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A novel and effective approach to synchronization analysis of neural networks is investigated by using the nonlinear operator
named the generalized Dahlquist constant and the general intermittent control. The proposed approach offers a design procedure
for synchronization of a large class of neural networks. The numerical simulations whose theoretical results are applied to typical
neural networks with and without delayed item demonstrate the effectiveness and feasibility of the proposed technique.

1. Introduction

Since its introduction by Pecora and Carrol in 1990, syn-
chronization of chaotic systems [1–10] is of great practical
significance and has received great interest in recent years.
In the above literature, the approach applied to stability
analysis is basically Lyapunov’s method. As we all know, the
construction of a proper Lyapunov function becomes usually
very skillful, and Lyapunov’s method does not specifically
describe the convergence rate near the equilibrium of the
system. Hence, there is little compatibility among all of the
stability criteria obtained so far.

The concept named the generalized Dahlquist constant
[11] has been applied to the investigation of impulsive
synchronization [12, 13] analysis.

Intermittent control [14–18] has been used for a variety
of purposes in engineering fields such as manufacturing,
transportation, air-quality control, and communication.
Synchronization using an intermittent control method has
been discussed [15–18]. Compared with continuous control
methods [2–10], intermittent control is more efficient when
the system output is measured intermittently rather than
continuously. Our interest focuses on the class of inter-
mittent control with time duration, wherein the control is
activated in certain nonzero time intervals and is off in other

time intervals. A special case of such a control law is of the
form

U(t) =
⎧
⎨

⎩

−k(y(t)− x(t)
)
, (nT ≤ t < nT + δ),

0, (nT + δ ≤ t < (n + 1)T),
(1)

where k denotes the control strength, δ > 0 denotes the
switching width, and T denotes the control period. In this
paper, based on the generalized Dahlquist constant and the
Gronwall inequality, a general intermittent controller

U(t) =
⎧
⎨

⎩

−k(y(t)− x(t)
)
, (h(n)T ≤ t < h(n)T + δ),

0, (h(n)T + δ ≤ t < h(n + 1)T),
(2)

is designed, where h(n) is a strictly monotone increasing
function on n with h(0) = 0 then sufficient yet generic
criteria for synchronization of typical neural networks with
and without delayed item are obtained.

This paper is organized as follows. In Section 2, some
necessary background materials are presented, and a simple
configuration of coupled neural networks is formulated.
Section 3 deals with synchronization. The theoretical results
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are applied to typical chaotic neural networks, and numerical
simulations are shown in this section. Finally, some conclud-
ing remarks are given in Section 4.

2. Formulations

Let X be a Banach space endowed with the Euclidean norm
‖ · ‖, that is, ‖x‖ = √

xTx = √〈x, x〉, where 〈·, ·〉 is inner
product, and, let Ω be a open subset of X . We consider the
following system:

dx(t)
dt

= F(x(t)) + G(x(t − τ)), (3)

where F,G are nonlinear operators defined on Ω, x(t), x(t −
τ) ∈ Ω, τ is a time-delayed positive constant, and F(0) =
0,G(0) = 0.

Definition 1. System (3) is called to be exponentially stable
on a neighborhood Ω of the equilibrium point if there exist
constants μ > 0,M > 0, such that

‖x(t)‖ ≤Me−μt‖x0‖ (t ≥ 0), (4)

where x(t) is any solution of (3) initiated from x(t0) = x0.

Definition 2 (see [11]). Suppose Ω is an open subset of
Banach space X , and F : Ω → X is an operator.

The constant

α(F) = sup
x,y∈Ω,x /= y

1
∥
∥x − y

∥
∥ lim
r→+∞ f (r) (5)

is called to be the generalized Dahlquist constant of F on Ω,
where f (r) = ‖(F + rI)x − (F + rI)y‖ − r‖x − y‖; here,
denote by F + rI the operator mapping every point x ∈ Ω
onto F(x) + rx.

For r ≥ 0,

f (r) = ∥∥(F + rI)x − (F + rI)y
∥
∥− r

∥
∥x − y

∥
∥

=
√

(k(r))Tk(r)− r
√
(
x − y

)T(
x − y

)

= f1(r)− f2(r),

(6)

where k(r) = F(x) − F(y) + r(x − y), f1(r) =
√

(k(r))Tk(r), f2(r) = r
√

(x − y)T(x − y)

df1(r)
dr

=
(
F(x)− F

(
y
))T(

x − y
)

+ r
∥
∥x − y

∥
∥2

f1(r)

= f3(r)
f1(r)

,

df2(r)
dr

=
√
(
x − y

)T(
x − y

)
,

(7)

where f3(r) = (F(x)− F(y))T(x− y) + r‖x − y‖2. According
to the Cauchy-Bunie Khodorkovsky inequality, we obtain

(

f1(r)
√
(
x − y

)T(
x − y

)
)2

− ( f3(r)
)2

= ∥∥F(x)− F
(
y
)∥
∥2∥∥x − y

∥
∥2 −

((
F(x)− F

(
y
))T(

x − y
))2

= 〈F(x)− F
(
y
)
,F(x)− F

(
y
)〉〈

x − y, x − y
〉

− (〈F(x)− F
(
y
)
, x − y

〉)2 ≥ 0.
(8)

Therefore,
∣
∣
∣
∣ f1(r)

√
(
x − y

)T(
x − y

)
∣
∣
∣
∣ ≥

∣
∣ f3(r)

∣
∣ ≥ f3(r). (9)

That is

f1(r)
√
(
x − y

)T(
x − y

) ≥ f3(r),

df1(r)
dr

− df2(r)
dr

≤ 0,

df (r)
dr

≤ 0.

(10)

So the function f (r), r ≥ 0, is monotone decreasing; thus,
the limit

lim
r→+∞ f (r) (11)

exists.

3. Synchronization Analysis and Examples

Theorem 3. If the operator G in the system (3) satisfies
∥
∥G(x)−G

(
y
)∥
∥ ≤ l

∥
∥x − y

∥
∥ (12)

for any x, y ∈ Ω, where l is a positive constant, then two
solutions, x(t) and y(t), respectively, initiated from x(t0) =
x0 ∈ Ω, y(t0) = y0 ∈ Ω satisfy

∥
∥x − y

∥
∥ ≤ ∥∥x0 − y0

∥
∥ exp{λ(t − t0)}, ∀t ≥ 0, (13)

where λ = α(F) + exp{−α(F)τ}l.

Proof. Assume x(t) and y(t) are the solutions of (3),
respectively, under the initial conditions x(t0) = x0 ∈ Ω,
y(t0) = y0 ∈ Ω. We have

(
ertx(t)

)′
t = rertx(t) + ertF(x(t)) + ertG(x(t − τ))

= ert(F + rI)x(t) + ertG(x(t − τ))
(14)

for all t ≥ 0 and r > 0.

For all x0, y0 ∈ Ω, t > s ≥ 0,

ert
[
x(t)− y(t)

] = ers
[
x(s)− y(s)

]
+
∫ t

s
k(r,u)du, (15)
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where k(r,u) = eru[(F + rI)x(u) − (F + rI)y(u) + (G(x(u −
τ))−G(y(u− τ)))].

So

ert
∥
∥x(t)− y(t)

∥
∥− ers

∥
∥x(s)− y(s)

∥
∥ ≤

∫ t

s
h(r,u)du, (16)

where h(r,u) = eru(‖(F+rI)x(u)−(F+rI)y(u)‖+‖G(x(u−
τ))−G(y(u− τ))‖).

Then for all t ≥ 0, we infer that

ert(
∥
∥x(t)− y(t)

∥
∥)
′
t ≤ h(r, t). (17)

Therefore, we obtain

ert
(∥
∥x(t)− y(t)

∥
∥
)′
t ≤ h(r, t)− rert

∥
∥x(t)− y(t)

∥
∥. (18)

Letting r → +∞, then

(∥
∥x(t)− y(t)

∥
∥
)′
t ≤ α(F)

∥
∥x(t)− y(t)

∥
∥

+
∥
∥G(x(t−τ))−G(y(t−τ)

)∥
∥

≤ α(F)
∥
∥x(t)− y(t)

∥
∥

+ l
∥
∥x(t − τ)− y(t − τ)

∥
∥.

(19)

Integrating inequality (19) over [t0, t], we have

∥
∥x(t)− y(t)

∥
∥ ≤ eα(F)(t−t0)

∥
∥x0 − y0

∥
∥

+
∫ t

t0
eα(F)(t−s)l

∥
∥x(s− τ)− y(s− τ)

∥
∥ds.

(20)

That is

e−α(F)(t−t0)
∥
∥x(t)− y(t)

∥
∥ ≤ ∥∥x0 − y0

∥
∥

+
∫ t

t0
e−α(F)(s−t0)l

∥
∥x(s− τ)− y(s− τ)

∥
∥ds,

≤ ∥∥x0 − y0
∥
∥

+ e−α(F)τ l
∫ t−τ

t0−τ
e−α(F)(s−t0)

∥
∥x(s)− y(s)

∥
∥ds.

(21)

Using the Gronwall inequality [19, 20], we have

e−α(F)(t−t0)
∥
∥x(t)− y(t)

∥
∥ ≤ ∥∥x0 − y0

∥
∥ exp

{

e−α(F)τ l(t − t0)
}

.

(22)

Then
∥
∥x(t)− y(t)

∥
∥ ≤ ∥∥x0 − y0

∥
∥ exp

{(

α(F) + e−α(F)τ l
)

(t − t0)
}

.

(23)

Let system (3) be the drive system, and we consider the
response system

dy(t)
dt

= F
(
y(t)

)
+ G

(
y(t − τ)

)
+ U(t), (24)

where x, y ∈ Rn are the state variables, F(·),G(·) are
nonlinear operators, U(t) is a feedback control term, and

U(t) =
⎧
⎨

⎩

−k(y(t)− x(t)
)
, (h(n)T ≤ t < h(n)T + δ),

0, (h(n)T + δ ≤ t < h(n + 1)T),
(25)

where k denotes the control strength, T is the control period,
δ is called the control width, and h(n) is a strictly monotone
increasing function on n with h(0) = 0.

In this paper, our goal is to design suitable function, h(n)
and suitable parameters, δ, T , and k such that system (24)
synchronizes to system (3).

Subtract (3) from (24), the error system is obtained

de(t)
dt

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F
(
y(t)

)− F(x(t))

+G
(
y(t − τ)

)−G(x(t − τ))− ke(t),

(h(n)T ≤ t < h(n)T + δ),

F
(
y(t)

)− F(x(t))

+G
(
y(t − τ)

)−G(x(t − τ)),

(h(n)T + δ ≤ t < h(n + 1)T),

(26)

where e = y − x. Then we have the following result.

Theorem 4. Suppose that the operator G in the systems (3)
and (24) satisfies condition (12), and α(F) is defined as in
Definition 2, and λ = α(F) + exp{−α(F)τ}l. Then the syn-
chronization of (3) and (24), given in (26), is asymptotically
stable if the parameters δ, T , and k are such that

inf

(

(r + λ)δ
h−1(t − δ/T)

t
− λ

)

> 0, (27)

where r = k − λ > 0, h−1(·) is inverse function of the function
h(·).

Proof. From Theorem 3, we can get the conclusion as follows:

‖e(t)‖ ≤ ‖e(h(n)T)‖ exp{−r(t − h(n)T)} (28)

for any h(n)T ≤ t < h(n)T + δ,

‖e(t)‖ ≤ ‖e(h(n)T + δ)‖ exp{λ(t − h(n)T − δ)} (29)

for any h(n)T + δ ≤ t < h(n + 1)T .
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Consider conditions (28) and (29), and we can get the
conclusion that

‖e(t)‖ ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖e(0)‖ exp{−rt + (r + λ)h(n)T − n(r + λ)δ},
(h(n)T ≤ t < h(n)T + δ),

‖e(0)‖ exp{λt − (n + 1)(r + λ)δ}
(h(n)T + δ ≤ t < h(n + 1)T),

≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖e(0)‖ exp

{

−
(

(r + λ)δ
h−1(t − δ/T)

t
− λ

)

t

}

,

(h(n)nT ≤ t < h(n)T + δ),

‖e(0)‖ exp

{

−
(

(r + λ)δ
h−1(t/T)

t
− λ

)

t

}

,

(h(n)T + δ ≤ t < h(n + 1)T).
(30)

When t → ∞, ‖e(t)‖ → 0 is obtained under condition (27)
and (26) becomes asymptotically stable.

Corollary 5. Letting G(x(t − τ)) = 0, λ = α(F) be defined
as in Definition 2, and condition (27) is satisfied, then result
similar to Theorem 4 is obtained.

Corollary 6. Supposing that h(n) = pn, p > 0, the operator G
in the systems (3) and (24) satisfies condition (12), and α(F)
is defined as in Definition 2, and λ = α(F) + exp{−α(F)τ}l
then; the synchronization of (3) and (24), given in (26), is
asymptotically stable if the parameters δ, T , and k are such that

(r + λ)δ
1
pT

− λ > 0, (31)

where r = k − λ > 0.

In the simulations of the following examples, we always
choose T = 5, k = 10 and make use of the norm ‖x‖ =√
xTx, where x ∈ Rn.

Example 7. Consider a typical delayed Hopfield neural
network [21–23] with two neurons:

ẋ(t) = −Cx(t) + A f (x(t)) + B f (x(t − τ)), (32)

where x(t) = (x1(t), x2(t))T , f (x(t)) = (tanh(x1(t)),
tanh(x2(t)))T , τ = (1), and C = ( 1 0

0 1

)
, A = ( 2.0 −0.1

−5.0 3.0

)
, with

B = (−1.5 −0.1
−0.2 −2.5

)
.

It should be noted that the network is actually a chaotic
delayed Hopfield neural network.

Equation (32) is considered as the drive system, and the
response system is defined as follows:

ẏ(t) = −Cy(t) + A f
(
y(t)

)
+ B f

(
y(t − τ)

)
+ U(t),

y(t0) = y0.
(33)

We calculate and get the value l < 9.15,α(F) ≤ 0.7993,
where F(x(t)) = −Cx(t) +A f (x(t)),G(x(t− τ)) = B f (x(t−
τ)). Choose h(n) = n, δ = 4, and it is easy to verify
that condition (31) is satisfied. Let the initial condition be

0 5 10 15 20 25 30 35 40 45

0

2

4

6

(a)

−5

0

5

10

0 5 10 15 20 25 30 35 40 45

(b)

Figure 1: (a) Synchronization of x1(t) and y1(t). (b) Synchroniza-
tion of x2(t) and y2(t).

(x1 x2 y1 y2)T = (3 4 7 12.5)T . Then it can be clearly seen
in Figure 1 that the drive system (32) synchronizes with the
response system (33).

Example 8. Considering a typical delayed chaotic neural
network (29) with two neurons [24, 25] as the drive system,
(31) as the response system, where x(t) = (x1(t), x2(t))T ,
f (x(t)) = ( f1(x1(t)), f2(x2(t)))T , fi(xi(t)) = 0.5(|xi(t) + 1| −
|xi(t) − 1|), i = 1, 2, τ = (1), C = ( 1 0

0 1

)
, A =

(
1+π/4 20

0.1 1+π/4

)

,

with B =
(−1.3

√
2π/4 0.1

0.1 −1.3
√

2π/4

)

.

It is easily seen that the operator f (x(t)) is differential
on x in Example 7, but the operator f (x(t)) is not so in this
example.

We calculate and get the value l < 1.3
√

2π/2 + 0.2,α(F) ≤
1.0855, where F(x(t)) = −Cx(t) + A f (x(t)),G(x(t − τ)) =
B f (x(t−τ)). Choose h(n) = 2n, δ = 4, and it is easy to verify
that condition (31) is satisfied. Let the initial condition be
(x1 x2 y1 y2)T = (3 4 17 12.8)T . Then the synchronization
property of this example can be clearly seen in Figure 2.

Example 9. Consider an autonomous Hopfield neural net-
work with four neurons [26, 27]:

ẋ(t) = −Cx(t) + A f (x(t)), (34)

where x(t)=(x1(t), x2(t), x3(t), x4(t))T , f (x(t))=(tanh(x1(t)),
tanh(x2(t)), tanh(x3(t)), tanh(x4(t)))T , and

C =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

,

A =

⎛

⎜
⎜
⎜
⎜
⎝

0.85 −2 −0.5 0.5

1.8 1.15 0.6 0.3

1.1 1.21 2.5 0.05

0.1 −0.4 −1.5 1.45

⎞

⎟
⎟
⎟
⎟
⎠
.

(35)
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Figure 2: (a) Synchronization of x1(t) and y1(t). (b) Synchroniza-
tion of x2(t) and y2(t).

Das II et al. [26] have reported that the system (34) pos-
seses a chaotic behavior.

Equation (34) is considered as the drive system, and the
response system is defined as follows:

ẏ(t) = −Cy(t) + A f
(
y(t)

)
+ U(t),

y(t0) = y0.
(36)

We calculate and get the value α(F) ≤ 1.4369, where
F(x(t)) = −Cx(t) + A f (x(t)) and choose h(n) = n/2, δ =
2. It is easy to verify that condition (31) is satisfied.
Let the initial condition be (x1 x2 x3 x4 y1 y2 y3 y4)T =
(2 − 1 − 2 1 7 6 5.4 9)T . Then it can be clearly seen in
Figure 3 that the drive system (34) synchronizes with the
response system (36).

Example 10. Consider a typical hyperchaotic neural network
(32) with two neurons [28] as the drive system, (33) as the
response system, where x(t) = (x1(t), x2(t), x3(t), x4(t))T ,
f (x(t)) = (0, 0, 0, |x4 + 1| − |x4 − 1|)T , and

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 1

0 −2 −1 0

−14 14 0 0

−100 0 0 100

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 100

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(37)
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Figure 3: (a) Synchronization of x1(t) and y1(t). (b) Synchroniza-
tion of x2(t) and y2(t). (c) Synchronization of x3(t) and y3(t). (d)
Synchronization of x4(t) and y4(t).

We calculate and get the value α(F) ≤ 14.8559, where
F(x(t)) = −Cx(t) + A f (x(t)) and choose h(n) = n2/
(n + 1), δ = 2. It is easy to verify that the condition
(27) is satisfied. Letting the initial condition be
(x1 x2 x3 x4 y1 y2 y3 y4)T = (2 − 1 − 2 1 7 6 5.4 9)T .
Then the synchronization property of this example can be
clearly seen in Figure 4.

4. Conclusion

Approaches for synchronization of two coupled neural
networks which use the nonlinear operator named the
generalized Dahlquist constant and the general intermit-
tent control have been presented in this paper. Strong
properties of global and asymptotic synchronization have
been achieved in a finite number of steps. The techniques
have been successfully applied to typical neural networks.
Numerical simulations have verified the effectiveness of the
method.
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Figure 4: (a) Synchronization of x1(t) and y1(t). (b) Synchroniza-
tion of x2(t) and y2(t). (c) Synchronization of x3(t) and y3(t). (d)
Synchronization of x4(t) and y4(t).
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