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We try to generalize the concept of a spectrum in the nonlinear case starting from its splitting into
several subspectra, not necessarily disjoint, following the classical decomposition of the spectrum.
To obtain an extension of spectrumwith rich properties,we replace the identity map by a nonlinear
operator J acting between two Banach spacesX and Y , which takes into account the analytical and
topological properties of a given operatorF, although the original definitions have been given only
in the case X = Y and J = I. The FMV spectrum reflects only asymptotic properties of F, while the
Feng’s spectrum takes into account the global behaviour of F and gives applications to boundary
value problems for ordinary differential equations or for the second-order differential equations,
which are referred to as three-point boundary value problems with the classical or the periodic
boundary conditions.

1. Introduction

Let us first recall the concept of a spectrum for linear operators acting in a complex Banach
space X. We denote by L(X) the algebra of all bounded linear operators on X and the
resolvent set of L is defined by

ρ(L) =
{
λ ∈ /⊂/(λI − L)−1 ∈ L(X)

}
(1.1)

and the spectrum of L by

σ(L) = /⊂/ρ(L). (1.2)

This spectrum consists of all complex scalars such that λI − L is not invertible because
the inverse does not exists as a bounded operator. This can happen when λI − L is not one
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to one, which means that there exists x/= 0 such that Lx = λx. Such a value of λ is called an
eigenvalue of L and the set of all eigenvalues is called the point spectrum.

For a linear compact operator L, the spectrum σ(L) has some remarkable properties: it
is compact, nonempty and it is countable, so has an empty interior. Moreover, it is bounded
by the spectral radius given by Gelfand′s formula:

r(L) = lim
n→∞

n

√
‖Ln‖ (1.3)

and it commutes with any polynomial p, that is,

σ
(
p(L)

)
= p(σ(L)) (1.4)

by the spectral mapping theorem.
Finally, the map ρ(L) � λ → (λI − L)−1 ∈ L(X) is analytic and the multivalued map

L(X) � L → σ(L) ∈ 2/⊂ is upper semicontinuous.
It is imposible to have a theory for nonlinear operators which collect all the useful

properties of a spectrum that are satisfied by linear maps; see [1]. The spectrum of a nonlinear
map contains rather little information about the map itself and may be empty. There are
various notions of a spectrum for different classes of nonlinear maps that are useful in the
study of nonlinear equations; see [2].

So, given a continuous nonlinear operator F : X → X, one should try to define a
spectrum σ(F) such that σ(F) has the usual properties like nonemptiness, compactness, and
so forth, as in the linear case; σ(F) contains the point spectrum σp(F) of F as in the linear
case (where σp(F) = {λ ∈ /⊂/F(u) = λu}, for some u/= 0); σ(F) has reasonable applications,
for instance, in existence and uniqueness problems, to boundary value problems, bifurcation
problems; see [3].

We try to generalize the concept of a spectrum in the nonlinear case starting
from its splitting into several subspectra, not necessarily disjoint. We follow the classical
decomposition of the spectrum:

σ(L) = σp(L) ∪ σd(L) ∪ σco(L), (1.5)

where σp(L) is the point spectrum of L(λI − L is not 1 − 1); σd(L) is the defect spectrum of
L(λI − L is not onto); σco(L) is the compression spectrum of L(λI − L is not proper).

One way of defining an apropiate spectrum is to restrict attention to specific classes
of maps and to replace the algebra L(X) in (1.1) by other classes of continuous nonlinear
operators. More general, let X be a Banach space over a field K(R or /⊂) and M(X) denote a
class of continuous maps which contains the identity operator I. This leads to the Rhodius
resolvent spectrum [4]. One of the first such definition was given by Neuberger (1969), who
took M(X) = C1(X), the Fréchet differentiable maps on X. The corresponding spectrum
is allways nonempty but may not be closed. Another possible choice is that of Lipschitz
continuous maps F : X → X, which leads to the Kachurovskij spectrum [5], which is closed
but may be empty.

All these spectra have “bad” properties, they do not satisfy the above minimal
requirements (see [3, 6–9], for a comparison between these spectra).
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Later, generalizations of spectrum are based on the Kuratowski measure of noncom-
pactness α(M) of a bounded setM ⊂ X. It is defined as infimum of all ε > 0 such thatMmay
be covered by finitely sets which have at most diameter ε. The name is motivated by the fact
that α(M) = 0 if and only ifM has a compact closure.

A nonlinear operator F : X → Y satisfy two conditions:

α(F(M)) ≤ kα(M),

α(F(M)) ≥ Kα(M), (∀)X ⊃ Mbounded.
(1.6)

The smallest constant k denoted by [F]A and the largest constant K denoted by [F]a
are the first (metric) characteristics. So [F]A = 0 if and only if F is compact and [F]a > 0
implies that F is proper on closed bounded sets.

A major contribution was made in 1978 by Furi et al. see [10]. They employed the
concept of stably solvable maps together with the asymptotic characteristics:

[F]Q = lim sup
‖x‖→∞

‖F(x)‖
‖x‖ , [F]q = lim inf

‖x‖→∞
‖F(x)‖
‖x‖ , (1.7)

the upper and lower quasinorm, respectively.
A continuous function F : X → Y , is stably solvable if, for any compact map G : X →

Y with [G]Q = 0, the coincidence equation F(u) = G(u) has a solution u ∈ X. Taking G(u) = v
for a fixed v ∈ Y it is clear that the stable solvability is equivalent to surjectivity (only if F is
linear); see [11].

To obtain an extension of spectrum with rich properties, we replace the identity map
by a nonlinear operator J : X → Y which takes into account the analytical and topological
properties of the given operator F. We can define spectra for pair of operators (F, J) between
two Banach spaces X and Y , although the original definitions have been given only the case
X = Y and J = I, see [1].

The Furi-Martelli-Vignoli spectrum of the pair (F, J) : X → Y is defined by the union:

σFMV(F, J) = σSS(F, J) ∪ σq(F, J) ∪ σa(F, J), (1.8)

where λ ∈ σSS(F, J) if λJ − F is not stably solvable; λ ∈ σq(F, J) if [λJ − F]q = 0; λ ∈
σa(F, J) if [λJ − F]a = 0.

Relating to the previous decomposition for L ∈ L(x), we get the relations:

σSS(L, I) = σd(L), σq(L, I) ⊇ σp(L), σa(L, I) ⊆ σco(L). (1.9)

The FMV spectrum is closed and upper semicontinuous, as we can see in [10], but
has one defect: did not contain the point spectrum, in the sense that it did not contain the
eigenvalue λ such that λx − F(x) = 0 from some nonzero x.

The FMV theory was so successful for many developments until 1997, when Feng, see
[12], introduced a spectrum defined in a similar way, but with other concepts of solvability
and characteristics which contains the classical point spectrum.
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The Feng spectrum takes into account the global behaviour of F, while the FMV
spectrum reflects only asymptotic properties of F.

Feng developed an attractive theory andwas able to use the theory to give applications
to boundary value problems.

2. Application for Ordinary Differential Equations
Involving Spectral Methods

We consider the problem:

ẋ(t) −A(t)x(t) = εg(t, x(t)), 0 ≤ t ≤ T

Lx = θ,
(2.1)

where A : [0, T] → Rn×n is continuous matrix valued function; g : [0, T] × Rn → Rn is a
Carathéodory function; L : C([0, T], Rn) → Rn is a bounded linear operator which associates
to each continuous function x : [0, T] → Rn a vector Lx ∈ Rn and ε /= 0 is a scalar parameter.

Putting

Dx(t) =
dx

dt
−A(t)x, (2.2)

G(x)(t) = g(t, x(t)), (2.3)

we may write (2.1) as an operator equation:

Dx = εG(x) (2.4)

in the Banach space X = {x ∈ (C([0, 1], Rn)/Lx = θ}.
ByU(t, s)we denote the Cauchy function of the operator familyA(t)which means the

unique solution of the linear Volterra integral equation:

U(t, s) = I +
∫ t

s

A(π)U(π, s)dπ, 0 ≤ t, s ≤ T (2.5)

and by

Ez(t) =
∫ t

0
U(t, s)z(s)ds, 0 ≤ t ≤ T (2.6)

the associated evolution operator.
It is clear the fact that DE = I, that is, the operator (2.6) is the right inverse to the

differential operator (2.2).
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Assume that the composition LU = LU0 of the boundary operator L in (2.1) and the
operator U0 : Rn → C([0, T], Rn) defined by (U0x)(t) = U(t, 0)x, x ∈ Rn is an isomorphism
in Rn.

The nonlinear operator F defined by

F(x) =
(
I −U0L

−1
U L
)
EG(x) (2.7)

maps the Banach space X into itself.
For any x ∈ X, we have

LF(x) = LEG(x) − LU0L
−1
U LEG(x) = LEG(x) − LEG(x) = θ =⇒ F(x) ∈ X. (2.8)

We put

M = sup
0≤t,s≤T

‖U(t, s)‖ (2.9)

and we denote by

μG(r) = sup
‖x‖≤r

‖G(x)‖ (2.10)

the growth function of the Nemytskij operator (2.3).

Proposition 2.1. Suppose that the nonlinearity g : [0, T] × Rn → Rn satisfies a growth condition:

|g(t, u)| ≤ a(t) + b(t)|u|, 0 ≤ t ≤ T, u ∈ Rn (2.11)

for some a, b ∈ L1([0, T]). Define a scalar function ϕ : (0,∞) → (0,∞) by

ϕ(r) = M2
∥∥∥L−1

U

∥∥∥‖L‖μG(r), r > 0 (2.12)

withM given by (2.9) and μG(r) given by (2.10). Then the following linear problem:

λx − Lx = y, y ∈ X (2.13)

admits a solution x ∈ X if and only if 1/ε belongs to the point spectrum of the operator (2.7).
Moreover, the asymptotic point spectrum of this operator satisfies the inclusion

σq(F) ⊆
{
λ ∈ R

λ
exp
(
−M‖b‖1

λ

)
≤ lim

r→∞
ϕ(r)
r

}
. (2.14)

Proof. We put λ = 1/ε. It is well known the fact that every solution of the boundary value
problem (2.1) solves the eigenvalue equation F(x) = λx and vice versa. We only have to
prove (2.14).
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Let x ∈ X be a solution of nonlinear equation, see [2]:

λx − F(x) = y, y ∈ X (2.15)

for some λ > 0. Then

|λ||x(t)| ≤ ∣∣y(t)∣∣ + |EG(x)(t)| +
∣∣∣U0L

−1
U LEG(x)(t)

∣∣∣

≤ ∣∣y(t)∣∣ +M‖a‖1 +M

∫ t

0
b(s)|x(s)|ds +M2

∥∥∥L−1
U

∥∥∥‖L‖g|(t, x(t))|
(2.16)

so |x(t)| ≤ cr + (M/λ)
∫ t
0 b(s)|x(s)|ds, ‖x‖∞ ≤ r, where

cr =
1
λ

[∥∥y∥∥∞ +M‖a‖1 +M2
∥∥∥L−1

U

∥∥∥‖L‖μG(r)
]
. (2.17)

Applying Gronwall
′
s lemma to (2.16) we have

|x(t)| ≤ cr exp
(
M‖b‖1

λ

)
(2.18)

hence

λ exp(−M‖b‖1)
λ

≤ crλ

‖x‖∞
+
‖λx − F(x)‖

‖x‖∞
+
M‖a‖1
‖x‖∞

+
ϕ(r)
‖x‖∞

, for 0 < ‖x‖∞ ≤ r. (2.19)

Passing to the limit r → ∞ we conclude that [λI − F]q > 0 for any λ such that

lim
r→∞

ϕ(r)
r

< λ exp
(
−M‖b‖1

λ

)
(2.20)

(this means that the nonlinear operator F maps the Banach space X into itself); see [13].
The last hypotesis is easily checked by asuming that g(t, u) = a(t) + b(t)u with a, b ∈

L1[0, T]. The growth function in this case satisfies the trivial estimate:

μG(r) ≤ ‖a‖1 + ‖b‖1r (2.21)

so, the condition (2.20) becomes

M2
∥∥∥L−1

U

∥∥∥‖L‖‖b‖1 <
1
ε
exp(−Mε‖b‖1). (2.22)

Putting M‖b‖1ε = η and ω(η) = 1/ηeη we can rewrite (2.22) as ω(η) > M‖L−1
U ‖‖L‖.

But the function ω : (0,∞) → (0,∞) is strictly decreasing, hence invertible, with
limη→ 0+ω(η) = ∞, limη→∞ω(η) = 0 and (2.22) is true for 0 < ε < ω−1(M‖L−1

U ‖‖L‖)/M‖b‖1.
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Passing to λ = 1/ε, this gives an explicit bound of the type (2.14) for an asymptotic
point spectrum σq(F).

3. Another Type of Boundary Value Problems for
the Second-Order Differential Equation

We consider the second-order differential equation

..
x (t) + g(t)f(x(t)) = 0 (3.1)

with the condition

x(0) = 0, x(1) = αx
(
η
)

(3.2)

or

ẋ(0) = 0, x(1) = αx
(
η
)
, (3.3)

where η ∈ (0, 1) is fixed.
This kind of problems are referred to as three-point boundary value problems. Many

existence results have been obtained and is known that, when αη /= 1 in (3.2) or α/= 1 in (3.3),
these boundary value problems may be transformed equivalently in a Hammerstein integral
equation:

x(s) =
∫1

0
k(s, t)g(t)f(x(t))dt, (3.4)

where the Kernel function K depends on the boundary condition (3.2) or (3.3).
In case of the boundary condition (3.2), the Kernel K (Green′s function) from (3.4) is

given by

K(s, t) =
s(1 − t)
1 − αη

− l
(
s, t, α, η

)
, (3.5)

where

l
(
s, t, α, η

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αs
(
η − t

)

1 − αη
+ s − t, t ≤ min

{
η, s
}
,

αs
(
η − t

)

1 − αη
, s < t < η,

s − t, η < t ≤ s,

0, t > max
{
η, s
}
.

(3.6)



8 ISRN Mathematical Analysis

In case of the boundary condition (3.3), the Kernel is given by

k(s, t) =
1 − t

1 − α
−m
(
s, t, α, η

)
, (3.7)

where

m
(
s, t, α, η

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α
(
η − t

)

1 − α
+ s − t, t ≤ min

{
η, s
}
,

α
(
η − t

)

1 − α
, s < t ≤ η,

s − t, η < t ≤ s,

0, t > max
{
j, s
}
.

(3.8)

We define the scalar function k by

k(t) = max
0≤s≤1

|k(s, t)|, 0 ≤ t ≤ 1. (3.9)

The function f in (3.1) is continuous and positive and satisfy the growth condition:

∣∣f(t, u)∣∣ ≤ a(t) + b(t)|u|, 0 ≤ t ≤ 1, u ∈ R, (3.10)

where we may suppose that the functions a and b are constant and we can rewrite (3.10) as

∣∣f(u)∣∣ ≤ a + b|u|. (3.11)

Solving the three-point boundary value problems (3.1) with condition (3.2), or (3.1)
with condition (3.3) can be reduced to solving a Hammerstein integral equation of the from:

λx(s) −
∫1

0
k(s, t)f(t, x(t))dt = y(s), 0 ≤ s ≤ 1 (3.12)

with λ = 1 and y(s) = 0 that is (3.4).
We have the following four propositions (for proofs, see [Nonlinear Spectral Theory

[13, pages 355–358]]).
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Proposition 3.1. Suppose that αη /= 1 and f : R → R is a Carathéodory function which satisfies the
growth condition (3.11). Then the boundary value problem (3.1) with condition (3.2) has at least one
solution provided that

∥∥bg∥∥1 <

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

4
(
1 − αη

)

1 − α
, αη ≤ 0,

4
(
1 − αη

)

max{α, 1} , 0 < αη < 1,

4
(
αη − 1

)

α
, αη > 1,

(3.13)

or

∥∥bg∥∥2 <

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
30
(
1 − αη

)

1 − α
, αη ≤ 0,

√
30
(
1 − αη

)

max{α, 1} , 0 < αη < 1,

√
30
(
αη − 1

)

α
, αη > 1.

(3.14)

Proposition 3.2. Suppose that α/= 1 and f : R → R is a Carathéodory function which satisfies the
growth condition (3.11). Then the boundary value problem (3.1) with condition (3.3) has at least one
solution provided that

∥∥bg∥∥1 <

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, α ≤ 0,

1 − α, 0 < α < 1,
α − 1
α

, α > 1,

(3.15)

or

∥∥bg∥∥2 <

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
3, α ≤ 0,

√
3(1 − α), 0 < α < 1,√
3(α − 1)

α
, α ≥ 1.

(3.16)

Proposition 3.3. Let αη /= 1. Then the following alternative holds.

(i) The quasilinear there-point boundary value problem:

..
x (t) = μf(t, x(t), ẋ(t)) + y(t),

x(0) = 0,

x(1) = αx
(
η
)
,

(3.17)

where y ∈ C[0, 1] is given and μ/= 0 has a solution for μ = 1 and any function y ∈ L1[0, 1].
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(ii) There exist some μ ≤ 1 such that the boundary value problem (3.17) has a nontrivial
solution for y(t) = 0.

(We are interested in solutions x of (3.17) in the Sobolev space W2
1 [0, 1] of all absolutely continuous

functions x such that ẋ is also absolutely continuous and
..
x∈ L1[0, 1]).

Proposition 3.4. Let αη /= 1. Then the bounduary value problem (3.17) has a solution for any function
y ∈ L1[0, 1] provided that

∣∣μ∣∣(∥∥p∥∥1 +
∥∥q∥∥1

)
<

1
c
(
αη
) , (3.18)

where

c
(
α, η
)
= 1 +

αη + 1∣∣1 − αη
∣∣ (3.19)

or

c
(
α, η
)
=

⎧
⎪⎪⎨
⎪⎪⎩

2
1 − αη

, αη < 1,

2αη
αη − 1

, αη > 1.
(3.20)

We can foccus on the equation

..
x (t) = μf(t, x(t), ẋ(t)) + y(t), (3.21)

where f : [0, 1]×Rn×Rn → Rn and y : [0, 1] → Rn are supposed to be continuous vector functions
and μ/= 0.

We also can consider (3.21) together with the classical boundary condition

x(0) = x(1) = 0 (3.22)

or with the periodic boundary conditions

x(0) = x(1),

ẋ(0) = ẋ(1).
(3.23)

Now we have two different problems. The boundary value problem (3.21) with
condition (3.22) may be studied by means of the Feng or FMV spectrum, while the second
boundary value problem given by (3.21)with condition (3.23) requires the semilinear spectra.
For the first problem we put

X =
{
x ∈ C2[0, 1]/x(0) = x(1) = 0

}
,

Y = C[0, 1]
(3.24)
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and we define the operators L, F : X → Y by

Lx(t) =
..
x (t),

F(x)(t) = f(t, x(t), ẋ(t)).
(3.25)

Then L is invertible on Y with inverse

L−1y(s) =
∫1

0
k(s, t)y(t)dt, (3.26)

where

k(s, t) =

⎧
⎨
⎩
s(t − 1), 0 ≤ s ≤ t ≤ 1,

t(s − 1), 0 ≤ t ≤ s ≤ 1
(3.27)

is the classical Green′s function of L.
The solvability of semilinear equation, see [14],

λLx − F(x) = y, y ∈ Y (3.28)

reduces to the solvability of the classical eigenvalue equation

λx − L−1F(x) = z, z ∈ X. (3.29)

For the second problem, see [2, 14], we put

X =
{
x ∈ C2[0, 1]/x(0) = x(1), ẋ(0) = ẋ(1)

}
,

Y = C[0, 1].
(3.30)

In this case, the operator L is not invertible and again we define the operators L, F :
X → Y by (3.25).

We have

N(L) = {x ∈ X/x(t) = const} ∼= Rn,

R(L) =
{
y ∈ Y/Qy = θ

} ∼= Y

Rn
,

(3.31)

where

Qy =
∫1

0
y(t)dt. (3.32)
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For the projection P : X → R we may choose Px = x(0), so we have the de-
compositions

X = Rn ⊕X0 and Y = Rn ⊕ Y0. (3.33)

So dimN(L) = codimR(L) = n which shows that L is a Fredholm operator of index
zero.

The restriction of (3.26) to the range of L is the operator given by

L−1
p = (L/X0)

−1 : R(L) −→ X0. (3.34)

The linear operator (the natural quotient map) Π : Y → Y/R(L) and Λ : Y/R(L) →
N(L) (the natural isomorphism induced by L) are given by

Πy =
[
y
]
=
{
ỹ ∈ Y/Qỹ = Qy

}
,

Λ
[
y
]
= Qy.

(3.35)

As a canonical homeomorphism h : Y/R(L) → Y0 we may choose h[y] = Qy. So the
linear isomorphism L + hΛ−1P : X → Y is given by

(
L + hΛ−1P

)
x(t) =

..
x (t) + x(0) (3.36)

and its inverse ΛΠ +KPQ = ΛΠ + L−1
P (I −Q) : Y → X, is

(
ΛΠ +KPQ

)
y(s) =

∫1

0
k(s, t)y(t)dt +

(
1 −
∫1

0
(k(s, t)dt)

∫1

0
y(t)dt

)
. (3.37)

If L is a bijection between X and Y we have X0 = X, Y0 = θ, Px = Qy = θ and
KPQ = L−1.
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