case, the space xΩ′ depends on Γ
and α in a nontrivial way. For instance, assuming that α = 0, the space xΩ′ depends obviously
crucially on the rank of Γ. To fix the idea, for a given constant

√
Γ(t) = [0, 0 · · · 1]T in R

d×1, we
expect the space xΩ′ to only include sample paths of C0([0, 1],Rd) for which the n − 1 first
components are constant. Obviously, a process with such sample paths is degenerated in the
sense that its covariance matrix is not invertible.

Yet, if we additionally relax the hypothesis that α/= 0, the space xΩ′ can be dramatically
altered: if we take

α(t) =

⎡
⎢⎢⎢⎢⎢⎣

0 1
. . . . . .

. . . 1
0

⎤
⎥⎥⎥⎥⎥⎦
, (3.52)

the space xΩ′ will represent the sample space of the d − 1-integrated Wiener process, a
nondegenerate d-dimensional process we fully develop in the example section.

However, the situation is much simpler in the one-dimensional case: because the
uniform convergence of the sample paths is preserved as long as α is continuous and Γ
is nonzero through (D.8), the definition xΩ′ does not depend on α or Γ. Moreover, in this
case, the space xΩ′ is large enough to contain reasonably regular functions as proved in
Appendix D, Proposition 3.

In the case of the d − 1-integrated Wiener process, the space xΩ′ clearly contains the
functions {f = (fd−1, . . . , f0) | f0 ∈ H, f ′i = fi−1, 0 < i < d}.

This remark does not hold that the space xΩ′ does not depend on α as long as α is
continuous because the uniform convergence of the sample paths is preserved through the
change of basis of expansion ψn,k through (D.8).

We equip the space xΩ′ with the topology induced by the uniform norm on
C0([0, 1],Rd). As usual, we denote B(xΩ′) the corresponding Borelian sets. We prove in
Appendix D the following.
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Proposition 3.12. The function Ψ : (ξΩ′,B(ξΩ′)) → (xΩ′,B(xΩ′)) is a bounded continuous bi-
jection.

We therefore conclude that we dispose of a continuous bijection mapping the coef-
ficients onto the sample paths,Ψ. We now turn to study its inverse, the coefficient application,
mapping sample paths on coefficients over the Schauder basis.

3.2.2. The Coefficient Application

In this section, we introduce and study the properties of the following function.

Definition 3.13. One calls coefficient application and denotes by Ξ the function defined by

Ξ :

⎧
⎨

⎩
C0

(
[0, 1],Rd

) −→ ξΩ =
(
R
d
)I
,

x 
−→ Δ(x) = {Δ(x)}(n,k)∈I with {Δ(x)}n,k = P(δn,k, x).
(3.53)

Should a function x admit a uniformly convergent decomposition in terms of the basis
of elements ψn,k, the function Δ gives its coefficients in such a representation. More precisely,
we have the following.

Theorem 3.14. The function Δ : (xΩ′,B(xΩ′)) → (ξΩ′,B(ξΩ′)) is a measurable linear bijection
whose inverse isΨ = Δ−1.

The proof of this theorem is provided in Appendix D.

4. Representation of Gauss-Markov Processes

4.1. Inductive Construction of Gauss-Markov Processes

Up to this point, we have rigorously defined the dual spaces of sample paths xΩ′ and
coefficients ξΩ′. Through the use of the Schauder basis ψn,k and its dual family of generalized
functions δn,k, we have defined the inverse measurable bijections Ψ and Δ transforming
one space into the other. In doing so, we have unraveled the fundamental role played by
the underlying orthonormal basis φn,k. We now turn to use this framework to formulate a
pathwise construction of the Gauss-Markov processes in the exact same flavor as the Lévy-
Ciesielski construction of the Wiener process.

4.1.1. Finite-Dimensional Approximations

Considering the infinite-dimensional subspace xΩ′ of C0([0, 1],Rd), let us introduce the
equivalence relation ∼N as

x∼Ny⇐⇒ ∀t ∈ DN, x(t) = y(t). (4.1)
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We can use the functions Ψ to carry through the structure of ∼N on the infinite-dimensional
space of coefficients ξΩ′:

ξ∼Nη ⇐⇒ Ψ(ξ)∼N Ψ(η)⇐⇒ ∀(n, k) ∈ IN, ξn,k = ηn,k, (4.2)

which clearly entails that x∼N y if and only ifΔ(x)∼N Δ(y). We denote the sets of equivalence
classes of xΩ′/∼N = xΩN and ξΩ′/∼N = ξΩN , which are both clearly isomorphic xΩN =

(Rd)I = ξΩN . For everyN > 0, we define the finite-dimensional operatorsΨN = xiN◦Ψ◦ ξpN
and ΔN = ξiN ◦ Δ ◦ xpN , with the help of the canonical projections ξpN : ξΩ′ → ξΩN ,
xpN : xΩ′ → xΩN and the inclusion map ξiN : ξΩN → ξΩ′, xiN : xΩN → xΩ′.

The results of the preceding sections straightforwardly extend on the equivalence
classes, and in particular we see that the functions ΨN : ξΩN → xΩN and ΔN : xΩN →
ξΩN are linear finite-dimensional bijections satisfying ΨN = ΔN

−1. We write e = {ep,q}(p,q)∈I
(resp., f = {fp,q}(p,q)∈I), the canonical basis of ξΩN (resp., xΩN) when listed in the recursive
dyadic order. In these bases, the matrices ΨN and ΔN are lower block triangular. Indeed,
denoting ΨN in the natural bases e = {ep,q}(p,q)∈I and f = {fp,q}(p,q)∈I by

ΨN =
[
ψn,k

(
mi,j

)]
=

[
Ψi,j

n,k

]
, (4.3)

where Ψi,j

n,k is a d × d matrix, the structure of the nested support Sn,k entails the block-
triangular structure (where only possibly nonzero coefficients are written):

αΨN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ0,0
0,0

ψ1,0
0,0 ψ1,0

1,0

ψ2,0
0,0 ψ2,0

1,0 ψ2,0
2,0

ψ2,1
0,0 ψ2,1

1,0 ψ2,1
2,1

ψ3,0
0,0 ψ3,0

1,0 ψ3,0
2,0 ψ3,0

3,0

ψ3,1
0,0 ψ3,1

1,0 ψ3,1
2,0 ψ3,1

3,1

ψ3,2
0,0 ψ3,2

1,0 ψ3,2
2,1 ψ3,2

3,2

ψ3,3
0,0 ψ3,3

1,0 ψ3,3
2,1 ψ3,3

3,3

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.4)

Similarly, for the matrix representation of ΔN in the natural bases en,k and fi,j

ΔN =
[
Δn,k
i,j

]
(4.5)
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proves to have the following triangular form:

ΔN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g−1(t0,0)TM0,0

−g−1(t0,0)TR1,0 g−1(t1,0)TM1,0

−g−1(t0,0)TR2,0 g−1(t1,0)TM2,0

−g−1(t0,0)TR2,1 −g−1(t1,0)TL2,1 g−1(t2,1)TM2,1

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.6)

The duality property, Proposition 3.8, simply reads for all 0 ≤ n < N and 0 ≤ k < 2n−1,
0 ≤ p < N and 0 ≤ p < 2q−1

P
(
δp,q,ψn,k

)
=

∑

(n,k)∈IN
Δp,q

i,j ·Ψ
i,j

n,k = δp,qn,kId, (4.7)

that is,ΔN ·ΨN = IdξΩN . But because we are now in a finite-dimensional setting, we also have
ΨN ·ΔN = IdxΩN :

δ
i,j

k,l
Id =

∑

(p,q)∈IN
Ψi,j
p,q ·Δp,q

k,l
. (4.8)

Realizing that δi,jk,lId represents the class of functions x in xΩ′ whose values are zero on every
dyadic point of DN except for x(l2k) = Id, {Δp,q

k,l
}
(p,q)∈IN

clearly appear as the coefficients of

the decomposition of such functions in the bases ψp,q for (p, q) in IN .
Denoting Ξ = {Ξn,k}(n,k)∈I , a set of independent Gaussian variables of lawN(0, Id) on

(Ω,F,P), and for allN > 0, we form the finite dimensional Gauss-Markov vector [XNi,j](i,j)∈INas

XNi,j =
∑

(n,k)∈IN
ψn,k

(
mi,j

) · Ξn,k, (4.9)

which, fromCorollary 2.5, has the same law as [Xt]t∈DN
, the finite-dimensional random vector

obtained from sampling X on DN (modulo a permutation on the indices). We then prove the
following lemma that sheds light on the meaning of the construction.

Lemma 4.1. The Cholesky decomposition of the finite-dimensional covariance block matrix ΣN is
given by ΣN = ΨN ·ΨN

T .

Proof. For every 0 ≤ t, s ≤ 1, we compute the covariance of the finite-dimensional process XN

as

CN(t, s) = E

[
XNt ·

(
XNs

)T]
=

N∑

n=0

∑

0≤k<2n−1
ψn,k(t) ·

(
ψn,k(s)

)T
. (4.10)
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From there, we write the finite-dimensional covariance block matrix ΣN in the recursively
ordered basis fi,j for 0 ≤ i ≤N, 0 ≤ j < 2i−1, as

[ΣN]i,jk,l = CN

(
mi,j ,mk,l

)
=

N∑

n=0

∑

0≤k<2n−1
Ψi,j

n,k
· ψk,l

n,k
. (4.11)

We already established that the matrix ΨN was triangular with positive diagonal coefficient,
which entails that the preceding equality provides us with the Cholesky decomposition of
Σ.

In the finite-dimensional case, the inverse covariance or potential matrix is a well-
defined quantity and we straightforwardly have the following corollary.

Corollary 4.2. The Cholesky decomposition of the finite-dimensional inverse covariance matrix Σ−1N
is given by Σ−1N = ΔN

T ·ΔN .

Proof. The result stems for the equalities Σ−1N = (ΨN ·ΨN
T )
−1

= (Ψ−1N )
T ·Ψ−1N = ΔN

T ·ΔN .

4.1.2. The Lévy-Ciesielski Expansion

We now show that, asymptotically, the bases ψn,k allow us to faithfully build the Gauss-
Markov process from which we have derived its expression. In this perspective we consider
Ξ = {Ξn,k}(n,k)∈I, a set of independent Gaussian variables of law N(0, Id) on (Ω,F,P), and,
for all N > 0, we form the finite-dimensional continuous Gaussian process ZN , defined for
0 ≤ t ≤ 1 by

XNt =
∑

(n,k)∈IN
ψn,k(t) · Ξn,k, (4.12)

which, from the result of Theorem 2.4, has the same law ZNt = E[Xt | FN]. We prove the
following lemma.

Lemma 4.3. The sequence of processes XN almost surely converges towards a continuous Gaussian
process denoted by X∞.

Proof. For all fixed N > 0 and for any ω in Ω, we know that t 
→ XNt (ω) is continuous.
Moreover, we have established, that, for every ξ in ξΩ′,XN(ξ) converges uniformly in t toward
a continuous limit denoted by XN(ξ). Therefore, in order to prove that limN→∞XN defines
almost surely a process X with continuous paths, it is sufficient to show that Pξ(ξΩ′) = 1,
where Pξ = PΞ−1 is the Ξ-induced measure on ξΩ, which stems from a classical Borel-Cantelli
argument. For ξ a random variable of normal lawN(0, 1), and a > 0, we have

P(|ξ| > a) =
√

2
π

∫∞

a

e−u
2/2 du ≤

√
2
π

∫∞

a

u

a
e−u

2/2 du =

√
2
π

e−a
2/2

a
. (4.13)
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Then, for any δ > 0

Pξ
(

max
0≤k<2n−1

∣∣ξn,k
∣∣
∞ > 2nδ/2

)
≤ d2nP

(
|ξ| > d2nδ/2

)
=

√
2
π
2(1−δ/2)n exp

(
−2nδ−1

)
. (4.14)

Since the series

∞∑

n=0

√
2
π
2(1−δ/2)n exp

(
−2nδ−1

)
(4.15)

is convergent, the Borel-Cantelli argument implies that Pξ(ξΩ′) = 1. Eventually, the contin-
uous almost-sure limit process X∞t is Gaussian as a countable sum of Gaussian processes.

Now that these preliminary remarks have been made, we can evaluate, for any t and
s in [0, 1], the covariance of X as the limit of the covariance of XN .

Lemma 4.4. For any 0 ≤ t, s ≤ 1, the covariance of X∞ = {X∞t = Ψt ◦ Ξ; 0 ≤ t ≤ 1} is

C(t, s) = E

[
X∞t · (X∞s )T

]
= g(t)h(t ∧ s)g(s)T . (4.16)

Proof. As Ξn,k are independent Gaussian random variables of normal law N(0, Id), we see
that the covariance of XN is given by

CN(t, s) = E

[
XNt ·

(
XNs

)T]
=

∑

(n,k)∈IN
ψn,k(t) ·

(
ψn,k(s)

)T
. (4.17)

To compute the limit of the right-hand side, we need to remember that the element of the
bases ψn,k and the functions φn,k are linked by the following relation:

ψn,k(t) =K
[
φn,k

]
= g(t)

∫

U

1[0,t](s)f(s)φn,k(s)ds, (4.18)

from which we deduce

CN(t, s) = g(t)

⎛

⎝
∑

(n,k)∈IN

(∫

U

1[0,t](u)f(u)φn,k(u)du
)(∫

U

1[0,s](v)f(v) φn,k(v)dv
)T

⎞

⎠g(s)T .

(4.19)

Defining the auxiliary R
d×d-valued function

κn,k(t) =
∫

U

1[0,t](u)f(u)φn,k(u)du, (4.20)
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we observe that the (i, j)-coefficient function reads

(κn,k)i,j(t) =
∫

U

1[0,t](u)
(
li(f(u))T · cj

(
φn,k(u)

))
du

=
∫

U

(
1[0,t](u)ci

(
fT (u)

)T · cj
(
φn,k(u)

))
du,

(4.21)

where 1[0,t] is the real function that is one if 0 ≤ u ≤ t and zero otherwise. As we can write

1[0,t](u)ci
(
fT (u)

)
= fT (u) ·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
...

1[0,t](u)
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

←− i, (4.22)

we see that the function fi,t = 1[0,t]ci(fT ) belongs to L2
f , so that we can write (κn,k)i,j(t) as a

scalar product in the Hilbert space L2
f :

(κn,k)i,j(t) =
∫

U

fTi,t(u) · cj
(
φn,k(u)

)
du =

(
fi,t, cj

(
φn,k

))
. (4.23)

We then specify the (i, j)-coefficient of g−1(t)CN(t, s)(g−1(s))T writing

∑

(n,k)∈IN

(
κ(t) · κ(s)T

)

i,j
=

∑

(n,k)∈IN

d−1∑

p=0

(
fi,t, cj

(
φn,k

))(
fj,s, cj

(
φn,k

))
, (4.24)

and, remembering that the family of functions cj(φn,k) forms a complete orthonormal system
of L2

f , we can use the Parseval identity, which reads

∑

(n,k)∈I

(
κ(t) · κ(s)T

)

i,j
=

(
fi,t, fj,s

)

=
∫

U

1[0,t](u)ci
(
fT (u)

)T · 1[0,s](u)cj
(
fT (u)

)
du

=
∫ t∧s

0

(
f · fT

)

i,j
(u)du.

(4.25)

Thanks to this relation, we can conclude the evaluation of the covariance since

lim
N→∞

CN(t, s) = g(t)

(∫ t∧s

0

(
f · fT

)
(u)du

)
g(s)T = g(t)h(t ∧ s)g(s)T . (4.26)
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We stress the fact that the relation

C(t, s) =
∑

(n,k)∈I
ψn,k(t) ·

(
ψn,k(s)

)T
= Ψ(t) ◦ΨT (s) (4.27)

provides us with a continuous version of the Cholesky decomposition of the covariance
kernel C. Indeed, if we chose σn,k as the Cholesky square root of Σn,k, we remark that the
operatorsΦ are triangular in the following sense: consider the chain of nested vectorial spaces
{Fn,k}(n,k)∈I

F0,0 ⊂ F1,0 ⊂ (F2,0 ⊂ F2,1) · · · ⊂ (Fn,0 ⊂ · · · ⊂ Fn,2n−1) · · · ⊂ ξΩ′ (4.28)

with Fn,k = span{fi,j | 0 ≤ i ≤ n, 0 ≤ j ≤ k}; then, for every (n, k) in I, the operator Ψ
transforms the chain {Fn,k}(n,k)∈I into the chain

E0,0 ⊂ E1,0 ⊂ (E2,0 ⊂ E2,1) · · · ⊂ (En,0 ⊂ · · · ⊂ En,2n−1) · · · ⊂x Ω′ (4.29)

with En,k = span{Ψi,j | 0 ≤ i ≤ n, 0 ≤ j ≤ k}.
The fact that this covariance is equal to the covariance of the process X, solution of

(2.1) implies that we have the following fundamental result.

Theorem 4.5. The process X∞ is equal in law to the initial Gauss-Markov process X used to construct
the basis of functions.

Remark 4.6. Our multiresolution representation of the Gauss-Markov processes appears to
be the direct consequence of the fact that, because of the Markov property, the Cholesky
decomposition of the finite-dimensional covariance admits a simple inductive continuous
limit. More generally, triangularization of the kernel operators has been studied in depth
[28, 40–42], and it would be interesting to investigate if these results make possible a similar
multiresolution approach for non-Markov Gaussian processes. In this regard, we naturally
expect to lose the compactness of the supports of a putative basis.

Remark 4.7. We eventually underline the fact that large deviations related to this convergence
can be derived through the use of the Baldi and Caramellino good rate function related to the
Gaussian pinned processes [43, 44].

4.2. Optimality Criterion of the Decomposition

In the following, we draw from the theory of interpolating splines to further characterize
the nature of our proposed basis for the construction of the Gauss-Markov processes.
Essentially adapting the results from the previous works [45, 46], we first show that
the finite-dimensional sample paths of our construction induce a nested sequence EN of
the reproducing Hilbert kernel space (RKHS). In turn, the finite-dimensional process XN

naturally appears as the orthogonal projection of the infinite-dimensional process X onto EN .
We then show that such an RKHS structure allows us to define a unicity criterion for the
finite-dimensional sample path as the only functions of E that minimize a functional, called
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Dirichlet energy, under constraint of interpolation on DN (equivalent to conditioning on the
timesDN). In this respect, we point out that the close relation between the Markov processes
and the Dirichlet forms is the subject of a vast literature, largely beyond the scope of the
present paper (see, e.g., [18]).

4.2.1. Sample Paths Space as a Reproducing Hilbert Kernel Space

In order to define the finite-dimensional sample paths as a nested sequence of RKHSs, let us
first define the infinite-dimensional operator

Φ :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

l2
(
ξΩ

) 
−→ L2
f ,

ξ 
−→ Φ[ξ] =

⎧
⎨

⎩t 
−→
∑

(n,k)∈I
φn,k(t) · ξn,k

⎫
⎬

⎭.
(4.30)

Since we know that the column functions of φn,k form a complete orthonormal system of
L2
f , the operator Φ is an isometry and its inverse satisfies Φ−1 = ΦT , which reads for all

v in L2
f

[
Φ−1[v]

]

n,k
=

∫

U

φTn,k(t) · v(t)dt = P
(
φn,k,v

)
. (4.31)

Equipped with this infinite-dimensional isometry, we then consider the linear operator L =
Φ ◦Δ suitably defined on the set

E =
{
u ∈ C0

(
U,Rd

)
| L[u] ∈ L2

f

}
=

{
u ∈ C0

(
U,Rd

)
| Δ[u] ∈ l2(ξΩ

)}
(4.32)

with ‖ξ‖22 =
∑

n,k∈I |ξn,k|22, the l2 norm of ξΩ. The set E form an infinite-dimensional vectorial
space that is naturally equipped with the inner product

∀(u,v) ∈ E2, 〈u,v〉 =
∫

U

L[u](t)T · L[v](t)dt = (L[u],L[v]). (4.33)

Moreover since u(0) = v(0) = 0, such an inner product is definite positive and, consequently,
E forms an Hilbert space.

Remark 4.8. Two straightforward remarks are worth making. First, the space E is strictly
included in the infinite-dimensional sample paths space xΩ′. Second, notice that, in the
favorable case m = d, if f is everywhere invertible with continuously differentiable inverse,
we have L = D = K−1. More relevantly, the operator L can actually consider a first-order
differential operator from E to L2

f as a general left inverse of the integral operatorK. Indeed,
realizing that on L2

f , K can be expressed asK = Ψ ◦Φ−1, we clearly have

L ◦K = Φ ◦Δ ◦Ψ ◦Φ−1 = IdL2
f
. (4.34)
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We know motivate the introduction of the Hilbert space E by the following claim.

Proposition 4.9. The Hilbert space (E, 〈, 〉) is a reproducing kernel Hilbert space (RKHS) with R
d×d-

valued reproducing kernel C, the covariance function of the process X.

Proof. Consider the problem of finding all elements u of E solution of the equation L[u] = v
for v in L2

f . The operatorK provides us with a continuous R
d ×m-valued kernel function k:

∀(t, s) ∈ U2, k(t, s) = 1[0,t](s)g(t) · f(s), (4.35)

which is clearly the Green function for our differential equation. This entails that the
following equalitiy holds for every u in E:

u(t) =
∫

U

k(t, s)L[u](s)ds. (4.36)

Moreover, we can decompose the kernel k in the L2
f sense as

k(t, s) =
∑

(n,k)∈I
ψn,k(t) · φTn,k(s) (4.37)

since we have

k(t, s) =K
[
δsIdL2

f

]
(t)

=K
⎡

⎣
∑

(n,k)∈I
φn,k · φTn,k(s)

⎤

⎦(t)

=
∑

(n,k)∈I
K[

φn,k
]
(t) · φTn,k(s),

(4.38)

with δs = δ(· − s). Then, we clearly have

C(t, s) =
∫

U

k(t, u) · k(s, u)Tdu =
∑

(n,k)∈I
ψn,k(t) · ψT

n,k(s), (4.39)

where we recognize the covariance function of X, which implies

k(t, s) =
∑

(n,k)∈I
ψn,k(t) · L

[
φn,k

]T (s) = L[C(t, ·)]. (4.40)

Eventually, for all u in L2
f , we have

u(t) =
∫

U

L[C(t, ·)](s) · L[u](s)ds = P〈C(t, ·),u〉, (4.41)
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where we have introduced the P-operator associated with the inner product 〈, 〉: for all R
d×d-

valued functions A and B defined on U such that the columns ci(A) and ci(B), 0 ≤ i < d, are
in E, we define the matrix P〈A,B〉 in R

d×d by

∀0 ≤ i, j < d, P〈A,B〉i,j =
〈
ci(A), cj(B)

〉
. (4.42)

By the Moore-Aronszajn theorem [47], we deduce that there is a unique reproducing kernel
Hilbert space associated with a given covariance kernel. Thus, E is the reproducing subspace
of C0(U,Rd) corresponding to the kernel C, with respect to the inner product 〈, 〉.

Remark 4.10. From amore abstract point of view, it is well known that the covariance operator
of a Gaussian measure defines an associated Hilbert structure [48, 49].

In the sequel, we will use the space E as the ambient Hilbert space to define the finite-
dimensional sample paths spaces as a nested sequence of RKHS. More precisely, let us write
for EN the finite-dimensional subspace of E

EN =
{
u ∈ C0

(
U,Rd

)
| L[u] ∈ L2

f,N

}
, (4.43)

with the space L2
f,N being defined as

L2
f,N = span

[{
ci(φn,k)

}
n,k∈IN, 0≤i<d

]
. (4.44)

We refer to such spaces as finite-dimensional approximation spaces since we remark
that

EN = span
[{
ci(ψn,k)

}

n,k∈IN,0≤i<d

]
= ΨN

[
ξΩN

]
, (4.45)

which means that the space EN is made of the sample space of the finite-dimensional process
XN . The previous definition makes obvious the nested structure E0 ⊂ E1 ⊂ · · · ⊂ E, and it is
easy to characterize each space EN as a reproducing Hilbert kernel space.

Proposition 4.11. The Hilbert spaces (EN, 〈, 〉) are reproducing kernel Hilbert spaces (RKHSs) with
R
d×d-valued reproducing kernel CN , the covariance function of the process XN .

Proof. The proof this proposition follows the exact same argument as that in the case of E, but
with the introduction of finite-dimensional kernels kN

∀(t, s) ∈ U2, kN(t, s) =
∑

(n,k)∈IN
ψn,k(t) · φTn,k(s), (4.46)

and the corresponding covariance function

∀(t, s) ∈ [0, 1]2, CN(t, s) =
∑

(n,k)∈IN
ψn,k(t) · ψT

n,k(s). (4.47)
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4.2.2. Finite-Dimensional Processes as Orthogonal Projections

The framework set in the previous section offers a new interpretation of our construction.
Indeed, for all N > 0, the columns of {ψn,k}(n,k)∈IN form an orthonormal basis of the space
EN :

P
〈
ψn,k,ψp,q

〉
= P

(
L
[
ψn,k

]
,L

[
ψp,q

])
= P(

φn,k, φp,q
)
= δn,kp,q . (4.48)

This leads to defining the finite-dimensional approximation xN of an sample path x of E as
the orthogonal projection of x on EN with respect to the inner product 〈, 〉. At this point,
it is worth remembering that the space E is strictly contained in xΩ′ and does not coincide
with xΩ′: actually one can easily show that P(E) = 0. We devote the rest of this section to
defining the finite-dimensional processes ZN = EN[X] resulting from the conditioning on
DN , as pathwise orthogonal projection of the original process X on the sample space EN .

Proposition 4.12. For anyN > 0, the conditioned processes EN[X] can be written as the orthogonal
projection of X on EN with respect to 〈, 〉:

EN[X] =
∑

(n,k)∈IN
ψn,k · P

〈
ψn,k,X

〉
. (4.49)

The only hurdle to prove Proposition 4.12 is purely technical in the sense that the
process X exists in a larger space than E: we need to find a way to extend the definition of 〈, 〉
so that the expression bears a meaning. Before answering this point quite straightforwardly,
we need to establish the following lemma.

Lemma 4.13. Writing the Gauss-Markov process Xt =
∫1
0 k(t, s) dWs, for allN > 0, the conditioned

process ZN = EN[X] is expressed as the stochastic integral

ZN =
∫1

0
kN(t, s)dWs with kN(t, s) =

∑

(n,k)∈IN
ψn,k(t) · φTn,k(s). (4.50)

Proof. In the previous section, we have noticed that the kernel kN converges toward the kernel
k (the Green function) in the L2

f sense

k(t, s) =
∑

(n,k)∈I
ψn,k(t) · φTn,k(s)

= lim
N→∞

∑

(n,k)∈IN
ψn,k(t) · φTn,k(s)kN

= lim
N→∞

kN(t, s).

(4.51)

This implies that the process X as the stochastic integral can also be written as

Xt = g(t)
∫

U

1[0,t](s)(s)dWs =
∫1

0
k(t, s)dWs = lim

N→∞

∫1

0
kN(t, s)dWs. (4.52)
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Specifying the decomposition of kN , we can then naturally express X as the convergent sum

Xt =
∑

(n,k)∈I
ψn,k · Ξn,k with Ξn,k =

∫1

0
φTn,k(s) dWs, (4.53)

where the orthonormality property of the φn,k with respect to (, ) makes the vectors Ξn,k

appear as independent d-dimensional Gaussian variables of law N(0, Id). It is then easy to
see that by definition of the elements ψn,k, for almost every ω in Ω, we then have

∀N > 0, 0 ≤ t ≤ 1, ZN(ω) = EN[X](ω) =
∑

(n,k)∈IN
ψn,k · Ξn,k(ω), (4.54)

and we finally recognize in the previous expression that for all 0 ≤ t ≤ 1

ZNt =
∑

(n,k)∈IN
ψn,k · Ξn,k =

∑

(n,k)∈IN
ψn,k(t) ·

∫

U

φTn,k(s) dWs =
∫1

0
kN(t, s) dWs. (4.55)

We can now proceed to justify the main result of Proposition 4.12.

Proof. The finite-dimensional processes ZN defined through Lemma 4.13 have sample paths
t 
→ ZNt (ω) belonging to EN . Moreover, for almost every ω in Ω and for all n, k in IN ,

P
〈
ψn,k,Z

N(ω)
〉
= P

〈
ψn,k,

∫1

0
kN(t, s)dWs(ω)

〉

= P
〈
ψn,k,

∑

(p,q)∈IN
ψp,q(ω) ·

∫1

0
φTp,q(s)dWs(ω)

〉

=
∫1

0
φTn,k(s) dWs(ω),

(4.56)

because of the orthonormality property of ψn,k with respect to 〈, 〉. As the previous equalities
hold for every N > 0, the applications x 
→ P〈ψn,k, x〉 can naturally be extended on
xΩ′ by continuity. Therefore, it makes sense to write, for all (n, k) in IN , P〈ψn,k,Z

N〉 =

limN→∞P〈ψn,k,Z
N〉 def= P〈ψn,k,X〉 even if X is defined into a larger sample space than E.

In other words, we have

P〈ψn,k,X〉 =
∫1

0
φTn,k(s) dWs = Ξn,k, (4.57)
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and we can thus express the conditioned process ZN = EN[X] as the orthogonal projection of
X onto the finite sample path EN by writing

ZN =
∑

(n,k)∈IN
ψn,k · P

〈
ψn,k,X

〉
. (4.58)

4.2.3. Optimality Criterion of the Sample Paths

Proposition 4.12 elucidates the structure of the conditioned processes ZN as pathwise
orthogonal projections of X on the finite-dimensional RKHS EN . It allows us to cast the finite
sample paths in a geometric setting and incidentally, to give a characterization of them as the
minimizer of some functionals. In doing so, we shed a new light on well-known results of the
interpolation theory [50–52] and extend them to the multidimensional case.

The central point of this section reads as follows.

Proposition 4.14. Given a function x in E, the function xN = (Ψ ◦ ΔN)[x] belongs to EN and is
defined by the following optimal criterion: xN is the only function in E interpolating x on DN such
that the functional

〈y,y〉 = ‖L[y](t)‖22 =
∫1

0
|L[y](t)|22 dt (4.59)

takes its unique minimal value over E in xN .

Proof. The space EN has been defined as EN = ΨN[ξΩN] = Ψ ◦ ΔN[E] so that, for all x in
E, xN clearly belongs to EN . Moreover, xN interpolates x on DN : indeed, we know that the
finite-dimensional operators ΔN and Ψ−1N are inverse of each other ΔN = Ψ−1N , which entails
that for all t in DN

xN(t) = (Ψ ◦ΔN)[x](t) = (ΨN ◦ΔN)[x](t) = x(t), (4.60)

where we use the fact that, for any ξ in ξΩ′ and for all t inDN ,ΨN[ξ](t) = Ψ[ξ](t) (recall that
ψn,k(t) = 0 if n > N and t belongs to DN).

Let us now show that xN is determined in E by the announced optimal criterion.
Suppose y belongs to E and interpolates x on DN , and remark that we can write

〈y,y〉 = ‖L[y]‖22 = ‖(Φ ◦Δ)[y](t)‖22 = ‖Δ[y]‖22, (4.61)

since Φ is an isometry. Then, consider Δ[y] in l2(ξΩ) and remark that, since for all (n, k) in
IN , δn,k are Dirac measures supported by DN , we have

∀(n, k) ∈ IN, Δn,k[y] = P(δn,k,y) = P(δn,k, x) = Δn,k[x] = Δn,k[xN]. (4.62)
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This entails

‖Δ[y]‖22dt =
∑

(n,k)∈I
|Δn,k[y]|22 ≥

∑

(n,k)∈IN
|Δn,k[y]|22 = ‖Δ[xN]‖22dt. (4.63)

Since, by definition of xN , δn,k[xN] = 0 if n > N. Moreover, the minimum 〈xN, xN〉 is only
attained for y such that δn,k[y] = 0 if n > N and δn,k[y] = δn,k[x] if n ≤ N, which defines
univocally xN . This establishes that, for all y in E such that for all t inDN , y(t) = x(t), we have
〈xN, xN〉 ≤ 〈y,y〉 and the equality case holds if and only if y = xN .

Remark 4.15. WhenL represents a regular differential operator of order d,
∑d

i=1 ai(t)D
i, where

D = d/dt, that is, for

dXt = α(t) · Xt +
√
Γ(t) · dWt, (4.64)

with

α(t) =

⎡
⎢⎢⎢⎢⎢⎣

0 1
. . . . . .

. . . 1
ad ad−1 . . . a1

⎤
⎥⎥⎥⎥⎥⎦
,

√
Γ(t) =

⎡
⎢⎢⎢⎣

0
0
...
1

⎤
⎥⎥⎥⎦
. (4.65)

The finite-dimensional sample paths coincide exactly with the spline interpolation of order
2d + 1, which are well known to satisfy the previous criterion [46]. This example will be
further explored in the example section.

The Dirichlet energy simply appears as the squared norm induced on E by the inner
product 〈, 〉, which in turn can be characterized as a Dirichlet quadratic form on E. Actually,
such a Dirichlet form can be used to define the Gauss-Markov process, extending the Gauss-
Markov property to processes indexed on the multidimensional spaces parameter [19]. In
particular, for an n-dimensional parameter space, we can condition such Gauss-Markov
processes on a smooth n − 1-dimensional boundary. Within the boundary, the sample paths
of the resulting conditioned process (the solution to the prediction problem in [19]) are the
solutions to the corresponding Dirichlet problems for the elliptic operator associated with the
Dirichlet form.

The characterization of the basis as the minimizer of such a Dirichlet energy (4.59)
gives rise to an alternative method to compute the basis as the solution of a Dirichlet
boundary value problem for an elliptic differential operator.

Proposition 4.16. Let us assume that α and
√
Γ are continuously differentiable and that

√
Γ is

invertible. Then, the functions μn,k are defined as

μn,k(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μl(t), t ∈ [ln,k,mn,k],

μr(t), t ∈ [mn,k, rn,k],

0, else,

(4.66)
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where μl and μr are the unique solutions of the second-order d-dimensional linear differential equation

u′′ +
(
Γ−1

(
αTΓ − Γ′

)
− α

)
u′ −

(
Γ−1

(
αTΓ − Γ′

)
α + α′

)
u = 0 (4.67)

with the following boundary value conditions:

μl(ln,k) = 0, μl(mn,k) = Id,

μr(mn,k) = Id, μr(rn,k) = 0.
(4.68)

Proof. By Proposition 4.14, we know that μn,k(t)minimizes the convex functional

∫1

0
|L[u](s)|22ds (4.69)

over E, being equal to zero outside the interval [ln,k, rn,k] and equal to one at the point t = mn,k.
Because of the hypotheses on α and

√
Γ, we have L = D and we can additionally restrain

our search to functions that are twice continuously differentiable. Incidentally, we only need
to minimize separately the contributions on the interval [ln,k,mn,k] and [mn,k, rn,k]. On both
intervals, this problem is a classical Euler-Lagrange problem (see, e.g., [53]) and is solved
using basic principles of calculus of variations. We easily identify the Lagrangian of our
problem as

L
(
t,u,u′

)
=

∣∣∣∣∣
(
u′ − α(t)u(t))

(√
Γ(t)

)−1∣∣∣∣∣
2

2

=
(
u′(t) − α(t)u(t))T (Γ(t))−1(u′(t) − α(t)u(t)).

(4.70)

From there, after some simple matrix calculations, the Euler-Lagrange equations

∂L(t,u,u′)
∂ui

− d

dt

(
∂L(t,u,u′)

∂u′i

)
= 0, i = 1, . . . , d, (4.71)

can be expressed under the form:

u′′ +
(
Γ−1

(
αTΓ − Γ′

)
− α

)
u′ −

(
Γ−1

(
αTΓ − Γ′

)
α + α′

)
u = 0, (4.72)

which ends the proof.

Remark 4.17. It is a simple matter of calculus to check that the expression of μ given in
Proposition 2.1 satisfies (4.67). Notice also that, in the case Γ = Id, the differential equation
becomes

u′′ +
(
αT − α

)
u′ −

(
αTα + α′

)
u = 0, (4.73)

which is further simplified for constant α.
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Under the hypotheses of Proposition 4.16, we can thus define μn,k as the unique
solution to the second-order linear differential equation (4.67)with the appropriate boundary
values conditions. From this definition, it is then easy to derive the bases ψn,k by completing
the following program.

(1) Compute the t 
→ μn,k(t) by solving the linear ordinary differential problem.

(2) Apply the differential operator D to get the functions D[μn,k].
(3) Orthonormalize the column functions t 
→ cj(D[μn,k(t)]) by the Gram-Schmidt

process.

(4) Apply the integral operator K to get the desired functions ψn,k (or equivalently
multiply the original function t 
→ μn,k(t) by the corresponding Gram-Schmidt
triangular matrix).

Notice finally that each of these points is easily implemented numerically.

5. Examples: Derivation of the Bases for Some Classical Processes

5.1. One-Dimensional Case

In the one-dimensional case, the construction of the Gauss-Markov process is considerably
simplified since we do not have to consider the potential degeneracy of matrix-valued
functions. Indeed, in this situation, the centered Gauss-Markov process X is solution of the
one-dimensional stochastic equation

dXt = α(t) Xtdt +
√
Γ(t) dWt, (5.1)

with α homogeneously Hölder continuous and Γ positive continuous function. We then have
the Doob representation

Xt = g(t)
∫ t

0
f(s)dWs, with g(t) = e

∫ t
0 α(v)dv, f(t) =

√
Γ(t) e−

∫ t
0 α(v)dv. (5.2)

Writing the function h as

h(t) =
∫ t

0
f2(s)ds, (5.3)

the covariance of the process reads for any 0 ≤ t, s ≤ 0

C(t, s) = g(t)g(s)h(t ∧ s). (5.4)

The variance of the Gauss-Markov bridge Bt pinned in tx and tz yields

(σtx,tz(t))
2 = g(t)2

(h(t) − h(tx))(h(tz) − h(t))
h(tz) − h(tx) . (5.5)
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These simple relations entail that the functions ψn,k are defined on their supports Sn,k by
ψn,k(t)

2 = E[(δn(t))2]with

E

[
(δn(t))2

]
=

(
σln,k ,rn,k(t)

)2 −
(
1Sn+1,2k(t)

(
σln,k ,mn,k(t)

)2 + 1Sn+1,2k+1(t)
(
σln,k ,mn,k(t)

)2)
. (5.6)

This reads on Sn+1,2k

ψn,k(t)2 = g(t)2
[
(h(t) − h(ln,k))(h(rn,k) − h(t))

h(rn,k) − h(ln,k) − (h(t) − h(ln,k))(h(mn,k) − h(t))
h(mn,k) − h(ln,k)

]
(5.7)

and on Sn+1,2k+1 as

ψn,k(t)2 = g(t)2
[
(h(t) − h(ln,k))(h(rn,k) − h(t))

h(rn,k) − h(ln,k) − (h(t) − h(mn,k))(h(rn,k) − h(t))
h(rn,k) − h(mn,k)

]
(5.8)

and therefore we have

ψn,k(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σn,k g(t)(h(t) − h(ln,k))
g(mn,k)(h(mn,k) − h(ln,k)) , ln,k ≤ t ≤ mn,k,

σn,k g(t)(h(rn,k) − h(t))
g(mn,k)(h(rn,k) − h(mn,k))

, mn,k ≤ t ≤ rn,k,
(5.9)

with

σn,k =

√
(h(rn,k) − h(mn,k))(h(mn,k) − h(ln,k))

h(rn,k) − h(ln,k) . (5.10)

As for the first element, it simply results from the conditional expectation of the one-
dimensional bridge pinned in l0,0 = 0 and r0,0 = 1:

ψ0,0(t) =
g(t)(h(t) − h(l0,0))√
h(r0,0) − h(l0,0)

. (5.11)

In this class of processes, two paradigmatic process are the Wiener process and the Ornstein-
Uhlenbeck processes with constant coefficients. In the case of the Wiener process, h(t) = t
and g(t) = 1, which yields the classical triangular-shaped Schauder functions used by Lévy
[8]. As for the Ornstein-Uhlenbeck process with constant coefficients α and

√
Γ, we have
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g(t) = exp(α t), f(t) =
√
Γ exp(−α t) and h(t) = (Γ/2α)(1−e−2α t), yielding for the construction

basis the expressions

ψn,k(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

√
Γ
α

sinh(α(t − ln,k))√
sinh(α(mn,k − ln,k))

, ln,k ≤ t ≤ mn,k,

√
Γ
α

sinh(α(rn,k − t))√
sinh(α(mn,k − ln,k))

, mn,k ≤ t ≤ rn,k,

ψ0,0(t) =

√
Γ
α

e−α/2 sinh(α t)
√
sinh(α)

,

(5.12)

which were already evidenced in [54].

5.2. Multidimensional Case

In the multidimensional case, the explicit expressions for the basis functions ψn,k make
fundamental use of the flow F of the underlying linear equation (2.3) for a given function
α. For commutative forms of α (i.e., such that α(t) · α(s) = α(s) · α(t) for all t, s), the flow
can be formally expressed as an exponential operator. It is, however, a notoriously difficult
problem to find a tractable expression for general α. As a consequence, it is only possible to
provide closed-from formulae for our basis functions in very specific cases.

5.2.1. Multidimensional Gauss-Markov Rotations

We consider in this section that α is antisymmetric and constant and
√
Γ ∈ R

d×m such that
Γ = σ2Id. For α antisymmetric, since αT (t) = −α(t), we have

F(s, t)T = F(s, t)−1, (5.13)

that is, the flow is unitary. This property implies that

hu(s, t) = σ2
∫ t

s

F(w,u)F(w,u)Tdw = σ2(t − s)Id, (5.14)

which yields by definition of σn,k

σn,k · σTn,k = σ2 (mn,k − ln,k)(rn,k −mn,k)
rn,k − ln,k Id. (5.15)

The square root σn,k is then uniquely defined (by choosing both Cholesky and symmetrical
square roots) by

σn,k = σ

√
(mn,k − ln,k)(rn,k −mn,k)

(rn,k − ln,k) Id, (5.16)
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and ψn,k(t) reads

ψn,k(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ

√
rn,k −mn,k

(mn,k − ln,k)(rn,k − ln,k) (t − ln,k)F(mn,k, t), ln,k ≤ t ≤ mn,k,

σ

√
mn,k − ln,k

(rn,k −mn,k)(rn,k − ln,k) (rn,k − t)F(mn,k, t), ln,k ≤ t ≤ mn,k.

(5.17)

Recognizing the (n, k) element of the Schauder basis for the construction of the one-
dimensional Wiener process

sn,k(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

√
rn,k −mn,k

(rn,k − ln,k)(mn,k − ln,k)(t − ln,k), ln,k ≤ t ≤ mn,k,

√
mn,k − ln,k

(rn,k − ln,k)(rn,k −mn,k)
(rn,k − t), ln,k ≤ t ≤ mn,k,

(5.18)

we obtain the following formula:

ψn,k(t) = σsn,k(t)F(t −mn,k). (5.19)

This form shows that the Schauder basis for multidimensional rotations results from
the multiplication of the triangular-shaped elementary function used for the Lévy-Ciesielski
construction of the Wiener process with the flow of the equation, that is, the elementary
rotation.

The simplest example of this kind is the stochastic sine and cosine process corres-
ponding to

α =
(

0 1
−1 0

)
,

√
Γ = σ2I2. (5.20)

In that case, ψn,k has the expression

ψn,k(t) = sn,k(t)

(
cos(t −mn,k) − sin(t −mn,k)

sin(t −mn,k) cos(t −mn,k)

)
. (5.21)

Interestingly, the different basis functions have the structure of the solutions of the non-
stochastic oscillator equation. One of the equations perturbs the trajectory in the radial
component of the deterministic solution and the other one in the tangential direction. We
represent such a construction in Figure 2 with the additional conditioning that X1 = X0, that
is, imposing that the trajectory forms a loop between time 0 and 1.
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Figure 2: Construction of the stochastic sine and cos Ornstein-Uhelenbeck processes for the parameters
given in (5.20): multiresolution construction of the sample path.

5.2.2. The Successive Primitives of the Wiener Process

In applications, it often occurs that people use smooth stochastic processes to model the
integration of noisy signals. This is for instance the case of a particular subject of a Brownian
forcing or of the synaptic integration of noisy inputs [55]. Such smooth processes involves in
general integratedmartingales, and the simplest example of such processes are the successive
primitives of a standard Wiener process.

Let d > 2, and denote by Xd
t the d − 1th order primitive of the Wiener process. This

process can be defined via the lower-order primitives Xk
t for k < d via the relations

dXk+1
t = Xk

t dt, k < d, dX1
t = dWt, (5.22)

whereWt is a standard real Wiener process. These equations can be written in our formalism
as

dXt = α(t) · Xt +
√
Γ(t) · dWt, (5.23)

with

α(t) =

⎡
⎢⎢⎢⎢⎢⎣

0 1
. . . . . .

. . . 1
0

⎤
⎥⎥⎥⎥⎥⎦
,

√
Γ(t) =

⎡
⎢⎢⎢⎣

0
0
...
1

⎤
⎥⎥⎥⎦
. (5.24)
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In particular, though none of the integrated processes Xk for K > 1 is Markov by itself, the
d-uplet X = (Xd, . . . , X1) is a Gauss-Markov process.

Furthermore, because of the simplicity and the sparsity of the matrices involved, we
can identify in a compact form all the variables used in the computation of the construction
basis for these processes. In particular, the flow F of the equation is the exponential of the
matrix α, and since α is nilpotent, it is easy to show that F has the expression,

F(s, t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 (t − s) (t − s)2
2

· · · (t − s)d−1
(d − 1)!

. . . . . . . . .
...

. . . . . . (t − s)2
2

. . . (t − s)
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.25)

and the only nonzero entry of the d × d matrix Γ is one at position (d − 1, d − 1). Using this
expression and the highly simple expression of Γ, we can compute the general element of the
matrix hu(t, s), which reads

(hu(s, t))i,j = (−1)i+j (t − u)2d−1−(i+j) − (s − u)2d−1−(i+j)
(
2d − 1 − (

i + j
))
(d − 1 − i)!(d − 1 − j)! . (5.26)

Eventually, we observe that the functions ψn,k, yielding the multiresolution description of the
integrated Wiener processes, are directly deduced from the matrix-valued function

(cn,k(t))i,j =

⎧
⎨

⎩
ψn,k · L−1n,k = g(t)h(ln,k, t), ln,k ≤ t ≤ mn,k,

ψn,k · R−1n,k = g(t)h(t, rn,k), mn,k ≤ t ≤ rn,k,
(5.27)

whose components are further expressed as

(cn,k(t))i,j =
d−1∑

p=i
(−1)p+j ti−p

(
i − p)!

t2d−1−(p+j) − l2d−1−(p+j)
n,k(

2d − 1 − (
p + j

))(
d − 1 − p)!(d − 1 − j)! , (5.28)

for ln,k ≤ t ≤ mn,k and as

(cn,k(t))i,j =
d−1∑

p=i
(−1)p+j ti−p

(
i − p)!

m
2d−1−(p+j)
n,k − t2d−1−(p+j)

(
2d − 1 − (

p + j
))(

d − 1 − p)!(d − 1 − j)! , (5.29)

for mn,k ≤ t ≤ rn,k. The final computation of the ψn,k involves the computation of Ln,k and
Rn,k, which in the general case can become very complex. However, this expression is highly
simplified when assuming that mn,k is the middle of the interval [ln,k, rn,k]. Indeed, in that
case, we observe that, for any (i, j) such that i + j is odd, (hm(l, r))i,j = 0, which induces
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the same property on the covariance matrix Σn,k and on the polynomials (cn,k(t))i,j . This
property gives therefore a preference to the dyadic partition that provides simple expressions
for the basis elements in any dimensions, and allows simple computations of the basis.

Remark 5.1. Observe that, for all 0 ≤ i < d − 1, we have

(cn,k(t))′i,j = (cn,k(t))i+1,j ±
d−1∑

p=i
(−1)p+j ti−p

(
i − p)!

t2d−1−(p+j) − l2d−2−(p+j)n,k(
d − 1 − p)!(d − 1 − j)! ,

= (cn,k(t))i+1,j ±
td−j−1

(
d − j − 1)!

d−1−i∑

q=0

(−t)qt(d−1−i)−p
p!
(
(d − 1 − i) − p)!

︸ ︷︷ ︸
0

.

(5.30)

As Ln,k and Rn,k are constant, we immediately deduce the important relation that, for all
0 ≤ i ≤ d−1, (ψn,k(t))

(i)
0,j

= (ψn,k(t))i,j . This indicates that each finite-dimensional sample paths
of our construction has components that satisfies the nondeterministic equation associated
with the iteratively integratedWiener process. Actually, this fact is better stated remembering
that the Schauder basis ψn,k and the corresponding orthonormal basis φn,k : [0, 1] → R

1×d

are linked through (3.10), which reads

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(
ψn,k

)′
0,0

. . .
(
ψn,k

)′
0, d−1

...
...(

ψn,k

)′
d−2, 0

. . .
(
ψn,k

)′
d−2, d−1(

ψn,k

)′
d−1, 0

. . .
(
ψn,k

)′
d−1, d−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

(
ψn,k

)

1,0
. . .

(
ψn,k

)

1, d−1
...

...(
ψn,k

)

d−1, 0
. . .

(
ψn,k

)

d−1, d−1
0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

0 . . . 0
...

...
0 . . . 0(

ψn,k

)

0,0
. . .

(
ψn,k

)

0, d−1

⎤
⎥⎥⎥⎥⎥⎦
.

(5.31)

Additionally, we realize that the orthonormal basis is entirely determined by the one-
dimensional families (φn,k)0,j , which are mutually orthogonal functions satisfying (φn,k)0,j =

(ψn,k)
(d)
0,j .

We study in more detail the case of the integrated and doubly-integrated Wiener
process (d = 2 and d = 3), for which closed-form expressions are provided in Appendices
A and B. As expected, the first row of the basis functions for the integrated Wiener
process turns out to be the well-known cubic Hermite splines [56]. These functions have
been widely used in numerical analysis and actually constitute the basis of the lowest
degree in a wider family of bases known as the natural basis of polynomial splines
of interpolation [25]. Such bases are used to interpolate data points with constraint of
smoothness of different degrees (e.g., the cubic Hermite splines ensure that the resulting
interpolation is in C1[0, 1]). The next family of splines of interpolation (corresponding to
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Figure 3: (a) Basis for the construction of the Integrated Wiener process (d = 2). Plain red curve: ψ1,1,
dashed red: ψ2,1, plain blue: ψ1,2 and dashed blue: ψ2,2. (b) 10-steps construction of the process. Moreover,
we observe that each basis accounts separately for different aspects of sample path: ψ2,1 fixes the value
of the integrated process at the middle point mn,k and ψ2,2 the value of the derivative of the process at
the endpoints {ln,k, rn,k} in relationship with the value of the Wiener process at the middle point, whose
contributions are split between functions ψ1,1 and ψ1,2 (see Figure 3).

the C2 constraint) is naturally retrieved by considering the construction of the doubly-
integrated Wiener process: we obtain a family of three 3-dimensional functions that consti-
tutes the columns of a 3 × 3 matrix that we denote by ψ . The top row is made of polynomials
of degree five, which have again simple expressions when mn,k is the middle of the interval
[ln,k, rn,k].

6. Stochastic Calculus from the Hilbert Point of View

Thus far, all calculations, propositions, and theorems are valid for any finite-dimensional
the Gauss-Markov process and all the results are valid pathwise, that is, for each sample
path. The analysis provides a Hilbert description of the processes as a series of standard
Gaussian random variables multiplied by certain specific functions, that form a Schauder
basis in the suitable spaces. This new description of Gauss-Markov processes provides a new
way for treating problems arising in the study of stochastic processes. As examples of this,
we derive the Itô formula and the Girsanov theorem from the Hilbertian viewpoint. Note that
these results are equalities in law, that is, dealing with the distribution of stochastic processes,
which is a weaker notion compared to the pathwise analysis. In this section, we restrict our
analysis to the one-dimensional case for technical simplicity.

The closed-form expressions of the basis of functions ψn,k in the one-dimensional case
are given in Section 5.1. The differential and integral operators associated, introduced in
Section 3.1.2 are highly simplified in the one-dimensional case. Let U be a bounded open set
of [0, 1], we denote by C(U) the space of continuous real functions on U and we recall that
the topological dual of C(U) is R(U), the space of Radon measures on U. We also introduce
D0(U), the space of test functions in C∞(U) that are zero in zero, and whose dual space
D′0(U) satisfies D′0(U) ⊂ R(U).Let U be a bounded open neighborhood of [0, 1], and denote
by C(U) is the space of continuous real functions on U, R(U) its topological dual, the space
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of Radon measures, D0(U) the space of test function in C∞(U) which are zero at zero and it
dual D′0(U) ⊂ R(U). We consider the Gelfand triple

D0(U) ⊂ C(U) ⊂ L2(U) ⊂ D′0(U) ⊂ R(U). (6.1)

The integral operatorK is defined (and extended by dual pairing) by

K[·](t) =
∫

U

1[0,t](s)gα(t)fα(s) · ds, (6.2)

and the inverse differential operator D reads

D[·](t) = 1
gα(t)

d

dt

( ·
fα(t)

)
. (6.3)

Now that we dispose of all the explicit forms of the basis functions and related
operators, we are in position to complete our program and start by proving the very
important Itô formula and its finite-dimensional counterpart before turning to the Girsanov
theorem.

6.1. Itô’s Formula

A very useful theorem in the stochastic processes theory is the Itô formula. We show here that
this formula is consistent with the Hilbert framework introduced. Most of the proofs can be
found in Appendix E. The proof of Itô formula is based on demonstrating the integration by
parts property.

Proposition 6.1 (Integration by parts). Let (Xt) and (Yt) be two one-dimensional Gauss-Markov
processes starting from zero. Then one has the following equality in law:

Xt Yt =
∫ t

0
Xs ◦ dYs +

∫ t

0
Ys ◦ dXs, (6.4)

where, for two stochastic processes At and Bt,
∫ t
0As ◦ dBs denotes the Stratonovich integral. In terms

of the Itô integral, this formula is written as

XtYt =
∫ t

0
XsdYs +

∫ t

0
YsdXs + 〈X,Y〉t, (6.5)

where the brackets denote the mean quadratic variation.

The proof of this proposition is quite technical and is provided in Appendix E. It is
based a thorough analysis of the finite-dimensional processesXN

t and YN
t . For this integration
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by parts formula and using a density argument, one can recover the more general Itô for-
mula.

Theorem 6.2 (Itô). Let (Xt)t be a Gauss-Markov process and F ∈ C2(R). The process f(Xt) is a
Markov process and satisfies the following relation in law:

f(Xt) = f(X0) +
∫ t

0
f ′(Xs)dXs +

1
2

∫ t

0
f ′′(Xs)d〈X〉s. (6.6)

This theorem is proved in Appendix E.
The Itô formula implies in particular that the multiresolution description developed

in the paper is valid for every smooth functional of a Gauss-Markov process. In particular,
it allows a simple description of exponential functionals of Gaussian Markovian processes,
which are of particular interest in mathematics and have many applications, in particular in
economics (see, e.g., [57]).

Therefore, we observe that in the view of the paper, Itô formula stems from the
nonorthogonal projections of basis element. For multidimensional processes, the proof of the
Itô formula is deduced from the one-dimensional proof and would involve the study of the
multidimensional bridge formula for Xt and Yt.

We eventually remark that this section provides us with a finite-dimensional
counterpart of the Itô formula for discretized processes, which has important potential
applications, and further assesses the suitability of using the finite resolution representation
developed in this paper. Indeed, using the framework developed in the present paper allows
considering finite-resolution processes and their transformation through nonlinear smooth
transformation in a way that is concordant with the standard stochastic calculus processes,
since the equation on the transformed process indeed converges towards its Itô representation
as the resolution increases.

6.2. Girsanov Formula: A Geometric Viewpoint

In the framework we developed, transforming a process X into a process Y is equivalent to
substituting the Schauder construction basis related to Y for the basis related to X. Such an
operation provides a pathwise mapping for each sample path of X onto a sample path of
Y having the same probability density in ξΩ′. This fact sheds a new light on the geometry
of multidimensional Gauss-Markov processes, since the relationship between two processes
is seen as a linear change of basis. In our framework, this relationship between processes is
straightforwardly studied in the finite rank approximations of the processes up to a certain
resolution. Technical intricacy is nevertheless raised when dealing with the representation of
the process itself in the infinite-dimensional Hilbert spaces. We solve these technical issues
here and show that in the limitN → ∞ one recovers Girsanov theorem as a limit of the linear
transformations between the Gauss-Markov processes.

The general problem consists therefore in studying the relationship between two real
Gauss-Markov processes X and Y that are defined by

dXt = αX(t)Xt dt +
√
ΓX(t) dWt,

dYt = αY (t)Xt dt +
√
ΓY (t) dWt.

(6.7)
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We have noticed that the spaces xΩ′ are the same in the one-dimensional case as
long as both ΓX and ΓY never vanish and therefore make this assumption here. In order to
further simplify the problem, we assume that γX,Y = ΓX/ΓY is continuously differentiable.
This assumption allows us to introduce the process Zt = γX,Y (t)Yt that satisfies the stochastic
differential equation

dZt =
d

dt

(
γX,Y (t)

)
Yt dt + γX,Y (t)dYt

=
(
d

dt

(
γX,Y (t)

)
+ γX,Y (t)αY (t)

)
Ytdt +

√
ΓX(t)dWt

= αZ(t)Zt dt +
√
ΓX(t)dWt,

(6.8)

with αZ(t) = (d/dt)(γX,Y (t))γX,Y (t)
−1 + αY (t). Moreover, if Zψn,k and Yψn,k are the bases of

functions that describe the process Z and Y , respectively, we have Zψn,k = γX,Y · Yψn,k.
The previous remarks allow us to restrict without loss of generality our study to the

processes defined for same function
√
Γ, thus reducing the parameterization of the Gauss-

Markov processes to the linear coefficient α. Observe that in the classical stochastic calculus
theory, it is well known that such hypotheses are necessary for the process X to be absolutely
continuous with respect to Y (through the use of the Girsanov theorem).

Let us now consider that α, β, and
√
Γ three real Hölder continuous real functions, and

introduce αX and βX solutions of the equations

d(αXt) = α(t)(αXt) dt +
√
Γ(t) dWt,

d
(
βXt

)
= β(t)

(
βXt

)
dt +

√
Γ(t) dWt.

(6.9)

All the functions and tools related to the process αX (resp., βX)will be indexed by α (β) in the
sequel.

6.2.1. Lift Operators

Depending on the space we are considering (either coefficients or trajectories), we define the
two following operators mapping the process αXt on βXt.

(1) The coefficients lift operator α,βG is the linear operator mapping in ξΩ′ the process αX
on the process βX:

α,βG = βΔ ◦ αΨ :
(
ξΩ′,B

(
ξΩ′

)) −→ (
ξΩ′,B

(
ξΩ′

))
. (6.10)

For any ξ ∈ξ Ω′, the operator α,βG maps a sample path of αX on a sample path of
βX.

(2) The process lift operator α,βF is the linear operator mapping in xΩ the process αX on
the process βX:

α,βH =α Ψ ◦α Δ : (xΩ,B(xΩ)) −→ (xΩ,B(xΩ)). (6.11)
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We summarize the properties of these operators now.

Proposition 6.3. The operators α,βG and α,βH satisfy the following properties.

(i) They are linear measurable bijections

(ii) For every N > 0, the function α,βGN = PN ◦α,β G ◦ IN :ξ Ω′N → ξΩN (resp., α,βHN =
PN ◦α,β H ◦ IN :ξ Ω′N → ξΩN) is a finite-dimensional linear operator, whose matrix
representation is triangular in the natural basis of ξΩN (resp., ξΩ′N) and whose eigenvalues
α,βνn,k are given by

α,βνn,k =
gα(mn,k)
gβ(mn,k)

βMn,k

αMn,k
, 0 ≤ n ≤N, 0 ≤ k < 2N−1 (6.12)

(resp., β,ανn,k = (α,βνn,k)
−1).

(iii) α,βG and α,βH are bounded operators for the spectral norm with

∥∥
α,βG

∥∥
2 = sup

n
sup
k

α,βνn,k ≤
sup gα
inf gβ

sup f2
α

inf f2
β

<∞, (6.13)

and ‖α,βH‖2 = ‖β,αG‖2 <∞.

(iv) The determinants of α,βGN (denoted by α,βJN) and α,βHN admit a limit when N tends to
infinity:

α,βJ = lim
N→∞ α,βJN = exp

(
1
2

(∫1

0

(
α(t) − β(t)) dt

))
,

lim
N→∞

det
(
α,βHN

)
= exp

(
1
2

(∫1

0

(
β(t) − α(t))dt

))
= β,αJ .

(6.14)

The proof of these properties elementary stems from the analysis done on the functions
Ψ and Δ that were previously performed, and these are detailed in Appendix C.

6.2.2. Radon-Nikodym Derivatives

From the properties proved on the lift operators, we are in position to further analyze
the relationship between the probability distributions of αX and βX. We first consider the
finite-dimensional processes αX

N and βX
N . We emphasize that, throughout this section, all

equalities are true pathwise.

Lemma 6.4. Given the finite-dimensional measures PNα and PN
β
, the Radon-Nikodym derivative of

PNβ with respect to PNα satisfies

dPNβ

dPNα
(ω) = α,βJN · exp

(
−1
2

(
ΞN(ω)T

(
α,βSN − IdξΩN

)
ΞN(ω)

))
(6.15)

with α,βSN =α,β GN
T · α,βGN and the equality is true pathwise.
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Proof. In the finite-dimensional case, for all N > 0, we can write that PNα , PNβ p
N
α , and the

Lebesgue measure xΩN are mutually absolutely continuous: we denote by pNα and pN
β

the

Gaussian density of PNα and PNβ with respect to the Lebesgue measure on xΩN . Therefore,

in the finite-dimensional case, the Radon-Nikodym derivative of PN
β

with respect to PNα is
defined to be pathwise and is simply given by the quotient of the density of the vector
{βXN(mi,j)} with the density of the vector {αXN(mi,j)} for 0 ≤ i ≤ N, 0 ≤ j < 2i−1, that
is,

dPN
β

dPNα
(ω) =

pN
β

(
αX

N(ω)
)

pNα
(
αXN(ω)

)

=

√
det(αΣN)
det

(
βΣN

) · exp
(
−1
2

(
αX

N(ω)T
(
βΣ−1N −α Σ−1N

)
αX

N(ω)
))

.

(6.16)

We first make explicit

det(αΣN)
det

(
βΣN

) = det
(
αΣN · βΣ−1N

)

= det
(
αΨN · αΨN

T · βΔN
T · βΔN

)

= det
(
βΔN · αΨN · αΨN

T · βΔN
T
)

= det
(
α,βGN · α,βGN

T
)

= det
(
α,βGN

)2
.

(6.17)

Then, we rearrange the exponent using the Cholesky decomposition:

βΣ−1N − αΣ−1N = βΔN
T · βΔN

− αΔN
T · αΔN, (6.18)

so that we write the exponent of (6.16) as

αXN
T
(
βΔN

T · βΔN
− αΔN

T · αΔN

)
αXN

= ΞNT · αΨN
T
(
βΔN

T · βΔN
−α ΔN

T · αΔN

)
αΨN(ω) · ΞN

= ΞNT
(
α,βGN

T · α,βGN
− IdξΩN

)
ΞN.

(6.19)

We finally reformulate (6.16) as

dPNβ

dPNα
(ω) = α,βJN · exp

(
−1
2

(
ΞN(ω)T

(
α,βGN

T · α,βGN − IdξΩN

)
ΞN(ω)

))
. (6.20)

Let us now justify from a geometrical point of view why this formula is a direct
consequence of the finite-dimensional change of variable formula on the model space ξΩN . If
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we introduce αΔN , the coefficient application related to αX
N , we know that ΞN =α ΔN(αXN)

follows a normal lawN(0, I
ξΩN ). We denote by pN

ξ
its standard Gaussian density with respect

to the Lebesgue measure on ξΩN . We also know that

αΔN

(
βX

N
)
=

(
αΔN ◦α,β FN

)(
αX

N
)
=β,α GN

(
αΔN

(
αX

N
))

=β,α GN(ΞN). (6.21)

Since β,αGN is linear, the change of the variable formula directly entails that β,αGN(ΞN)
admits on ξΩN

pNβ,α(ξN) =
∣∣det

(
α,βG

)∣∣ pNξ
[
ξN

T
(
α,βGN

T · α,βGN

)
ξN

]
(6.22)

as density with respect to the Lebesgue measure. Consider now B as a measurable set of
(xΩN,B(xΩN)); then we have

PNβ (B) =
∫

αΔN(B)
pNβ,α(ξN)dξN

=
∫

αΔN(B)

pN
β,α(ξN)

pN
ξ (ξN)

pNξ (ξN)dξN

=
∫

B

pN
β,α

(
αΔN

(
XN

))

pNξ
(
αΔN

(
XN

)) dPNα

(
XN

)
,

(6.23)

from which we immediately conclude.

6.2.3. The Trace Class Operator

The pathwise expression of the Radon-Nikodym derivative extends to the infinite-
dimensional representation of αX and βX. This extension involves technical analysis on
the infinite-dimensional Hilbert space l2(R). We have shown in Proposition 6.3 that the
application α,βG was bounded for the spectral norm. Therefore, we have, for any ξ in l2(R),
the inequality

∥∥
α,βG(ξ)

∥∥
2 ≤

∥∥
α,βG

∥∥
2 · ‖ξ‖2 (6.24)

implying that α,βG maps l2(R) into l2(R). We can then define the adjoint operator α,βGT from
l2(R) to l2(R), which is given by

∀ξ, η ∈ l2(R),
(
α,βG

T(η
)
, ξ

)
=

(
η, α,βG(ξ)

)
. (6.25)

Let us now consider the self-adjoint operator α,βS = α,βG
T◦ α,βG : l2(R) → l2(R). This operator

is the infinite-dimensional counterpart of the matrix α,βSN .
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Lemma 6.5. Considering the coefficients of the matrix representation of α,βS in the natural basis en,k
of l2(R) given as α,βS

n,k
p,q = (en,k, α,βS(ep,q)), one has

α,βS
n,k
p,q

=
∫1

0

(

αφn,k(t) +

(
α(t) − β(t))

√
Γ(t)

αψn,k(t)

)(

αφp,q(t) +

(
α(t) − β(t))

√
Γ(t)

αψp,q(t)

)
dt.

(6.26)

Proof. Assume that max(n, p) ≤ N and that (n, k) and (p, q) ∈ IN . With the notations used
previously withU, an open neighbourhood of [0, 1], we have

α,βS
n,k
p,q =

(
α,βG(en,k),α,β G

(
ep,q

))

=
∑

(i,j)∈I

∫

U
βδi,j(t) αψn,k(t)dt

∫

U
βδi,j(t) αψp,q(t)dt.

(6.27)

Since we have by definition αψn,k = αK[αφn,k], βδi,j = βD[ βφi,j
], αK−1 = αD∗, βD−1 = βK∗

on the space D′0(U), we have

βφi,j(t) = βK∗
[
βδi,j

]
(t) = fβ(t)

∫

U

gβ(s) βδi,j(s)ds, (6.28)

αφn,k(t) = αD∗
[
αψn,k

]
(t) =

1
fα(t)

d

dt

(
αψn,k(t)
gα(t)

)
. (6.29)

From there using (6.28), we can write the integration by part formula in the sense of the
generalized functions to get

∫

U
βδi,j(t)αψn,k(t) dt =

∫

U

1
fβ(t)

d

dt

(
αψn,k(t)
gβ(t)

)

βφi,j
(t)dt

=
∫

U
βD∗

[
αψn,k

]
(t) βφi,j(t) dt.

(6.30)

We now compute using (6.29):

βD∗
[
αψn,k

]
(t) =

1
fβ(t)

d

dt

(
αψn,k(t)
gα(t)

gα(t)
gβ(t)

)

=
gα(t)f(t)
gβ(t)fβ(t) αφ(t) −

d

dt

(
gα(t)
gβ(t)

)
αψn,k(t)
gβ(t)fβ(t)

.

(6.31)

Specifying gα, gβ, fα, and fβ and recalling the relations

gα(t)fα(t) = gβ(t)fβ(t) =
√
Γ(t),

d

dt

(
gα(t)
gβ(t)

)
=

(
α(t) − β(t))gα(t)

gβ(t)
, (6.32)
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we rewrite the function (6.31) in L2[0, 1] as

βD∗
[
αψn,k

]
(t) =

1
fβ(t)

d

dt

(
αψn,k(t)
gβ(t)

)
= αφn,k(t) +

(
α(t) − β(t))

√
Γ(t)

αψn,k(t). (6.33)

Now, since the family βφn,k forms a complete orthonormal system of L2[0, 1] and is zero
outside [0, 1], by the Parseval identity, expression (6.27) can be written as the scalar product:

α,βS
n,k
p,q =

∫1

0

(

αφn,k(t) +

(
α(t) − β(t))

√
Γ(t)

αψn,k(t)

)(

αφp,q(t) +

(
α(t) − β(t))

√
Γ(t)

αψp,q(t)

)
dt, (6.34)

which ends the proof of the lemma.

Notice that we can further simplify expression (6.26):

α,βS
n,k
p,q = δn,kp,q +

∫1

0

(
α(t) − β(t))2

Γ(t)

(
αψn,k(t) αψp,q(t)

)
dt

+
∫1

0

(
α(t) − β(t))

√
Γ(t)

(
αφn,k(t) αψp,q(t) + αφp,q(t) αψn,k(t)

)
dt.

(6.35)

We are now in a position to show that the operator α,βS − Id can be seen as the limit of the
finite-dimensional operator α,βSN − IdξΩN , in the following sense.

Theorem 6.6. The operator α,βS − Id : l2(R) → l2(R) is a trace class operator, whose trace is given
by

Tr
(
α,βS−Id

)
=

∫1

0

(
α(t) − β(t))dt +

∫1

0

hα(t)

fα(t)2
(
α(t) − β(t))2dt. (6.36)

We prove this essential point in Appendix F. The proof consists in showing that the
operator α,βS − Id is isometric to a Hilbert-Schmidt operator whose trace can be computed
straightforwardly.

6.2.4. The Girsanov Theorem

We now proceed to prove the Girsanov theorem by extending the domain of the quadratic
form associated with α,βS − Id to the space ξΩ′, which can only be done in law.

Theorem 6.7. In the infinite-dimensional case, the Radon-Nikodym derivative of Pβ = P
βX−1 with

respect to Pα = P
αX−1 reads

dPβ(ω)
dPα(ω)

= exp

(
−1
2

(∫1

0
β(t) − α(t)dt + Ξ(ω)T

(
α,βS − IdξΩ′

)
Ξ(ω)

))
, (6.37)
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which in terms of the Itô stochastic integral reads

dPβ(ω)
dPα(ω)

= exp

(∫1

0

β(t) − α(t)
fα

2(t)
αXt(ω)
gα(t)

d

(
αXt(ω)
gα(t)

))
− 1
2

∫1

0

(
β(t) − α(t))2

fα
2(t)

(
αXt(ω)
gα(t)

)2

dt.

(6.38)

In order to demonstrate the Girsanov theorem from our geometrical point of view, we
need to establish the following result.

Lemma 6.8. The positive definite quadratic form on l2(R)× l2(R) associated with operator α,βS− Id :
l2(R) → l2(R) is well defined on ξΩ′. Moreover, for all ξΩ′,

(
ξ,

(
α,βS − IdξΩ′

)
(ξ)

)

= 2
∫1

0

α(t) − β(t)
fα

2(t)
αXt(ξ)
gα(t)

◦ d
(

αXt(ξ)
gα(t)

)
+
∫1

0

(
α(t) − β(t))2

fα
2(t)

(
αXt(ξ)
gα(t)

)2

dt,

(6.39)

where αXt(ξ) =α Φ(ξ) and ◦ refers to the Stratonovich integral and the equality is true in law.

Proof of Theorem 6.7. We start by writing the finite-dimensional Radon-Nikodym derivative

dPβ(ω)
dPα(ω)

= α,βJN · lim
N→∞

exp
(
−1
2

(
ΞN(ω)T

(
α,βSN − IdξΩN

)
ΞN(ω)

))
. (6.40)

By Proposition 6.3, we have

α,βJ = lim
N→∞ α,βJN =

1
2

∫1

0

(
α(t) − β(t))dt. (6.41)

If, as usual, Ξ denotes a recursively indexed infinite-dimensional vector of independent var-
iables with lawN(0, 1) and ΞN =ξ PN ◦ Ξ, writing ξn,k = Ξn,k(ω), we have

ΞN(ω)T
(
α,βSN − IdξΩN

)
ΞN(ω) =

N∑

n=0

N∑

p=0

∑

0≤k<2n−1

∑

0≤q<2p−1
ξn,k

[
α,βSN − IdξΩN

]n,k
p,q
ξp,q. (6.42)

We know that ξ is almost surely in ξΩ′, and, by Lemma 6.8, we also know that on ξΩ′ × ξΩ′

lim
N→∞

(
ξ,

(
α,βSN − IdξΩN

)
(ξ)

)
=

(
ξ,

(
α,βS−IdξΩ′

)
(ξ)

)
, (6.43)
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so that we can effectively write the infinite-dimensional Radon-Nikodym derivative on ξΩ′

as the point-wise limit of the finite-dimensional one on ξΩN through the projectors ξPN :

dPβ

dPα
(ω) = lim

N→∞

dPN
β

dPNα
(ω), (6.44)

which directly yields formula (6.37).
The derivation of the Girsanov formula (6.40) from (6.37) comes from the relationship

between the Stratonovich and Itô formulas since the quadratic variation of αXt/gα(t) and
(α(t) − β(t))/f2

α(t) ×α Xt/gα(t) reads

∫1

0
E

(∫ t

0
fα(s) dWs,

α(t) − β(t)
fα

2(t)

∫ t

0
fα(s) dWs

)
=

∫1

0

(
α(t) − β(t))dt. (6.45)

Therefore, the expression of the Radon-Nikodym derivative in Lemma 6.8 can be written in
terms of the Itô integrals as

(
ξ,

(
α,βS − IdξΩ′

)
(ξ)

)

=
∫1

0

(
α(t) − β(t))dt

+ 2
∫1

0

α(t) − β(t)
f2(t)

αXt(ξ)
gα(t)

d

(
αXt(ξ)
gα(t)

)
+
∫1

0

(
α(t) − β(t))2

f2(t)

(
αXt(ξ)
gα(t)

)2

dt

(6.46)

and the Radon-Nikodym derivative as

dPβ

dPα
(ω) = exp

(∫1

0

β(t) − α(t)
fα

2(t)
αXt(ω)
gα(t)

d

(
αXt(ω)
gα(t)

)
− 1
2

∫1

0

(
β(t) − α(t))2

fα
2(t)

(
αXt(ω)
gα(t)

)2

dt

)
.

(6.47)

Observe that, if α(t) = 0, we recover the familiar expression

dPβ

dPα
(ω) = exp

(∫1

0

β(t)
√
Γ(t)

Wt(ω) dWt(ω) − 1
2

∫1

0

β(t)2

Γ(t)
W(ω)2t dt

)
. (6.48)

Conclusion and Perspectives

The discrete construction we present displays both analytical and numerical interests for
further applications. From the analysis viewpoint, even if the basis does not exhibit the same
orthogonal properties as the Karhunen-Loève decomposition, it has the important advantage
of saving the structure of sample paths through its property of strong pathwise convergence
and of providing a multiscale representation of the processes, which contrasts with the con-
vergence in the mean of the Karhunen-Loève decomposition. From the numerical viewpoint,
threeHaar-like propertiesmake our decomposition particularly suitable for certain numerical
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computations: (i) all basis elements have compact support on an open interval that has the
structure of dyadic rational endpoints, (ii) these intervals are nested and become smaller for
larger indices of the basis element, and (iii) for any interval endpoint, only a finite number of
basis elements are nonzero at that point. Thus the expansion in our basis, when evaluated at
an interval endpoint (e.g., dyadic rational), terminates in a finite number of steps. Moreover,
the very nature of the construction based on an increasingly refined description of the sample
paths paves the way to coarse-graining approaches similar to wavelet decompositions in
signal processing. In view of this, our framework offers promising applications.

Dichotomic Search of First-Hitting Times

The first application we envisage concerns the problem of first-hitting times. Because of its
manifold applications, finding the time when a process first exits a given region is a central
question of stochastic calculus. However, closed-form theoretical results are scarce and one
often has to resort to numerical algorithms [59]. In this regard, the multiresolution property
suggests an exact scheme to simulate sample paths of a Gaussian Markov process X in an
iterative “top-down” fashion. Assuming the intervals are dyadic rational and that we have a
conditional knowledge of a sample path on the dyadic points of DN = {k2−N | 0 ≤ k ≤ 2N},
one can decide to further the simulation of this sample path at any time t inDN+1 by drawing
a point according to the conditional law of Xt given {Xt}t∈DN

, which is simply expressed in the
framework of our construction. This property can be used for great advantages in numerical
computations such as dichotomic search algorithms for first passage times: the key element
is to find an estimate of the true conditional probability that a hitting time has occurred when
knowing the value of the process at two given times, one in the past and one in the future.
With such an estimate, an efficient strategy to look for passage times consists in refining the
sample path when and only when its trajectory is estimated likely to actually cross the barrier.
Thus the sample path of the process is represented at poor temporal resolution when it is far
from the boundary and at increasingly higher resolution closer to the boundary. Such an
algorithmic principle achieves a high level of precision in the computation of the first-hitting
time, while demanding far less operation than usual stochastic Runge-Kutta scheme. This
approach has been successfully implemented for the one-dimensional case [58], see Figure 4.
In that article, the precision of the algorithm is controlled as well as the probability to evaluate
a first hitting time substantially different from the actual value. The approach proves to be
extremely efficient compared to customarymethods. The general multidimensional approach
proposed in the present paper allows direct generalization of these results to the computation
of exit times in any dimension and for general smooth sets [30–32].

Gaussian Deformation Modes in Nonlinear Diffusions

The present study is developed for the Gauss-Markov systems. However, many models
arising in applied science present nonlinearities, and in that case, the construction based
on a sum of Gaussian random variables will not generalize. However, the Gaussian case
treated here can nevertheless be applied to perturbation of nonlinear differential equations
with small noise. Let F : R × R

d 
→ R
d be a nonlinear time-varying vector field, and let us

assume that X0(t) is a stable (attractive) solution of the dynamical system:

dX
dt

= F(t,X). (6.49)
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(a)

(b)

(c)

(d)

(b′)

(c′′)

(c′)

(d′′)

Figure 4: First passage time for an Ornstein-Uhlenbeck process U with a elastic coefficient α = 1 and a
noise intensity Γ = 1, the barrier is constant Λ = 1 and the initial condition is U0 = 0. The plots represent
at different scales a realization Ut(ω) for which the algorithm of [58] returns a first passage time τ(ω) =
8.00469684 with a resolution δt = 221 = 5107 after 5 recursive calls. The whole sample path is represented
in (a) and a series of zooms is carried out around τ(ω) in (b), (c), and (d). The dilation coefficients are
set according to the scale invariance of a Wiener process with the time scale being expanded by 20 and
the distance scale by 4

√
5 during each dilation. The series (b), (c), and (c), (d) zoom on regions where the

sample path gets close to the barrier. The simulation of the sample path has required 683 subdivisions and
illustrates an unfavorable situation since the expected number of divisions is approximatively 284 for this
particular setting.

This function X0 can for instance be a fixed point (in which case it is a constant), a cycle
(in which case it is periodic), or a general attractive orbit of the system. In the deterministic
case, any solution having its initial condition in a given neighbourhood B in R × R

d of the
solution will asymptotically converge towards the solution, and therefore perturbations of
the solutions are bounded. Let us now consider that the system is subject to a small amount
of noise and define Y ∈ R

d as the solution of the stochastic nonlinear differential equation:

dYt = F(t,Yt)dt + ε
√
Γ(t, Yt)dWt. (6.50)

Assuming that the noise is small (i.e., ε is a small parameter), because of the attractivity of
the solution X0(t), the function Y(t)will remain very close to X0(t) (at least in a bounded time
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interval). In this region, we define εZt = Yt − X0(t). This stochastic variable is the solution of
the equation

dZt =
1
ε

(
F(t,X0(t) + εZt) − F(t,X0(t)) + ε

√
Γ(t,X0(t) + εZt)dWt

)

= (∇xF)(t,X0(t))Zt +
√
Γ(t,X0(t))dWt +O(ε).

(6.51)

The solution at the first order in ε is therefore the multidimensional Gaussian process with
nonconstant coefficients:

dZt = (∇xF)(t,X0(t))Zt +
√
Γ(t,X0(t))dWt, (6.52)

and our theory describes the solutions in a multiresolution framework. Notice that, in that
perspective, our basis functionsψn,k can be seen as increasingly finermodes of deformation of
a deterministic trajectory. This approach appears particularly relevant to the theory of weakly
interconnected neural oscillators in computational neuroscience [60]. Indeed, one of the most
popular approaches of this field, the phase model theory, formally consists in studying how
perturbations are integrated in the neighborhood of an attracting cycle [61, 62].

All these instances are exemplary of how our multiresolution description of the Gauss-
Markov processes offers a simple yet rigorous tool to broach a large number of open problems
and promises fascinating applications both in theoretical and in applied science.

Appendices

A. Formulae of the Basis for the Integrated Wiener Process

In the case of the primitive of the Wiener process, straightforward linear algebra compu-
tations lead to the two bases of functions ((ψn,k)1,1, (ψn,k)2,1) and ((ψn,k)1,2, (ψn,k)2,2) having
the following expressions

(
ψn,k

)
1,1(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(σn,k)1,1

(
t − ln,k

mn,k − ln,k

)2(
1 + 2

mn,k − t
mn,k − ln,k

)
, ln,k ≤ t ≤ mn,k,

(σn,k)1,1

(
rn,k − t

rn,k −mn,k

)2(
1 + 2

t −mn,k

rn,k −mn,k

)
, mn,k ≤ t ≤ rn,k,

(
ψn,k

)
2,1(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(σn,k)1,16
(t − ln,k)(mn,k − t)

(mn,k − ln,k)3
, ln,k ≤ t ≤ mn,k,

−(σn,k)1,16
(rn,k − t)(t −mn,k)

(rn,k −mn,k)3
, mn,k ≤ t ≤ rn,k,

(
ψn,k

)
1,2(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−(σn,k)2,2(mn,k − t)
(

t − ln,k
mn,k − ln,k

)2

, ln,k ≤ t ≤ mn,k,

(σn,k)2,2(t −mn,k)
(

rn,k − t
rn,k −mn,k

)2

, mn,k ≤ t ≤ rn,k,
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(
ψn,k

)
2,2(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(σn,k)2,2

(
t − ln,k

mn,k − ln,k

)2(
1 − 2mn,k − t

t − ln,k

)
, ln,k ≤ t ≤ mn,k,

(σn,k)2,2

(
rn,k − t

rn,k −mn,k

)2(
1 − 2 t −mn,k

rn,k − t
)
, mn,k ≤ t ≤ rn,k,

(A.1)

where

(σn,k)1,1 =

√
1

196
(rn,k − ln,k)3, (σn,k)2,2 =

√
1
32

(rn,k − ln,k) (A.2)

are the diagonal components of the (diagonal) matrix σn,k. As expected, we notice that the
differential structure of the process is conserved at any finite rank since we have

d

dt

((
ψn,k

)
1,1(t)

)
=

(
ψn,k

)
2,1(t),

d

dt

((
ψn,k

)
1,2(t)

)
=

(
ψn,k

)
2,2(t). (A.3)

B. Formulae of the Basis for the Doubly-Integrated Wiener Process

For the doubly-integrated Wiener process, the construction of the three-dimensional process
involves a family of three 3-dimensional functions, which constitutes the columns of a 3 × 3
matrix that we denote by ψ. This basis has again a simple expression whenmn,k is the middle
of the interval [ln,k, rn,k]:

(
ψn,k

)
1,1(t)

=
(
ψn,k

)
1,2(t)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√
5

60(rn,k − ln,k)5/2
(t − ln,k)3

(
l2n,k − 7ln,kt + 5ln,krn,k − 25trn,k + 16t2 + 10r2n,k

)
,

−
√
5

60(rn,k − ln,k)5/2
(rn,k − t)3

(
r2n,k − 7rn,kt + 5ln,krn,k − 25tln,k + 16t2 + 10l2n,k

)
,

(
ψn,k

)
1,2(t)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√
3

12(rn,k − ln,k)5/2
(ln,k − t)3(2rn,k + ln,k − 3t)(rn,k + ln,k − 2t),

√
3

12(rn,k − ln,k)5/2
(rn,k − t)3(rn,k + 2ln,k − 3t)(rn,k + ln,k − 2t),

(
ψn,k

)
1,3(t)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− 1

6(rn,k − ln,k)5/2
(t − ln,k)3(2t − rn,k − ln,krn,k + ln,k − 3t)2(rn,k + ln,k − 2t),

− 1

6(rn,k − ln,k)5/2
(rn,k − t)3(2t − rn,k − ln,krn,k + ln,k − 3t)2(rn,k + ln,k − 2t),
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(
ψn,k

)
2,1(t)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√
1

6(rn,k − ln,k)5/2
(t − ln,k)2(3rn,k + ln,k − 4 ∗ t)(rn,k + ln,k − 2t),

−
√
1

6(rn,k − ln,k)5/2
(rn,k − t)2(3ln,k + rn,k − 4 ∗ t)(rn,k + ln,k − 2t),

(
ψn,k

)
2,2(t)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−
√
3

6(rn,k − ln,k)5/2
(t − ln,k)2(3rn,k + 2ln,k − 5t)(rn,k + 2ln,k − 3t),

−
√
3

6(rn,k − ln,k)5/2
(rn,k − t)2(3ln,k + 2rn,k − 5t)(ln,k + 2rn,k − 3t),

(
ψn,k

)
2,3(t)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− 1

6(rn,k − ln,k)5/2
(t − ln,k)3(2t − rn,k − ln,krn,k + ln,k − 3t)2(rn,k + ln,k − 2t),

− 1

6(rn,k − ln,k)5/2
(rn,k − t)3(2t − rn,k − ln,krn,k + ln,k − 3t)2(rn,k + ln,k − 2t),

(
ψn,k

)
3,1(t)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√
5

3(rn,k − ln,k)5/2
(t − ln,k)

(
4l2n,k − 17ln,kt + 9ln,krn,k − 15trn,k + 3r2n,k + 16t2

)
,

√
5

3(rn,k − ln,k)5/2
(rn,k − t)

(
4r2

n,k
− 17trn,k + 9ln,krn,k − 15tln,k + 3l2

n,k
+ 16t2

)
,

(
ψn,k

)
3,2(t)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√
3

(r − l)5/2
(l − t)(r + l − 2t)(r + 4l − 5t),

√
3

(r − l)5/2
(r − t)(r + l − 2t)(l + 4r − 5t),

(
ψn,k

)
3,3(t)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

3(r − l)5/2
(l − t)(19l2 − 56lt + 18lr − 24tr + 3r2 + 40t2

)
,

1

3(r − l)5/2
(r − t)(19r2 − 56rt + 18lr − 24tl + 3l2 + 40t2

)
.

(B.1)

Notice again that the basis functions satisfy the relationships

d

dt

((
ψn,k

)
i,j(t)

)
=

(
ψn,k

)
i+1,j(t) (B.2)
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Figure 5: (a) Basis for the construction of the Doubly Integrated Wiener process (d = 3) and (b) 10-steps
construction of the process.

for i ∈ {1, 2} and j ∈ {1, 2, 3}. These functions also form a triorthogonal basis of functions,
which makes it easy to simulate sample paths of the doubly-integrated Wiener process, as
show in Figure 5.

C. Properties of the Lift Operators

This appendix is devoted to the proofs of the properties of the lift operator enumerated in
Proposition 6.3. The proposition is split into three lemmas for the sake of clarity.
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Lemma C.1. The operator α,βG is a linear measurable bijection. Moreover, for every N > 0, the
function α,βGN = PN ◦α,β G ◦ IN :ξ Ω′N → ξΩN is a finite-dimensional linear operator, whose matrix
representation is triangular in the natural basis of ξΩN and whose eigenvalues α,βνn,k are given by

α,βνn,k =
gα(mn,k)
gβ(mn,k)

βMn,k

αMn,k
, 0 ≤ n ≤N, 0 ≤ k < 2N−1. (C.1)

Eventually, α,βG is a bounded operator for the spectral norm with

∥∥
α,βG

∥∥
2 = sup

n
sup
k

α,βνn,k ≤
sup gα
inf gβ

sup fβ
inf f

sup f2
α

inf f2
β

<∞, (C.2)

and the determinant of α,βGN denoted by α,βJN admits a limit whenN tends to infinity:

lim
N→∞

det
(
α,βGN

)
= lim

N→∞ α,βJN = exp

(
1
2

(∫1

0

(
α(t) − β(t))dt

))
= α,βJ . (C.3)

Proof. All these properties are deduced from the properties of the functions Δ and Ψ derived
previously.

(i) α,βG = βΔ ◦ αΨ is a linear measurable bijection of ξΩ′ due to the composed
application of two linear bijective measurable functions αΔ : xΩ′ → ξΩ′ and
αΨ : ξΩ′ → xΩ′.

(ii) Since we have the expressions of the matrices of the finite-dimensional linear
transformations, it is easy to write the linear transformation of α,βGN on the natural
basis en,k as

α,βGN (ξ)n,k =
∫

U
βδn,k(t)( αΨ(ξ))(t)dt =

∑

(p,q)∈IN

(∫

U
βδn,k(t) αψp,q(t)dt

)
ξp,q, (C.4)

leading to the coefficient expression

α,βG
n,k
p,q

=
∫

U
βδn,k(t) αψp,q(t)dt =

∑

i,j∈IN
βΔ

n,k
i,j · αΨ

i,j
p,q, (C.5)
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where we have dropped the index N since the expression of the coefficients does
not depend on it. We deduce from the form of the matrices βΔN and αΨN that the
application α,βGN has a matrix representation in the basis en,k of the form

α,βGN
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α,βG
0,0
0,0

α,βG
0,0
1,0 α,βG

1,0
1,0

α,βG
0,0
2,0 α,βG

1,0
2,0 α,βG

2,0
2,0

α,βG
0,0
2,1 α,βG

1,0
2,1 α,βG

2,1
2,1

α,βG
0,0
3,0 α,βG

1,0
3,0 α,βG

2,0
3,0 α,βG

3,0
3,0

α,βG
0,0
3,1 α,βG

1,0
3,1 α,βG

2,0
3,1 α,βG

3,1
3,1

α,βG
0,0
3,2 α,βG

1,0
3,2 α,βG

2,1
3,2 α,βG

3,2
3,2

α,βG
0,0
3,3 α,βG

1,0
3,3 α,βG

2,1
3,3 α,βG

3,3
3,3

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (C.6)

where we only represent the nonzero terms.

The eigenvalues of the operator are therefore the diagonal elements α,βG
n,k
n,k that are

easily computed from the expressions of the general term of the matrix:

α,βG
n,k
n,k

= βΔ
n,k
n,k α

ψn,k
n,k

=
βMn,k

gβ(mn,k)
gα(mn,k)

αMn,k

=
gα(mn,k)
gβ(mn,k)

βMn,k

αMn,k
.

(C.7)

(iii) From the expression of αMn,k =
√
(hα(r) − hα(m))(hα(m) − hα(l))/(hα(r) − hα(l)),

we deduce the inequalities

sup f

inf f2
α

2n+1 ≤ αMn,k ≤
sup f

inf f2
α

2n+1, (C.8)

from which follows the given upper-bound to the singular values.

(iv) α,βGN is a finite-dimensional triangular linear matrix in the basis {en,k}. Its deter-
minant is simply given as the product

α,βJN =
N∏

n=0

∏

0≤k<2n−1
α,βG

n,k
n,k

=
N∏

n=0

∏

0≤k<2n−1
α,βνn,k, (C.9)

where we noticed that the eigenvalues α,βνn,k are of the form

α,βνn,k =
gα(mn,k)
gβ(mn,k)

βMn,k

αMn,k
. (C.10)
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Since, for every N > 0, we have α,βGN =ζ,β GN ◦α,ζ GN , which entails that α,βJN =ζ,β JN ·
(ζ,αJN)−1, it is enough to show that we have

lim
N→∞ α,0JN = exp

1
2

∫1

0
α(t)dt. (C.11)

Now, writing for every 0 ≤ s < t ≤ 1 the quantity

αVt,s =
∫ t

s

Γ(u)e2
∫ t
u α(v)dvdu, (C.12)

we have

(
gα(mn,k)

αMn,k

)2

=
αVln,k ,mn,k

· αVmn,k,rn,k

αVln,k ,rn,k
, (C.13)

so that α,0JN is a telescoping product that can be written as

(
α,0JN

)2 =
2N∏

k=0

αVk2−N,(k+1)2−N
0Vk2−N,(k+1)2−N

. (C.14)

If α is Hölder continuous, there exist δ > 0 and C > 0 such that

sup
0≤s, t≤1

|α(t) − α(s)|
|t − s|δ

< C, (C.15)

and introducing, for any 0 ≤ s < t ≤ 1, the quantity Qt,s,

Qt,s = e−
∫ t
s α(v)dv · αVt,s

0Vt,s =

∣∣∣∣∣∣

∫ t
s Γ(u) e

∫ t
u α(v) dv−

∫u
s α(v) dv du

∫ t
s Γ(u)du

∣∣∣∣∣∣
, (C.16)

we have that Q
t,s
≤ Qt,s ≤ Qt,s with

Q
t,s

=

∫ t
s Γ(u) e

−(C/(1+δ))((t−u)1+δ+(u−s)1+δ)du
∫ t
s Γ(u) du

,

Qt,s =

∫ t
s Γ(u) e

(C/(1+δ))((t−u)1+δ+(u−s)1+δ)du
∫ t
s Γ(u)du

.

(C.17)
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After expanding the exponential in the preceding definitions, we have

Q
t,s
≥ 1 −

2C
(
sup0≤t≤1Γ(t)

)

inf0≤t≤1Γ(t)
(t − s)(1+δ)

(1 + δ)(2 + δ)
+ o

(
(t − s)(1+δ)

)
,

Qt,s ≤ 1 +
2C

(
sup0≤t≤1Γ(t)

)

inf0≤t≤1Γ(t)
(t − s)(1+δ)

(1 + δ)(2 + δ)
+ o

(
(t − s)(1+δ)

)
,

(C.18)

now, from

2N∏

k=0

Qk2−N,(k+1)2−N = 1 + o
(
2−N

)
, (C.19)

we can directly conclude that

lim
N→∞ α,0JN = e(1/2)

∫1
0 α(t)dt

√√√√ lim
N→∞

2N∏

k=0

Qk2−N,(k+1)2−N = e(1/2)
∫1
0 α(t)dt. (C.20)

Notice that, if α = β, α,αG is the identity and α,αJ = 1 as expected.
Similar properties are now proved for the process lift operator α,βH.

Lemma C.2. The function α,βH is a linear measurable bijection.
Moreover, for everyN > 0, the function α,βHN = PN ◦ α,βH ◦IN :x Ω′N → xΩN is a finite-

dimensional linear operator, whose matrix representation is triangular in the natural basis of xΩN and
whose eigenvalues are given by

β,ανn,k =
(
α,βνn,k

)−1 =
gβ(mn,k)
gα(mn,k)

αMn,k

βMn,k
. (C.21)

Eventually, α,βH is a bounded operator for the spectral norm with

∥∥
α,βH

∥∥
2 =

∥∥
β,αG

∥∥
2 = sup

n
sup
k

β,ανn,k ≤
sup gβ
inf gα

sup f
inf fβ

sup f2
β

inf f2
α

<∞, (C.22)

and the determinant of α,βHN admits a limit whenN tends to infinity:

lim
N→∞

det
(
α,βH

)
= exp

(
1
2

(∫1

0

(
β(t) − α(t))dt

))
= β,αJ . (C.23)
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Proof.

(i) The function α,βH = βΨ ◦ αΔ is a linear measurable bijection of xΩ′ onto xΩ′

because αΔ : xΩ′ → ξΩ′ and αΨ : ξΩ′ → xΩ′ are linear bijective measurable
functions.

(ii) We write the linear transformation of α,βH for x in xΩ′ as

α,βH[x](t) =
∑

(n,k)∈I
βψn,k(t)

∫

U
αδn,k(s)x(s)ds

=
∫

U

⎛

⎝
∑

(n,k)∈I
βψn,k(t) αδn,k(t)

⎞

⎠x(t)dt.

(C.24)

If we denote the class of x in xΩ′ by x = {xi,j} = {x(mi,j)}, (i, j) ∈ IN , we can write
(C.24) as

α,βHN
(x)i,j =

∑

(k,l)∈IN

⎛

⎝
∑

(p,q)∈IN
βΨi,j

p,q
· αΔp,q

k,l

⎞

⎠ xk,l, (C.25)

from which we deduce the expression of the coefficients of the matrix α,βHN :

α,βH
i,j

k,l
=

∑

(p,q)∈IN
βΨi,j

p,q
· αΔp,q

k,l
, (C.26)

where as usual we drop the index N. Because of the the form of the matrices αΔN

and βΨN , the matrix α,βHN in the basis fi,j has the following triangular form:

α,βHN
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α,βH
0,0
0,0

α,βH
0,0
1,0 α,βH

1,0
1,0

α,βH
0,0
2,0 α,βH

1,0
2,0 α,βH

2,0
2,0

α,βH
0,0
2,1 α,βH

1,0
2,1 α,βH

2,1
2,1

α,βH
0,0
3,0 α,βH

1,0
3,0 α,βH

2,0
3,0 α,βH

3,0
3,0

α,βH
0,0
3,1 α,βH

1,0
3,1 α,βH

2,0
3,1 α,βH

3,1
3,1

α,βH
0,0
3,2 α,βH

1,0
3,2 α,βH

2,1
3,2 α,βH

3,2
3,2

α,βH
0,0
3,3 α,βH

1,0
3,3 α,βH

2,1
3,3 α,βH

3,3
3,3

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(C.27)
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From the matrix representations αΔ and βΨ, the diagonal terms of α,βH read

α,βH
i,j

i,j = βΨ
i,j

i,j · αΔ
i,j

i,j = βψi,j
(
mi,j

) αMi,j

gα
(
mi,j

) =
gβ

(
mi,j

)

gα
(
mi,j

) αMi,j

βMi,j

= β,ανi,j = α,βνi,j
−1.

(C.28)

(iii) The upper bound directly follows from the fact that β,ανi,j = (α,βνi,j)
−1.

(iv) Since β,ανi,j = (α,βνi,j)
−1, the value of the determinant of α,βHN is clearly the inverse

of the determinant of α,βGN , so that limN→∞ det( α,βHN
) = ( α,βJ)

−1 = β,αJ .

Note that Lemma C.2 directly follows from the fact that αΨ and αΔ are inverse of each
other and admit a triangular matrix representation. More precisely, when restricted to the
finite-dimensional case, we have set the following properties.

Properties C.3. We have the following set of properties in terms of matrix operations

(i) α,βHN = βΨN
· αΔN and α,βGN = βΔN

· αΨN ,

(ii) α,βHN = ζ,βHN
· α,ζHN and α,βGN

= ζ,βGN
· α,ζGN ,

(iii) α,βH
−1
N = β,αHN

and α,βG
−1
N

= β,αGN
,

(iv) α,βHN · αΨN = βΨN
and α,βGN · αΔN = βΔN

,

(v) α,βHN
T · βΔN

T = αΔN
T and α,βGN

T · βΦN
T = αΦN

T .

Proof.

(i) Let us write ξVN = ⊕Nn=0vect({en,k}0≤k<2n−1) and xVN = ⊕Nn=0vect({fi,j}0≤j<2i−1). Since
αΨ and βΨ project the flag ξV0 ⊂ ξV 1 ⊂ · · · ⊂ ξVN onto the flag xV 0 ⊂ xV 1 ⊂ · · · ⊂
xVN , and since conversely αΔ and αΔ project the flag xV0 ⊂ xV 1 ⊂ . . . ⊂ xVN onto
the flag ξV0 ⊂ ξV 1 ⊂ . . . ⊂ ξVN , we can write

α,βHN
= xPN ◦ βΨ ◦ αΔ ◦ xIN =

(
xPN ◦ βΨ ◦ xIN

) ◦ ( xPN αΔ ◦ xIN)

= βΨN
◦ αΔN,

α,βGN
= ξPN ◦ βΔ ◦ αΨ ◦ ξIN =

(
ξPN ◦ βΔ ◦ ξIN

) ◦ ( ξPN αΨ ◦ ξIN
)

= βΔN
◦ αΨN.

(C.29)

(ii) We have

ζ,βHN ◦ α,ζHN = βΨN
◦ (ζΔN ◦ζ ΨN

) ◦ αΔN = βΨN
◦ Id

ξΩN ◦ αΔN

= α,βHN
,

ζ,βGN ◦ α,ζGN = βΔN
◦ (ζΨN ◦ ζΔN

) ◦ αΨN = βΔN
◦ IdxΩN ◦ αΨN.

= α,βHN
.

(C.30)
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(iii) We have

α,βHN ◦ β,αHN
= α,αHN = IdξΩN ,

α,βGN ◦ β,αGN
= α,αGN = Id

ξΩN .
(C.31)

(iv) We have

α,βHN · αΨN =β ΨN ◦ (αΔN ◦ αΨN) = βΨN
◦ IdξΩN = βΨN

,

α,βGN · αΔN = βΔN
◦ (αΨN ◦ αΔN) = βΔN

◦ Id
xΩN = βΔN

.
(C.32)

(v) We have

α,βHN
T · βΔN

T = αΔN
T ◦

(
βΨN

T ◦ βΔN
T
)
= αΔN

T ◦ IdxΩN = αΔN
T ,

α,βGN
T · βΨN

T = αΨN
T ◦

(
βΔN

T ◦ βΨN
T
)
= αΨN

T ◦ IdξΩN = αΨN
T .

(C.33)

D. Construction and Coefficient Applications

In this appendix, we provide the proofs of the main properties used in the paper regarding
the construction and the coefficient applications.

D.1. The Construction Application

We start by addressing the case of the construction application introduced in Section 3.2.1.
We start by proving Proposition 3.11.

Proof. For the sake of simplicity, we will denotes for any function A : [0, 1] → R
m×d, the

uniform norm as |A|∞ = sup0≤t≤1|A(t)|, where |A(t)| = sup0≤i<m(
∑d−1

0 |Ai,j(t)|) is the operator
norm induced by the uniform norms. We will also denote the ith line of A by li(A) (it is a
R
d-valued function) and the jth column of A by cj(A).

Let ξ ∈ ξΩ′ be fixed. These coefficients induce a sequence of continuous functions
ψN(ξ) through the action of the sequence of the partial construction applications. To prove
that this sequence converges towards a continuous function, we show that it uniformly
converges, which implies the result of the proposition using the fact that a uniform limit
of continuous functions is a continuous function. Moreover, since the functions take values
in R

d, which is a complete space, we show that for any sequence of coefficients ξ ∈ξ Ω′, the
sequence of functions ψN(t) constitutes a Cauchy sequence for the uniform norm.
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By definition of ξΩ′, for every ξ in ξΩ′, there exist δ < 1 and nξ such that, for every
n > nξ, we have

sup
0≤k<2n−1

∣∣ξn,k
∣∣ < 2nδ/2, (D.1)

which implies that for,N > nξ, we have

∣∣∣ΨN(ξ)(t) −Ψnξ(ξ)(t)
∣∣∣ ≤

∑

(n,k)∈IN\Inξ

∣∣∣ψn,k(t) · ξn,k
∣∣∣

≤
∞∑

n=nξ

2nδ/2
∣∣∣ψn,k

∣∣∣.
(D.2)

We therefore need to upperbound the uniform norm of the function ψn,k. To this
purpose, we use the definition of ψn,k given by (3.28):

ψn,k(t) = g(t) ·
∫ t

0
f(s) ·Φn,k(s)ds. (D.3)

The coefficient in position (i, j) of the integral term in the right-hand side of the previous
inequality can be written as a function of the lines and columns of f and Φn,k and can be
upperbounded using the Cauchy-Schwarz inequality on L2([0, 1],Rd) as follows:

(
1[0,t] · ci

(
fT

)
, cj

(
φn,k

))
=

∫

U

1[0,t]∩Sn,k(s)
(
li(f)(s) · cj

(
φn,k

)
(s)

)
ds

≤ ∥∥1[0,t]∩Sn,k li(f)
∥∥
2

∥∥cj(φn,k)
∥∥
2.

(D.4)

Since the columns of Φn,k form an orthogonal basis of functions for the standard scalar
product in L2([0, 1],Rd) (see Proposition 3.5), we have ‖cj(φn,k)‖2 = 1. Moreover, since f is
bounded continuous on [0, 1], we can define constants Ki = sup0≤t≤1‖li(f)(t)‖ <∞ and write

∥∥1[0,t]∩Sn,k li(f)
∥∥2 =

∫

U

1[0,t]∩Sn,k(s)
(
li(f)(s)T · li(f)(s)

)
ds

≤
∫

U

1[0,t]∩Sn,k(s)K
2
i ds

= 2−n+1K2
i <∞.

(D.5)

Setting K = max0≤i<dKi, for all (n, k) in I, the R
d×d-valued functions

κn,k(t) =
∫

U

1[0,t](s)f(s) φn,k(s)ds (D.6)

satisfy ‖κn,k‖∞ = sup0≤t≤1|κn,k(t)| ≤ K 2−(n+1)/2.
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Moreover, since g is also bounded continuous on [0, 1], there exists L such that ‖g‖∞ =
sup0≤t≤1|g(t)| ≤ L, and we finally have, for all 0 ≤ t ≤ 1,

∥∥∥ψn,k

∥∥∥
∞
≤ ‖g‖∞‖κn,k‖∞ ≤ LK2−(n+1)/2. (D.7)

Now using this bound and (D.2), we have

∣∣∣ΨN(ξ)(t) −Ψnξ(ξ)(t)
∣∣∣ ≤

∑

(n,k)∈IN\Inξ

∣∣∣ψn,k(t) · ξn,k
∣∣∣ ≤ LK√

2

∞∑

n=nξ

(
2(δ−1)/2

)n
, (D.8)

and since δ < 1, for the continuous functions t 
→ ΨN
t (ξ) forms a uniformly convergent

sequence of functions for the d-dimensional uniform norm. This sequence therefore
converges towards a continuous function, and Ψ is well defined on ξΩ′ and takes values
in C0([0, 1],Rd).

This proposition being proved, we dispose of the map Ψ = limN→∞ΨN . We now
turn to prove different useful properties on this function. We denote by B(C0([0, 1],Rd)) the
Borelian sets of the d-dimensional Wiener space C0([0, 1],Rd).

Lemma D.1. The function Ψ : (ξΩ′,B(ξΩ′)) → (C0([0, 1],Rd),B(C0([0, 1],Rd))) is a linear
injection.

Proof. The application Ψ is clearly linear. The injective property simply results from the
existence of the dual family of distributions δn,k. Indeed, for every ξ, ξ′ in ξΩ′, we have that
Ψ(ξ) = Ψ(ξ′) entails, that for all n, k, ξn,k = P(δn,k,Ψ(ξ)) = P(δn,k,Ψ(ξ′)) = ξ′n,k.

In the one-dimensional case, as mentioned in the main text, because the uniform
convergence of the sample paths is preserved as long as α is continuous and Γ is nonzero
through (D.8), the definition xΩ′ does not depend on α or Γ and the space xΩ′ is large enough
to contain reasonably regular functions.

Proposition D.2. In the one-dimensional case, the space xΩ′ contains the space of uniformly Hölder
continuous functionsH defined as

H =

{
x ∈ C[0, 1] | ∃δ > 0, sup

0≤s,t≤1

|x(t) − x(s)|
|t − s|δ

< +∞
}
. (D.9)

Remark D.3. This point can be seen as a direct consequence of the characterization of the
local Hölder exponent of a continuous real function in terms of the asymptotic behavior of its
coefficients in the decomposition on the Schauder basis [63].

Proof. To underline that we place ourselves in the one-dimensional case, we drop the bold
notations that indicate multidimensional quantities. Supposing that x is uniformly Hölder
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continuous for a given δ > 0, there always exists ξ such thatΨN(ξ) coincides with x onDN : it
is enough to take ξ such that, for all (n, k) in IN , ξn,k = (δn,k, x). We can further write for n > 0

(x, δn,k) =Mn,k
x(mn,k)
g(mn,k)

−
(
Ln,k

x(ln,k)
gα(ln,k)

+ Rn,k
x(rn,k)
g(rn,k)

)
,

= Ln,k
(
x(mn,k)
g(mn,k)

− x(ln,k)
g(ln,k)

)
+ Rn,k

(
x(mn,k)
g(mn,k)

− x(rn,k)
g(rn,k)

)
.

(D.10)

For a given function α, posingNα = sup0≤t≤1fα(t)/inf0≤t≤1f
2
α(t), we have

αMn,k ≤Nα 2(n+1)/2, αLn,k ≤Nα 2(n−1)/2, αRn,k ≤Nα 2(n−1)/2. (D.11)

Moreover, if α is in H, it is straightforward to see that gα has a continuous derivative. Then,
since x is δ-Hölder, for any ε ≥ 0, there exists C > 0 such that |t − s| ≤ ε entails that

∣∣∣∣
x(t)
g(t)

− x(s)
g(s)

∣∣∣∣ ≤ Cεδ, (D.12)

from which we directly deduce

|ξn,k| ≤ Nα C√
2

2n((1/2)−2δ). (D.13)

This demonstrates that {ξn,k} belongs to ξΩ′ and ends the proof.

We equip the space xΩ′ with the topology induced by the uniform norm on
C0([0, 1],Rd). As usual, we denote by B(xΩ′) the corresponding Borelian sets. We now show
Proposition 3.12.

Proposition D.4. The function Ψ : (ξΩ′,B(ξΩ′)) → (xΩ′,B(xΩ′)) is a bounded continuous
bijection.

Proof. Consider an open ball xB(x, ε) of xΩ′ of radius ε. If we takeM = LK/
√
2 as defined in

(D.8), we can choose a real δ > 0 such that

δ < εM

( ∞∑

n=0

2−n/2
)−1

. (D.14)

Let us consider ξ in ξΩ′ such that Ψ(ξ) = x. Then, by (D.8), we immediately have that, for all
ξ′ in the ball of radius ξB(ξ, δ) of ξΩ, ‖Ψ(ξ − ξ′)‖∞ ≤ ε. This shows that Ψ−1(xB(x, ε)) is open
and that Ψ is continuous for the d-dimensional uniform norm topology.

D.2. The Coefficient Application

In this section of the appendix, we show some useful properties of the coefficient application
introduced in Section 3.2.2.
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Lemma D.5. The function Δ : (C0([0, 1],Rd),B(C0([0, 1],Rd))) → (ξΩ,B(ξΩ)) is a measurable
linear injection.

Proof.

(i) The function Δ is clearly linear.

(ii) To prove that Δ is injective, we show that for x and y in C0([0, 1],Rd), x/= y
implies that Δ(x)/=Δ(y). To this end, we fix x/= y in C0([0, 1],Rd) equipped with
the uniform norm and consider the continuous function

dN(t) =
∑

(n,k)∈IN
ψn,k(t)

(
Δ(x)n,k −Δ(y)n,k

)
. (D.15)

This function coincides with x − y on every dyadic number in DN and has zero
value if Δ(x) = Δ(y). Since x/= y, there exists s in ]0, 1[ such that x(s)/=y(s), and
by continuity of x − y, there exists an ε > 0 such that x/= y on the ball ]s − ε, s + ε[.
But, for N large enough, there exists k, 0 ≤ k < 2N−1 such that |s − k2−N | < ε.
We then necessarily have that Δ(f)/=Δ(g); otherwise, we would have dN(k2−N) =
(x − y)(k2−N) = 0, which would contradict the choice of ε.

(iii) Before proving themeasurability ofΔ, we need the following observation. Consider
forN > 0, the finite-dimensional linear function ΔN

C0

(
[0, 1],Rd

)
−→

(
R
d
)2N−1

,

x 
−→ ΔN(x) =
{
Δ(x)N,k

}
(N,k)∈IN .

(D.16)

Since for all (N,k), the matricesMN,k, RN,k, LN,k are all bounded, the functionΔN :

(C0([0, 1],Rd),B(C0([0, 1],Rd))) −→ ((Rd)2
N−1
,B((Rd)2

N−1
)) is a continuous linear

application. To show that the functionΔ is measurable, it is enough to show that the
pre-image byΔ of the generative cylinder sets of B(ξΩ) belongs to B(C0([0, 1],Rd)).

For anyN ≥ 0, take an arbitrary Borel set

B =
∏

(n,k)∈IN
Bn,k ∈ B

((
R
d
)IN)

(D.17)

and define the cylinder set CN(B) as

CN(B) =
{
ξ ∈ξ Ω | ∀(n, k) ∈ IN, ξn,k ∈ Bn,k

}
, (D.18)

and we write the collection of cylinder sets C as

C =
⋃

n≥0
CN with CN =

⋃

B∈(Rd)IN
CN(B).

(D.19)
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We proceed by induction of N to show that the preimage by Δ of any cylinder set in C is
in B(C0([0, 1],Rd)). For N = 0, a cylinder set of C0 is of the form B0,0 in B(Rd), Δ−1(B) =
{x ∈ C0([0, 1],Rd) | x(1) ∈ LT0,0 g−1(r0,0)(B0,0)}, which is measurable for being a cylinder
set of B(C0([0, 1],Rd)). Suppose now that, forN > 0, for any set A in CN−1, the set Δ−1(A) is
measurable. Then, considering a setA inCN , there exists B inB((Rd)IN ) such thatA = CN(B).
Define A′ in CN such that A′ = CN−1(B′), where

B′ =
∏

(n,k)∈IN−1
Bn,k, (D.20)

and remark that A = CN(B) ⊂ A′ = CN(B′). Clearly, we have that A = A′ ∩D, where we have
defined the cylinder set D as

D = CIN

⎛

⎝
∏

(N,k)∈IN,k

BN,k

⎞

⎠. (D.21)

Having defined the function ΔN , we now have Δ−1(A) = Δ−1(A′ ∩ D) = Δ−1(A′) ∩
Δ−1(D) = Δ−1(A′) ∩ Δ−1N (D). Because of the continuity of ΔN , Δ−1N (D) is a Borel set of
B(C0([0, 1],Rd)). Since, by hypothesis of recurrence, Δ−1(A′) is in B(C0([0, 1],Rd)), Δ−1(A)
is also in B(C0([0, 1],Rd)) as the intersection of two Borel sets. The proof of the measurability
of Δ is complete.

We now demonstrate Theorem 3.14.

Proposition D.6. The function Δ : (xΩ′,B(xΩ′)) → (ξΩ′,B(ξΩ′)) is a measurable linear bijection
whose inverse isΨ = Δ−1.

Proof. Let x ∈x Ω′ be a continuous function. We have

Ψ(Δ(x))(t) =
∑

(n,k)∈I
ψn,k(t) ·Δn,k

=
∑

(n,k)∈I
ψn,k(t) · P(δn,k, x).

(D.22)

This function is equal to x(t) for any t ∈ D, the set of dyadic numbers. Since D is dense in
[0, 1] and both x and Ψ(Δ(x)) are continuous, the two functions, coinciding on the dyadic
numbers, are equal for the uniform distance, and hence Ψ(Δ(x)) = x.

E. Itô Formula

In this section, we provide rigorous proofs of Proposition 6.1 and Theorem 6.2 related to the
Itô formula.



78 International Journal of Stochastic Analysis

Proposition E.1 (integration by parts). Let (Xt) and (Yt) be two one-dimensional Gauss-Markov
processes starting from zero. Then one has the following equality in law:

XtYt =
∫ t

0
Xs ◦ dYs +

∫ t

0
Ys ◦ dXs, (E.1)

where
∫ t
0As ◦ dBs two stochastic processes denotes for At and Bt the Stratonovich integral. In terms

of the Itô integral, this formula is written as

XtYt =
∫ t

0
XsdYs +

∫ t

0
YsdXs + 〈X,Y〉t, (E.2)

where the brackets denote the mean quadratic variation.

Proof. We assume that X and Y satisfy the equations:

dXt = αX(t)Xt +
√
ΓX(t)dWt,

dYt = αY (t)Xt +
√
ΓY (t)dWt,

(E.3)

and we introduce the functions fX , fY , gX , and gY such that Xt = gX(t)
∫ t
0 fX(s) and Yt =

gY (t)
∫ t
0 fY (s).
We define (Xψn,k)(n,k)∈I and (Yψn,k)(n,k)∈I, the construction bases of the processesX and

Y . Therefore, using Theorem 4.5, there exist (XΞn,k)(n,k)∈I and (YΞp,q)(p,q)∈I standard normal
independent variables such that X =

∑
(n,k)∈I Xψn,k · XΞn,k and Y =

∑
(p,q)∈I Yψn,k · YΞn,k and

we know that the processes X and Y are almost-surely uniform limits when N → ∞ of the
processes XN and YN defined as the partial sums:

XN =
∑

(n,k)∈IN
Xψn,k · XΞn,k, YN =

∑

(p,q)∈IN
Yψn,k · YΞn,k. (E.4)

Using the fact that the functions Xψn,k and Yψn,k have piecewise continuous derivatives, we
have

XN
t Y

N
t =

∑

(n,k)∈IN

∑

(p,q)∈IN
Xψn,k(t) Yψp,q(t) XΞn,k YΞp,q

=
∑

(n,k)∈IN

∑

(p,q)∈IN
XΞn,k YΞp,q

∫ t

0

d

ds

(
Xψn,k(s) Yψp,q(s)

)
dt

=
∑

(n,k)∈IN

∑

(p,q)∈IN
XΞn,k YΞp,q

∫ t

0

(
Xψ
′
n,k(s)Yψp,q(s) + Xψn,k(s) Yψ

′
p,q(s)

)
ds.

(E.5)
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Therefore, we need to evaluate the piecewise derivative of the functions Xψn,k and Yψn,k. We
know that

1
fX

(
Xψn,k
gX

)′
(t) = Xφn,k(t), (E.6)

which entails that

Xψ
′
n,k = αX Xψn,k + gXfX Xφn,k = αX Xψn,k +

√
ΓX Xφn,k (E.7)

and similarly so for the process Y . Therefore, we have

XNYN = An,k
p,q + B

n,k
p,q + C

n,k
p,q +D

n,k
p,q , (E.8)

with

At =
∑

(n,k)∈IN

∑

(p,q)∈IN

(∫ t

0
αX(s) Xψn,k(s) Yψp,q(s) ds

)

XΞn,k YΞp,q,

Bt =
∑

(n,k)∈IN

∑

(p,q)∈IN

(∫ t

0

√
ΓX(s)

X
φn,k(s) Yψp,q(s) ds

)

XΞn,k YΞp,q,

Ct =
∑

(n,k)∈IN

∑

(p,q)∈IN

(∫ t

0
αY (s) Xψn,k(s) Yψp,q(s) ds

)

XΞn,k YΞp,q,

Dt =
∑

(n,k)∈IN

∑

(p,q)∈IN

(∫ t

0

√
ΓY (s) Yφn,k(s)Xψp,q(s)

)
dsXΞn,k YΞp,q.

(E.9)

We easily compute

At + Ct =
∫ t

0
(αX(s) + αY (s))XN(s)YN(s)ds. (E.10)

For t ∈ [0, 1], as it is our case, XN(s) and YN(s) are both almost surely finite for all t in [0, 1].
For almost all Y ξ and Y ξ drawn with respect to the law of the Gaussian infinite vector Ξ, we
therefore have, by the Lebesgue dominated convergence theorem, that this integral converges
almost surely towards

∫ t

0
(αX(s) + αY (s))X(s)Y (s)ds. (E.11)
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The other two terms Bt and Dt necessitate a more thorough analysis, and we treat them as
follows. Let us start by considering the first one of this term:

Bt =
∫1

0
1[0,t](s)

√
ΓX(s)

∑

(n,k)∈IN

∑

(p,q)∈IN
Xφn,k(s) Yψp,q(s) XΞn,k YΞp,qds

=
∑

ti∈DN\{1}

∫ ti+1

ti

1[0,t](s)
√
ΓX(s)

⎛

⎝
∑

(n,k)∈IN
Xφn,k(s) · XΞn,k

⎞

⎠YN(s)ds

=
∑

ti∈DN\{1}

∫ ti+1

ti

1[0,t](s)
√
ΓX(s)

(
1

fX(s)

(
XN

gX
(s)

)′)
YN(s)ds.

(E.12)

Let us now have a closer look at the processXN
t for t ∈ [ti, ti+1]where [ti, ti+1] = SN,i for i such

that (N, i) ∈ I. Because of the structure of our construction, we have

YN(t) =
gY (t)
gY (ti)

hY (ti+1) − hY (t)
hY (ti+1) − hY (ti) · Yti +

gY (t)
gY (ti+1)

hY (t) − hY (ti)
hY (ti+1) − hY (ti) · Yti+1 , (E.13)

1
fX(t)

(
XN

gX

)′
(t) =

fX(t)
hX(ti+1) − hX(ti)

(
Xti+1

gX(ti+1)
− Xti

gX(ti)

)
. (E.14)

We therefore have

∫ ti+1

ti

(
1[0,t](s)

√
ΓX(s)

fX(s)
d

ds

(
XN(s)
gX(s)

))
YN(s)ds

=
∫ ti+1

ti

1[0,t](s)
√
ΓX(s)fX(s)

hX(ti+1) − hX(ti) gY (s)

×
[
hY (ti+1) − hY (s)
hY (ti+1) − hY (ti)

Yti
gY (ti)

+
hY (s) − hY (ti)
hY (ti+1) − hY (ti)

Yti+1

gY (ti+1)

]
ds

(
Xti+1

gX(ti+1)
− Xti

gX(ti)

)

=
[
vi(t)NYN

ti
+wi(t)NYN

ti+1

]( Xti+1

gX(ti+1)
− Xti

gX(ti)

)

(E.15)

with

vNi (t) =
∫ ti+1

ti

1[0,t](s)
√
ΓX(s)fX(s)

hX(ti+1) − hX(ti)
gY (s)
gY (ti)

hY (ti+1) − hY (s)
hY (ti+1) − hY (ti)ds,

wN
i (t) =

∫ ti+1

ti

1[0,t](s)
√
ΓX(s)fX(s)

hX(ti+1) − hX(ti)
gY (s)
gY (ti+1)

hY (s) − hY (ti)
hY (ti+1) − hY (ti)ds.

(E.16)

Let us denote by δN the time step of the partition δN = maxti∈DN\{1}(ti+1 − ti), which is smaller
than ρN with ρ ∈ (0, 1) from the assumption made in Section 3.2.1. Moreover, we know that
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the functions gX = gY , hX and hY are continuously differentiable, and since
√
ΓX and

√
ΓY

are δ-Hölder, so are fX and fY . When N → ∞ (i.e., when δN → 0), using the Taylor and
Hölder expansions for the differential functions, we can further evaluate the integrals we are
considering. Let us first assume that t > ti+1. We have

vi(t)N =
∫ ti+1

ti

√
ΓX(s)fX(s)

hX(ti+1) − hX(ti)
gY (s)
gY (ti)

hY (ti+1) − hY (s)
hY (ti+1) − hY (ti)ds

=

√
ΓX(ti)

(
1 +O

(
δδN

))
fX(ti)

(
1 +O

(
δδN

))

fX(ti)2(ti+1 − ti)(1 +O(δN))

× gY (ti)(1 +O(δN))
gY (ti)

∫ ti+1

ti

fY (ti)2(ti+1 − s)(1 +O(δN))

fY (ti)2(ti+1 − ti)(1 +O(δN))
ds

=

√
ΓX(ti)

fX(ti)(ti+1 − ti)

(∫ ti+1

ti

ti+1 − s
ti+1 − ti ds

)(
1 +O(δN) +O

(
δδN

))

=
1
2
gX(ti) +O

(
δN + δδN

)
.

(E.17)

Similarly, we show that wN
i (t) = (1/2)gX(ti) +O(δN + δδN) whenN → ∞. If t < ti, we have

vNi (t) = wN
i (t) = 0 and for t in [ti0 , ti0 + 1) we have

vNi0 (t) =
gX(ti0)

2

(
ti0+1 − t
ti0+1 − ti0

)2

+O
(
δN + δδN

)
,

wN
i0
(t) =

gX(ti0)
2

(
t − ti0

ti0+1 − ti0

)2

+O
(
δN + δδN

)
= vNi0 (t) +O

(
δN + δδN

)
.

(E.18)

We then finally have

Bt =
∑

ti∈DN ; ti+1≤t

gX(ti)
2

(
YN
ti

+ YN
ti+1

)( XN
ti+1

gX(ti+1)
−

XN
ti

gX(ti)

)

+
gX(ti0)

2

(
ti0+1 − t
ti0+1 − ti0

)2(
YN
ti0

+ YN
t

)
⎛

⎝ XN
ti+1

gX(t)
−

XN
ti0

gX(ti0)

⎞

⎠ +O
(
δN + δδN

)
.

(E.19)

Moreover, we observe that the process Xt/gX(t) =
∫ ti+1
ti

fX(s) dWs is a martingale, and by
definition of the Stratonovich integral for martingale processes, we have

Bt −→
N→∞

∫ t

0
gX(s)Ys ◦ d

(
Xs

gX(s)

)
=

∫ t

0

√
ΓX(s)Ys ◦ dW(s), (E.20)

where ◦ is used to denote the Stratonovich stochastic integral and the limit is taken in dis-
tribution. Notice that the fact that the sum converges towards the Stratonovich integral does
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not depend on the type of sequence of partition chosenwhich can be different from the dyadic
partition. Putting all these results together, we obtain the equality in law:

XtYt =
∫ t

0
αX(s)Xs Ys ds +

∫ t

0

√
ΓX(s)Ys ◦ dWs +

∫ t

0
αY (s)Xs Ys ds +

∫ t

0

√
ΓY (s)Xs ◦ dWs,

(E.21)

which is exactly the integration by parts formula we were searching for. The integration by
parts formula for the Itô stochastic integral directly comes from the relationship between the
Stratonovich and Itô stochastic integrals.

Theorem E.2 (Itô). LetX be a Gauss-Markov process and f inC2(R). The process f(Xt) is aMarkov
process and satisfies the relation

f(Xt) = f(X0) +
∫ t

0
f ′(Xs)dXs +

1
2

∫ t

0
f ′′(Xs)d〈X〉s. (E.22)

Proof. The integration by parts formula directly implies the Itô formula through a density
argument as follows. LetA be the set of functions f ∈ C2([0, 1],R) such that (E.22) is true. It
is clear thatA is a vector space. Moreover, because of the result of Proposition 6.1, the spaceA
is an algebra. Since all constant functions and the identity function f(x) = x trivially belong
toA, the algebraA contains all polynomial functions.

Let now f ∈ C2([0, 1],R). There exists a sequence of polynomials Pk such that Pk (resp.,
Pk, P

′′
k
) uniformly converges towards f (resp., f ′, f ′′). Let us denote by Un the sequence of

stopping times:

Un = inf{t ∈ [0, 1]; |Xt| > n}. (E.23)

This sequence grows towards infinity. We have

Pk(Xt∧Un) − Pk(X0) =
∫ t

0
P ′k(Xs)1[0,Un](s)dXs +

1
2

∫ t

0
P ′′k (Xs)1[0,Un](s)d〈X〉s. (E.24)

On the interval [0, Un], we have Xt ≤ n, which allows to use the Lebesgue dominated
convergence theorem on each term of the equality. We have

E

⎡

⎣
∣∣∣∣∣

∫ t

0
P ′k(Xs)1[0,Un](s)dXs −

∫ t

0
F ′(Xs)1[0,Un](s)dXs

∣∣∣∣∣

2
⎤

⎦

= E

[∫ t

0

∣∣P ′k(Xs) − F ′(Xs)
∣∣21[0,Un](s)d〈X〉s

]
,

(E.25)

which converges towards zero because of the Lebesgue theorem for the Steljes integration.
The same argument directly applies to the other term. Therefore, letting k → ∞, we proved
Itô formula for Xt∧Un , and eventually letting n → ∞, we obtain the desired formula.



International Journal of Stochastic Analysis 83

F. Trace Class Operator

In this section, we demonstrate Theorem 6.6, which proves the instrumental to extend the
finite-dimensional change of variable formula to the infinite-dimensional case. The proof
relies on the following lemma.

Lemma F.1. The operator α,βS−Id : l2(R) → l2(R) is isometric to the operator α,βR : l2(R) → l2(R)
defined by

α,βR[x] =
∫1

0
α,βR(t, s)x(s)ds, (F.1)

with the kernel

α,βR(t, s) =
(
α(t ∨ s) − β(t ∨ s))fα(t ∧ s)

fα(t ∨ s) + fα(t)
(∫1

t∨s

(
α(u) − β(u))2

fα
2(u)

du

)
fα(s). (F.2)

Proof. Notice first that

(
α(t ∨ s) − β(t ∨ s))fα(t ∧ s)

fα(t ∨ s) = 1{s<t}
(
α(t) − β(t))fα(s)

fα(t)
+ 1{s≥t}

(
α(s) − β(s)) fα(t)

fα(s)
, (F.3)

which leads to writing in L2[0, 1], for any (n, k) and (p, q) in I

(
αφn,k, α,βR

[
αφp,q

])
=

∫∫1

0
α,βR(t, s) αφn,k(t) αφp,q(s)dt ds = A

n,k
p,q + B

n,k
p,q + C

n,k
p,q , (F.4)

with

An,k
p,q =

∫1

0

α(t) − β(t)
fα(t) αφn,k(t)

(∫ t

0
fα(s) αφp,q(s)ds

)
dt,

=
∫1

0

α(t) − β(t)
√
Γ(t) αφn,k(t) αψp,q(t)dt,

Bn,kp,q =
∫1

0
αf(t)φn,k(t)

(∫1

t

α(s) − β(s)
fα(s) αφp,q(s)ds

)
dt,

=
∫1

0

α(t) − β(t)
√
Γ(t) αψn,k(t) αφp,q(t)dt,

Cn,k
p,q =

∫∫1

0
αφn,k(t)fα(t)

(∫

s,t

(
α(u) − β(u))2

fα
2(u)

du

)
f(s) αφp,q(s)dt ds,
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=
∫∫∫1

0

(
α(u) − β(u))2

fα
2(u)

×
(
1[0,u](t)fα(t) αφp,q(t)

)(
1[0,u](s)fα(s) αφp,q(s)

)
dt ds du,

=
∫1

0

(
α(u) − β(u))2

Γ(u) αψn,k(t) αψp,q(t)dt ds.

(F.5)

This proves that (αφn,k,α,β R[αφp,q]) = [α,βS−Id]n,kp,q . Therefore, if we denote the isometric linear
operator

αΦ : l2(R) −→ L2(R),

ξ 
−→ αΦ[ξ] =
∞∑

n=0

∑

0≤k<2n−1
αφn,k · ξn,k,

(F.6)

we clearly have αΦT ◦α,β R ◦α Φ =α,β S − Id with αΦT =α Φ−1.

We now proceed to demonstrate that α,βS − Id is a trace class operator.

Proof of Theorem 6.6. Since the kernel α,βR(t, s) is integrable in L2([0, 1] × [0, 1]), the integral
operator α,βR : L2[0, 1] → L2[0, 1] is a Hilbert-Schmidt operator and thus is compact.
Moreover, it is a trace class operator since we have

Tr
(
α,βR

)
=

∫1

0

(
α(t) − β(t))dt +

∫1

0
fα

2(t)

(∫1

t

(
α(t) − β(t))2

fα
2(u)

ds

)
dt

=
∫1

0

(
α(t) − β(t))dt +

∫1

0

hα(t)

fα(t)2
(
α(t) − β(t))2dt.

(F.7)

Since α,βS − Id and α,βR are isometric through αΦ, the compactness of α,βS − Id is equivalent
to the compactness of α,βR. Moreover, the traces of both operators coincide:

∞∑

n=0

∑

0≤k<2n−1
α,βS

n,k
n,k =

∞∑

n=0

∑

0≤k<2n−1

∫∫1

0
αφn,k(t) αφn,k(s) α,βR(t, s)dsdt,

=
∫∫1

0

( ∞∑

n=0

∑

0≤k<2n−1
αφn,k(t) αφn,k(s)

)

α,βR(t, s)dsdt,

=
∫1

0
α,βR(t, t)dsdt,

(F.8)

using the result of Corollary 3.6.
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G. Girsanov Formula

In this section we provide the quite technical proof of Lemma 6.8 which is useful in proving
the Girsanov formula.

LemmaG.1. The positive definite quadratic form on l2(R)× l2(R) associated with operator α,βS−Id :
l2(R) → l2(R) is well defined on ξΩ′. Moreover for all ξΩ′,

(
ξ,

(
α,βS − IdξΩ′

)
(ξ)

)

= 2
∫1

0

α(t) − β(t)
f2(t)

αXt(ξ)
gα(t)

◦ d
(

αXt(ξ)
gα(t)

)
+
∫1

0

(
α(t) − β(t))2

f2(t)

(
αXt(ξ)
gα(t)

)2

dt,
(G.1)

where αXt(ξ) =α Ψ(ξ) and ◦ refers to the Stratonovich integral and the equality is true in law.

Proof. The proof of this lemma uses quite similar materials to those used in the proof of the
Itô theorem. However, since this result is central for giving insight on the way our geometric
considerations relate to the Girsanov theorem, we provide the detailed proof here.

Consider ξ in ξΩ′, denote ξN =ξ PN(ξ), and write

(
ξN,

(
α,βSN − IdξΩN

)
(ξN)

)
=

∑

(n,k)∈IN

∑

(p,q)∈IN

(
An,k
p,q + B

n,k
p,q

)
ξn,kξp,q, (G.2)

where we have posited

An,k
p,q = 2

∫1

0

α(t) − β(t)
√
Γ(t)

(
αφn,k(t) αψp,q(t) + αφp,q(t) αψn,k(t)

)
dt,

Bn,kp,q =
∫1

0

(
α(t) − β(t))2

Γ(t)

(
αψn,k(t) αψp,q(t)

)
dt.

(G.3)

It is easy to see, using similar arguments to those in the proof of the integration by parts for-
mula, Proposition 6.1:

AN(ξ) =
∑

(n,k)∈IN

∑

(p,q)∈IN
An,k
p,q ξn,k ξp,q

= 2
∫1

0

α(t) − β(t)
√
Γ(t)

αX
N
t (ξ)

fα(t)
d

dt

(
αX

N
t (ξ)

gα(t)

)
dt,

∑

(n,k)∈IN

∑

(p,q)∈IN
Bn,kp,q ξn,kξp,q =

∫1

0

(
α(t) − β(t))2

Γ(t) αX
N
t (ξ)2dt.

(G.4)

Because of the uniform convergence property ofXN towardsX and the fact that it has almost
surely bounded sample paths, the latter sum converges towards

∫1

0

(
α(t) − β(t))2

f2(t)

(
αXt(ξ)
gα(t)

)2

dt. (G.5)
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Now writing quantity AN(ξ) as the sum of elementary integrals between the points of
discontinuity ti = i2−N , 0 ≤ i ≤ 2N ,

AN(ξ) = −2
2N−1∑

i=0

∫ ti+1

ti

α(t) − β(t)
√
Γ(t)

αX
N
t (ξ)
f(t)

d

dt

(
αX

N
t (ξ)

gα(t)

)
dt (G.6)

and using the identities of (E.13) and (E.14), we then have

AN(ξ) = −2
2N−1∑

i=0

(
wN
i

αXti(ξ)
gα(ti)

+wN
i+1

αXti+1(ξ)
gα(ti+1)

)(
αXti+1(ξ)
gα(ti+1)

− αXti(ξ)
gα(ti)

)
, (G.7)

where we denote

wN
i =

∫ ti+1
ti

(
α(t) − β(t))(h(ti+1) − h(t))dt

(h(ti+1) − h(ti))2
,

wN
i+1 =

∫ ti+1
ti

(
α(t) − β(t))(h(ti+1) − h(t))dt

(h(ti+1) − h(ti))2
.

(G.8)

Let us define the function w in C[0, 1] by

w(t) =
α(t) − β(t)
f2(t)

. (G.9)

If α and β are uniformly δ-Hölder continuous, so isw. Therefore, there exist an integerN ′ > 0
and a realM > 0 such that ifN > N ′, for all 0 ≤ i < 2N , we have

∣∣∣wN
i −w(ti)

∣∣∣ =

∣∣∣∣∣∣∣

∫ ti+1

ti

(w(t) −w(ti))
(d/dt)

(
(h(ti+1) − h(t))2

)

(h(ti+1) − h(ti))2
dt

∣∣∣∣∣∣∣

≤M

∣∣∣∣∣∣∣

∫ ti+1

ti

(t − ti)δ
(d/dt)

(
(h(ti+1) − h(t))2

)

(h(ti+1) − h(ti))2
dt

∣∣∣∣∣∣∣

≤M
(

(t − ti)δ+1
2(δ + 1)

)
+M

∣∣∣∣∣

∫ ti+1

ti

(t − ti)δ+1
δ + 1

(h(ti+1) − h(t))2
(h(ti+1) − h(ti))2

dt

∣∣∣∣∣

≤M
(

(t − ti)δ+1
2(δ + 1)

)
+M

(
(t − ti)δ+2

2(δ + 1)(δ + 2)

)
,

(G.10)

which shows that |wN
i − w(ti)| = O(2−N(1+δ)), and similarly |wN

i+1 − w(ti+1)| = O(2−N(1+δ)) as
well. As a consequence, expression Lemma G.1 converges when N tends to infinity toward
the desired Stratonovich integral.
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[18] M. Fukushima, Y. Ōshima, and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, vol. 19 of
de Gruyter Studies in Mathematics, Walter de Gruyter & Co., Berlin, Germany, 1994.

[19] L. D. Pitt, “A Markov property for Gaussian processes with a multidimensional parameter,” Archive
for Rational Mechanics and Analysis, vol. 43, pp. 367–391, 1971.

[20] H. P. McKean, Jr., “A winding problem for a resonator driven by a white noise,” Journal of Mathematics
of Kyoto University, vol. 2, pp. 227–235, 1963.

[21] M. Goldman, “On the first passage of the integrated Wiener process,” The Annals of Mathematical
Statistics, vol. 42, pp. 2150–2155, 1971.

[22] M. Lefebvre and Leonard, “On the first hitting place of the integrated Wiener process,” Advances in
Applied Probability, vol. 21, no. 4, pp. 945–948, 1989.

[23] C. de Boor, C. Gout, A. Kunoth, and C. Rabut, “Multivariate approximation: theory and applications.
An overview,” Numerical Algorithms, vol. 48, no. 1–3, pp. 1–9, 2008.

[24] G. S. Kimeldorf and G. Wahba, “A correspondence between Bayesian estimation on stochastic pro-
cesses and smoothing by splines,” Annals of Mathematical Statistics, vol. 41, pp. 495–502, 1970.



88 International Journal of Stochastic Analysis

[25] G. S. Kimeldorf and G. Wahba, “Spline functions and stochastic processes,” Sankhyā. Series A, vol. 32,
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