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The existence of free Lie algebras is usually derived as a consequence of the Poincaré-Birkhoff-Witt
theorem. Moreover, in order to prove that (given a set X and a field K of characteristic zero) the Lie
algebra £(K(X)) of the Lie polynomials in the letters of X (over the field K) is a free Lie algebra
generated by X, all available proofs use the embedding of a Lie algebra g into its enveloping
algebra U(g). The aim of this paper is to give a much simpler proof of the latter fact without the aid
of the cited embedding nor of the Poincaré-Birkhoff-Witt theorem. As an application of our result
and of a theorem due to Cartier (1956), we show the relationships existing between the theorem
of Poincaré-Birkhoff-Witt, the theorem of Campbell-Baker-Hausdorff, and the existence of free Lie
algebras.

1. Introduction

We begin with the main definition we will be concerned with in this paper. In the sequel,
K will denote a fixed field, and all linear objects (linear maps, algebras, spans, etc.) will be
tacitly meant with respect to K.

Definition 1.1. Let X be any nonempty set. We say that L is a free Lie algebra generated by
X if L is a Lie algebra, and there exists a map ¢ : X — L satisfying the following property.
For every Lie algebra g and for every map f : X — g, there exists exactly one Lie algebra
morphism f? such that the diagram below commutes

x—1
q{ ¢ (1.1)

L
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When X C L set-theoretically and the above property is satisfied with the inclusion map
1: X < Lreplacing ¢, L will be called a free Lie algebra over X.

It is easy to see that a free Lie algebra generated by X—if it exists—is unique up to (Lie
algebra) isomorphism. The existence of a free Lie algebra generated by a set can be proved in
a standard way (see [1, Chapitre II, Section 2, n.1] and [2, Section 0.2]). As for the existence
of a free Lie algebra over a set, it is natural to expect that (given a field K of characteristic
zero) the Lie K-algebra of the Lie polynomials in the letters of X is a free Lie algebra
over X. To prove this fact, however, more profound results are required, as we will explain
below.

In the sequel, if V is a vector space, we denote by T(V) its tensor algebra and by
£L(V) the smallest Lie-subalgebra of T(V') containing V. The aim of this paper is to prove the
following result.

Theorem 1.2. Let K be a field of characteristic zero, and let K(X) be the free vector space generated
by X, then L(K(X)) is a free Lie algebra over X.

Classically, the above theorem is derived from the theorem of Poincaré, Birkhoff, and
Witt (henceforth referred to as PBW), which we here recall for the reading convenience and
to fix some notation.

Theorem of Poincaré-Birkhoff-Witt

Let K be a field of characteristic zero, and let g be a Lie algebra. We denote by %(g) the
universal enveloping algebra of g and by 1 the unit element of #(g). Let 7r denote the natural
projection or : T(g) — U(g), and let us set p = |y. Suppose that g is endowed with an
indexed (linear) basis {x;};c;, where I is totally ordered by the relation <, then the following
elements form a linear basis for U(g):

1, p(xy)---p(xi,), whereneN, iy,...,.in€l, i1 X X ip. (1.2)

As a by-product of this theorem, we have the following crucial result.

Corollary 1.3. The function p : g — U(g) is injective.

The above corollary is the essential tool one needs in order to prove Theorem 1.2.
To the best of our knowledge, all the books using free Lie algebras prove Theorem 1.2 by
making use of Theorem PBW (or, precisely, of Corollary 1.3); see Bourbaki [1, Chapitre II,
Section 3, n.1, Théoreme 1] (where it employed [3, Chapitre I, Section 2, n.7, Corollaire 3
du Théoreme 1] which is the PBW Theorem); see Reutenauer [2, Theorem 0.5] (where the
injectivity of g < Y(g) is used); see also Hochschild [4, Chapter X, Section 2], Humphreys
[5, Chapter V, Section 17.5], Jacobson [6, Chapter V, Section 4], and Varadarajan [7, Section
3.2].

For the sake of completeness, let us briefly recall the argument which uses PBW.

Lemma 1.4. Let V be a vector space, then L(V') satisfies the following property: for every Lie algebra
g and for every linear map F : V. — g, there exists exactly one Lie algebra morphism F : £(V) — g
prolonging F.
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Proof. The universal property of T(V) allows us to prove the existence of exactly one
morphism of associative algebras F such that the following diagram commutes:

\A
J //////?////7 13)
v

It is easily seen that F (t) € u(g) forevery t € L(V), so that we can compose the restriction of F
to £(V) with p~! : u(g) — g (the function ! is well posed on p(g) thanks to Corollary 1.3).
The map

F:2(V)—g,  F=p"o(Flw) (14)

satisfies all the requirements in the statement of the lemma. O

Let us now prove Theorem 1.2 with the aid of Lemma 1.4 above. Let X be any set and
letg, f beasin Definition 1.1. Let us denote by ¢ the inclusion map X — £(K(X)). We apply
Lemma 1.4 with V = K(X) and F obtained by prolonging the function f by linearity on V,
then the Lie algebra morphism F : £(K(X)) — g is easily seen to satisfy the requirements of
f ¢ in Definition 1.1, and Theorem 1.2 is proved.

The aim of this paper is to provide a new proof of Theorem 1.2, independently of PBW and of
Corollary 1.3. This will be done in Sections 2 and 3.

The remainder of the paper (Section 4) provides a motivation for the first part. The
occasion to search for a proof of Theorem 1.2 which is alternative to the usual one arose
when—in our studies in monograph [8]—we came across a nonstandard demonstration
of Theorem PBW due to Cartier [9]. Cartier’s proof uses the Theorem of Campbell, Baker,
and Hausdorff (CBH, shortly) in order to prove PBW. In its turn, CBH is usually proved
by means of Theorem PBW (see, e.g., Bourbaki [1, Chapitre II, Section 3, n.1, Corollaire
2], Hochschild [4, Proposition 2.1], Jacobson [6, Theorem 9, Chapter V], and Serre [10, 11,
Theorems 4.2, 7.1]). So Cartier shows that, beside the usual argument

PBW = CBH, (1.5)

surprisingly, the reverse path can be followed too.

In order to make this reverse path “CBH = PBW” fully consistent, it is necessary to
provide a proof of CBH which is independent of PBW. (Seemingly, apart from Hausdorff’s
original argument [12], an algebraic proof of CBH independent of PBW was not available
at the time of Cartier’s paper [9], dated 1956. Twelve years later, Eichler [13] gave another
proof, using only free Lie algebras, and then seven years after Eichler, Djokovi¢ [14]
provided another one, using formal power series computations. More recently, Reutenauer
[2, Section 3.4] has proved CBH with a rigorous algebraic formalization of the early ideas
by Pascal, Baker, Campbell, and Hausdorff. See [8, Chapters 1, 4] for more details on all
these topics.) Cartier provides this proof in [9], making use of free Lie algebras generated by
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a finite set. As long as the existence of free Lie algebras is again a consequence of PBW, clearly
it cannot be exploited to prove Theorem PBW itself. Hence, in [9] a proof of the existence of
free Lie algebras generated by finite sets is given, independently of PBW, and relying only on
the ideas contained in the classical proof of the theorem of Dynkin, Specht, and Wever.

By making use of these ideas, we here provide a proof, with no prerequisites, of the
existence of free Lie algebras over arbitrary sets, thus generalizing the result in [9]. We hope
that a new proof, which is alternative to all those presented in books, is welcome, especially
since it makes no use of such a deep result as the Theorem of Poincaré, Birkhoff, and Witt. As
an application, we are able to highlight the full interdependence of PBW and CBH and the
existence of free Lie algebras (see Section 4), which—to the best of our knowledge—has never
been pointed out in the specialized literature so far (see Theorem 4.1 and Corollary 4.3).

2. The Free Lie Algebra Generated by a Set

In the present short section, included for the sake of completeness and to fix the notation used
throughout, we recall an argument, which dates back to Bourbaki [1, Chapitre II, Section 2,
n.1] (see also Reutenauer [2, Section 0.2]) proving directly the existence of free Lie algebras
generated by a set.

Forn € N, n > 1, consider the set M,,(X) (also denoted by M,, for short) of all (roughly
speaking) the noncommutative, nonassociative words of length n on the elements of X. The
M,s can be defined inductively by means of disjoint unions (denoted by []) of Cartesian
products in the following way:

Mi(X) =X, My(X) =X xX, M;3(X) = (X x X) xXL[Xx (X x X),

My (X) = HMi(X) x Mj(X), n>2. 1)
i+j=n
Let M(X) = [I,51Mn(X). We can define a (noncommutative, nonassociative) binary

operation on M(X) as follows. For any w, w’ € M(X), say, w € M,, and w' € M,,, we denote
by w - w' the unique element of M, corresponding to (w,w’) in the canonical injections
M, x My C My € M(X). This binary operation endows M (X) with the structure of a
magma, called the free magma generated by X. Let us now set Lib(X) := K(M(X)), the free
vector space generated by the free magma M (X). (The free vector space generated by a set
M is here thought of as the K-vector space of the functions from M to K vanishing outside
a finite set; equivalently, it will be treated as the set of formal (finite) linear combinations of
elements of M, where M is a basis for K(M).) The canonical map M(X) — Lib(X) (sending
w € M(X) to the characteristic function of {w} in M (X)) will be simply denoted by set
inclusion. The operation on M(X) extends by linearity to an operation on Lib(X) turning it
into a nonassociative algebra, called the free (nonassociative) algebra generated by X. We have
the following result, whose proof is standard and hence omitted.

Lemma 2.1. Let X be a set, then, for every K-algebra A and every function f : X — A, there exists
a unique algebra morphism f : Lib(X) — A prolonging f.

Given an (not necessarily associative) algebra (M, x), we say that S C M is a (two-
sided) magma ideal in M if S is a vector subspace of M such that s * m and m * s belong to S,
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for every s € S and every m € M. Moreover, if H C M is any set, the smallest (two-sided)
magma ideal in M containing H will be said to be the magma ideal generated by H in M.
Let us now consider the algebra Lib(X) and

A={Q(a)=a-a, J(abc)=a-(b-c)+b-(c-a)+c-(a-b)|a,b,ceLib(X)}. (2.2)

We henceforth denote by a the magma ideal generated by A in Lib(X). We next consider the
quotient vector space Lie(X) := Lib(X)/a and the natural projection s : Lib(X) — Lie(X).
Then the map

Lie(X) x Lie(X) — Lie(X),
2.3
(or(a), (b)) — [ (a),x(b)] :=a(a-b), a,beLib(X) 29

is well posed, and it endows Lie(X) with a K-algebra structure, which turns out to be a Lie
algebra over K (see the very definition of A).

Proposition 2.2. Let X be any set and, with the above notation, let us set ¢ := xr|x : X — Lie(X)
then

(1) Lie(X), together with the map ¢, is a free Lie algebra generated by X (according to
Definition 1.1);

(2) the set {¢p(x)} ex is independent in Lie(X), whence ¢ is injective;

(3) the set ¢(X) Lie-generates Lie(X), that is, the smallest Lie subalgebra of Lie(X) contain-
ing ¢p(X), coincides with Lie(X).

The proof of this proposition is derived by collecting together various results appear-
ing in [1, Chapitre II, Section 2], with the additional care of transposing them to a nonas-
sociative setting (see, e.g., [8, Theorem 2.54] for all the details).

3. The Isomorphism Lie(X) = Z(K(X))

From now on, we turn to prove Theorem 1.2 without using neither Theorem PBW nor
Corollary 1.3. The arguments are more delicate than those in the preceding section.

We fix throughout a field K of characteristic zero. We denote by £(K(X)) the smallest
Lie subalgebra of T(K(X)) (the tensor algebra of the vector space K(X)) containing X. Let ¢
be as in Proposition 2.2. Being Lie(X) a free Lie algebra generated by X, there exists a unique
Lie algebra morphism

@ : Lie(X) — £L(K(X)) such that ®(p(x)) =x, for every x € X. (3.1)

Our main task is to show that @ is an isomorphism, without using PBW theorem. This will
immediately prove that Z(K(X)) is a free Lie algebra over X, according to Definition 1.1. We
will do this by means of some auxiliary functions.
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Lemma 3.1. With the above notation, one has the grading Lie(X) = @nlen, where By =
span(p(X)), and, forany n > 2,

B, = [B1, By-1] = span{[p(x),y]: x € X, y € By-1}. (3.2)

Proof. It is easy to prove the grading Lib(X) = @, Lib,(X), where Lib,(X) is the span of
M,,(X). On the other hand, a simple argument shows that a is also the magma ideal generated
by the elements

ww, (w+w) - (w+w)-w-w-w - w,
(3.3)
w-(w-w")+w - (w-w)+w" - (w-w'),

with w, w',w" € M(X). As a consequence, we have an analogous grading a = @,,a,, with
a, C Lib,(X), for every n € N. This gives Lie(X) = @,,C,,, where C,, = Lib,(X)/a is spanned
by the n-degree commutators of the elements of ¢(X) (bracketing is taken in arbitrary order).
In its turn, we obviously have C,, = B, where B,, is the span of the “nested” brackets

[p(x1) - [@(xn-1), 0(xn)] ---], for x1,..., x4 €X. (3.4)

Finally, it is a simple proof to check that [B,,, B,,] C By for every n, m. O

Thanks to Lemma 3.1, the following auxiliary map is well posed:
6 : Lie(X) — Lie(X), 6<an> = Y'nb, (by€B,, VneN). (3.5)
n n

In the remainder of the section, for any vector space V, we denote by End(V) the set of
the endomorphisms of V. By the universal properties of the free vector space K(X) and of
tensor algebras, there exists a unique morphism of unital associative algebras 6 : T(K(X)) —
End(Lie(X)), such that 0(x) = ad ¢(x), for every x € X.

Finally, there exists a unique linear map g : T(K(X)) — Lie(X) such that, for every
X1,..., Xk € X and every k > 2, it holds g(1k) = 0, g(x1) = ¢(x1), and g(x1 ® -+ ® x¢) =
[p(xr) - [p(ri), @ ()]l

The diagram below gives an idea of the setting we are working in

End(Lie(X))
ad
0
X — 7 Lie(X) o> £(K(X )= T(K(X)) (3.6)
p 8

Lie(X)
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We are now ready for the following result (see also Cartier [9, Lemma 1, page 242],
where finite Xs are considered); part (c) of the lemma is the core of a result due to Dynkin
[15].

In the following statement, we denote by T,(K(X)) the ideal of T(K(X)) whose
elements have vanishing zero-degree component.

Lemma 3.2. With all the above notation, one has the following:

(a) 6 is a derivation of the Lie algebra Lie(X) and 6o p =y on X,

(b) g(xy) = 6(x)(g(v)), for every x € T(K(X)), y € T:(K(X)),
(c) 0o ® =ad on Lie(X), that is, O(D(¢))(n) = [¢, 1], for every ¢, 1 € Lie(X),
(d) go® = 6 on Lie(X).

Proof. (a) Take elements t,t' € Lie(X) = €,,1B, (see Lemma3.1), t = X t,, t' = > t,, with
ty, t, € B, for every n > 1, and t,, t,, are definitively equal to 0, then we have

([t ¢]) =63, 3, [tt)] = Xn 3 [tt)]

n>1i+j=n n>1  it+j=n
"SRl =R Bl Bkl

- [Z it;, Z t;] I:Z ti, Z jt' ] [6(t),t] +[t,6(t)]-

Moreover, from the definition of the B,s in Lemma 3.1, we have ¢(X) C By, so

6(p(x)) = ¢(x), for every x € X. (3.8)

(b) An inductive argument: if x = k € K = Cy(V), (b) is trivially true, g(k v) = kg(y)
(since g is linear) and

0(k)(g(v)) = klduiex) (8(¥)) = kg (v)- (3.9)

Thus, we are left to prove (b) when both x, y belong to T, (K(X)); moreover, by linearity, we
can assume without loss of generality that x = v, ®---®@vrandy = w1 ®---@wy, with b, k > 1,
and the vs and ws are elements of X,

g(xy) =g ® - ®Ux@w ®+ @ wp)

=ad (p(v1)) o---oad (¢(vr)) ([ewr), ... [p(wn), p(wr)]...]) (3.10)

=0(v ®-~-®Uk)(g(w1®“'®wh)) = 9(x)(g(y)).



8 ISRN Algebra

(c) Let ¢ € Lie(X, then (c) follows if we show that 8(®(¢)) and ad (¢) coincide (note
that they are both endomorphisms of Lie(X)). In its turn, this is equivalent to the identity of
0 o @ with the map

ad: Lie(X) — End(Lie(X)), &+~ ad(?). (3.11)

Now observe that both ad and 0 o @ are Lie algebra morphisms (indeed, @ is a Lie algebra
morphism by construction, and 0 is a Lie algebra morphism since it is a unital associative
algebra morphism). Hence, the equality of ad and 0 o @ follows if we prove that they are
equal on a system of Lie generators for Lie(X), namely, on ¢(X) (recall Proposition 2.2-(3.8)),
for every x € X, we indeed have

(00 D) (p(x)) =0(x) = ad(¢(x)). (3.12)

(d) It suffices to show that g o @ is a derivation of Lie(X); we have

(go®@)[¢n] = g([@©), D(n)]) = g(@E)D (1) - P(n)D($))
= 0(@(©)3(®(1)) - B(D (1)) (P () (3.13)
= [¢, g(®(n))] + [8(®()), 7]

O

In the third and fourth equalities, we used (b) and (c), respectively. Since g o @ and 6 are
derivations of Lie(X) coinciding on ¢(X), (d) follows.

Theorem 3.3. Let K be field of characteristic zero.
If @ is as in (3.1), @ is an isomorphism of Lie algebras.

Proof. From the very definition of 6 and the fact that K has characteristic zero, it follows that
6 is injective.

From the identity g o @ = 6 (see (d) in Lemma 3.2) and the injectivity of 6, we
immediately infer the injectivity of @. Since @ is clearly surjective (indeed, Lie(X) and
L(K(X)) are Lie generated by ¢(X) and X, respectively), the theorem is proved. O

In order to explicitly show the relationship of the arguments we employed to prove
Theorem 1.2 with the so-called Theorem of Dynkin, Specht, and Wever, we seize the
opportunity to show that the latter is implicitly contained in Theorem 3.3 and Lemma 3.2.
(See e.g., ([4], [18], Proposition 2.2), ([6], [20], Chapter V, Section 4, Theorem 8), and ([2],
[26], Theorem 1.4), ([10,11], [29], Chapter IV, Section 8, LA 4.15). For the original proofs,
see [15-17].) Despite its well-known importance, we state it as a corollary of the former
results.
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Corollary 3.4 (Dynkin, Specht, and Wever). Let K be a field of characteristic zero. Consider the
linear map P : T(K(X)) — L(K(X)) such that

P(1x) =0, P(x1) = x1,
(3.14)
Px;®--®@xk) =k [x1,...[xk-1,xx]...], Vk>2,

for any x1,...,xx € X. Then P is a projection, that is, P is surjective and it is the identity on
L(K(X)).
Consequently, one has the following characterization of Lie elements:

L(K(X)) = {t € TR(X)) | P(t) = t}. (3.15)

Proof. The well-posedness and surjectivity of P are obvious. To prove that P is the identity on
L(K(X)), it suffices to test it on a homogeneous bracket, say t = [xi, ..., [xk-1, xk] ...], with
k € Nand x,...,x, € X. Itis clear that it holds P(t) = k™' (® o ¢)(t). As a consequence, being
@ invertible (by Theorem 3.3),

P(t) = k! (cp ogodo cp*l) (t) = k! (cp 060 qu) (t) = k’1CD<k CD’l(t)> = t. (3.16)

In the second equality, we used (d) of Lemma 3.2; in the third, we used the definition of 6
and the fact that @ (t) = [p(x1), ..., [¢(xk-1), o(xk)] - ..] € Bk. O

4. The Relationship between the Theorems of PBW and of CBH

The deep intertwinement between PBW and CBH and the existence of free Lie algebras can
be visualized in the following chain of equivalent statements.

Theorem 4.1. Consider the following six statements (all linear structures are understood to be over a
field of characteristic zero):

(a) the set {p(x;i) }icr is independent in U(g);

(b) any Lie algebra g can be embedded in its enveloping algebra U(g);

(c) for every set X, there exists a free Lie algebra over X;

(d) for every finite set X, there exists a free Lie algebra over X;

(e) free Lie algebras over finite sets do exist, and the Campbell-Baker-Hausdorff theorem holds;
(f) the Poincaré-Birkhoff-Witt theorem holds.

Then these results can be proved each by the aid of the other in the following circular sequence:
(a) = (b) = (c) = (@) = (¢) = (f) = (a). (4.1)

Remark 4.2. Notice that statement (c) was proved in Section 3 above, without any prerequisite
nor the aid of any of the other statements in Theorem 4.1. In particular, the isomorphism
of Lie(X) (the free Lie algebra generated by X) with £Z(K(X)) (the Lie algebra of the Lie
polynomials in the letters of X)) can be proved independently of (b) and (f), as we announced.
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Proof. (a)= (b): this is obvious by the definition p(x;) = 7 (x;),

(b) = (c): this is the usual approach to the existence of free Lie algebras over a set
recalled in the Introduction,

(c)=(d): this is obvious,

(d)= (e): the derivation of the Campbell-Baker-Hausdorff theorem from the existence
of free Lie algebras over finite sets appears in Eichler’s proof [13],

(e)= (f): the proof of PBW from CBH (with the joint use of free Lie algebras over finite
sets) is contained in Cartier’s paper [9],

(f)=(a): this is obvious. O

As by-products of the previous theorem, we highlight the following corollaries,
containing some probably unexpected facts.

Corollary 4.3. The following are consequences of Theorem 4.1. Again, all linear structures are on a
field of characteristic zero.

(a) The linear independence of the yu(x;)s is sufficient (besides being necessary) for the system
in (1.2) to form a basis of U(g).

(b) The sole embedding g — U(g) proves the Poincaré-Birkhoff-Witt theorem.

(c) The existence of free Lie algebras over finite sets is sufficient for the existence of all free Lie
algebras over arbitrary sets.

(d) The existence of free Lie algebras proves the Poincaré-Birkhoff-Witt theorem (not only the
reverse fact is true).
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