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Using the plane-wave ultrasoft pseudopotential technique based on the first-principles density functional theory (DFT), we
have studied the structural, electronic, chemical bonding, and optical properties of tetragonal PbMoO4. The obtained structural
parameters are in good agreement with experiments. Band structure, density of states, and chemical bonding are calculated and
shown. It is found that tetragonal PbMoO4 is an indirect band gap. The dielectric function, refractive index, extinction coefficient,
reflectivity, absorption coefficient, loss function, and conductivity function are calculated for radiation up to 20 eV.

1. Introduction

PbMoO4 has been the subject of great research interest both
experimentally [1–8] and theoretically [9–13] due to its wide
applications such as acousto-optic light deflectors, mod-
ulators, adjustable filters, surface acoustic wave devices, ionic
conductors, and low-temperature scintillators, and its supe-
rior properties such as high acousto-optic light figure of
merit, low optical loss in the region 420–3900 nm, and good
mechanical impedance for acoustic matching ([14–17] and
the references therein).

The crystal structure of tetragonal PbMoO4 belongs to
the space group I41/a and the local symmetry C6

4h. The
dielectric constants [18], polarized reflectivity spectra [19],
high-pressure Raman spectrum, and electrical properties
[1, 7, 14] have been reported, which show that there is
an anisotropy of optical properties and a transition from
crystal to amorphous phase with increasing pressure. The
framework of a fully relativistic self-consistent Dirac-Slater
theory with a numerically discrete variational (DV-Xα)
method [9, 13, 19], the ultrasoft pseudopotentials of gen-
eralized gradient approximations (GGAs) based on the
density function theory (DFT) with CASTEP code [10, 12],
the linearized-augmented-plane-wave method with WIEN97
code [11], and so forth have been used to study F type color

centers, optical properties, electronic band structure, and so
forth. Although these studied cases of PbMoO4 are well pre-
sented, it is not clear how electron transitions to influence
optical properties is. Additionally, the chemical bonding of
PbMoO4 should be explained.

Hence, we study the structural parameters, electronic
structure, chemical bonding, and optical properties of
tetragonal PbMoO4 using the plane-wave ultrasoft pseu-
dopotential technique based on the first-principles density
functional theory. The rest of the work is organized as
follows. In Section 2, we give a short description of the
methods used in this paper. The results and discussion are
shown in Section 3. We present our findings and give a brief
summary in Section 4.

2. Computational Methodology

Density functional theory calculations are performed with
plane-wave ultrasoft pseudopotential using the generalized
gradient approximation (GGA) with the Perdew-Wang 1991
(PW91) functional [20] as implemented in the CASTEP code
[21]. The ionic cores are represented by ultrasoft pseudopo-
tentials for Mo, Pb, and O atoms. The Mo 4s24p64d55s1, Pb
5d106s26p2, and O 2s22p4 electrons are explicitly treated as
valence electrons. The plane-wave cutoff energy is 380 eV,
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Figure 1: The crystal structure of tetragonal PbMoO4.
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Figure 2: Band structure of tetragonal PbMoO4 along with the
high-symmetry points of the Brillouin zone.

and the Brillouin zone integration is performed over the
5 × 5 × 6 grid sizes using the Monkhorst-Pack method
for tetragonal structure optimization. This set of parameters
assures the maximum force of 0.01 eV/Å, the maximum
stress of 0.02 GPa, and the maximum displacement of 5.0 ×
10−4 Å.

3. Results and Discussion

3.1. Geometry and Structure Optimization. The crystal struc-
ture of tetragonal PbMoO4 is shown in Figure 1. The op-
timized values of a and c for tetragonal PbMoO4 are listed
in Table 1. The obtained structural parameters are in good
agreement with the previous experimental data [2, 11, 16].
Of course, it can be seen that the GGA leads to overestimating
our calculated data compared with experiments.
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Figure 3: Total and partial density of states of tetragonal PbMoO4.

3.2. Electronic Properties. The calculations of the electronic
band structure along the symmetry lines of the Brillouin
zone, the total and the partial density of states (DOSs and
PDOSs) are shown in Figures 2 and 3. The top of the valence
band is taken as the zero of energy. In this compound, the
valence band maximum (VBM) is located at 1 point (the
valence band maximum of tetragonal PbMoO4 is not at
high-symmetry point, but at the defined 1 point between
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Figure 4: Total charge densities of (112) plane and charge densities located (1)–(8) in the (112) plane of tetragonal PbMoO4.
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Figure 5: Charge densities in the (220) plane of tetragonal
PbMoO4.

Table 1: Calculated equilibrium lattice parameters a, c (in Å), and
c/a compared with available experimental data [2, 11, 16] for tet-
ragonal PbMoO4.

This work

Castep
GGA

(PW91)
Expt. [11] Expt. [16] Expt. [2]

a 5.5173 5.424–5.4360 5.433 5.418–5.464

c 12.3305 12.076–12.1107 12.110 12.065–12.088

c/a 2.2349 2.226–2.229 — —

X and Γ), whereas the conduction band minimum (CBM) is
located at N point, resulting in indirect band gap of 2.838 eV.
This value is in good agreement with the previous calculated
data 2.59 eV [11] and 2.8 eV [12]. However, these results are
all smaller than the experimental values of 2.94–4.7 eV [2]
due to the well-known underestimation of conduction band
energy in DFT calculations [22].

In order to further elucidate the nature of the electronic
band structure, we have calculated and explained the DOSs
and PDOSs. From the PDOSs, we can identify the angular
momentum character of the different structures. Structure
(1) is mainly due to Mo-4 s electrons, structure (2) due
to Mo-4p electrons, structure (3) due to O-2 s electrons,
structure (4) due to Pb-5d electrons, structure (5) due to
Pb-6 s electrons, structures (6) and (7) due to O-2p electrons
with hybridization of Mo-4d electrons, and structure (8) due
to O-2p electrons. The conduction bands are composed of
Mo-4d and show the hybridization with O-2p, as well as the
hybridization between Pb-6p and O-2p.

To understand the chemical bonding of this material,
we have poltted the charge density of (112) plane corre-
sponding to the (1)–(8) located at Figure 3 in Figure 4. The
polt labeled (1) shows the isolated Mo-4 s, (2) the weak
hybridization σ bonding between Mo-4p and O-2 s, (3) the
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Figure 6: Calculated imaginary parts of complex dielectric function
of tetragonal PbMoO4 as well as calculated results from experimen-
tal data [19].

weak hybridization σ bonding between O-2 s and Mo-4d,
(4) the weak hybridization σ bonding between Pb-5d and
O-2 s, (5) the weak hybridization σ bonding between Pb-6 s
and O-2p, (6) and (7) the hybridization σ and π bonding
between O-2p and Mo-4d, and (8) the nonbonding O-2Pπ .
Hence, we can conclude that the bonding between Mo and
O is mainly covalent and the bonding between Pb and O is
mainly ionic. Additionally, the charge density of (220) plane
and the results of population analysis have been shown in
Figure 5 and Table 2, which are in good agreement with our
analysis of chemical bonding.

3.3. Optical Properties. We need to calculate two dielectric
tensor components to completely characterize the linear op-
tical properties due to the tetragonal symmetry of PbMoO4.
The imaginary and the real parts of the dielectric function are
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Figure 7: Calculated real parts of complex dielectric function of tet-
ragonal PbMoO4 as well as calculated results from experimental
data [19].

Table 2: Calculated results of population analysis.

Atom s p d Total Charge (e)

O 1.89 4.78 0 6.68 −0.68

Mo 2.24 6.51 4.01 12.76 1.24

Pb 1.71 0.81 10 12.52 1.48

calculated using (1) [23–25]:

ε2(ω)=
(

4π2e2

m2ω2

)∑
i, j

∫ 〈
i|M| j〉2

fi
(
1− fi

)
δ
(
Ef −Ei − ω

)
d3k,

ε1(ω) = 1 +
2
π
P
∫∞

0

ω′ε2(ω′)dω′

(ω′2 − ω2)
(1)

as well as the scissors operator approximation [25, 26] due
to underestimating the energies of excitation with the den-
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Figure 8: Calculated refractive index and extinction coefficient of
tetragonal PbMoO4 from (100) and (001).

sity functional calculations. The good agreement with exper-
iments are obtained for the optical properties like TiO2 [26],
SrHfO3 [27], SrZrO3 [28], and HfO2 [29] using the scissors
operator.

Figures 6 and 7 display the imaginary and the real parts of
the dielectric function from (100) and (001) along with the
calculated results from experimental data [19] for a radiation
up to 20 eV. We can see that our results are consistent with the
previous work [19]. The discrepancy between our results and
the experiment [19] may be due to the different-temperature
condition (0, K in our paper and 6, K in [19]). The imaginary
parts exhibit four structures A–D of (100) and E–H of (001).
Structures A and E originate mainly from transitions of O-
2pπ into the conduction bands, and structures B and F from
transitions of hybridization π bonding between O-2p and
Mo-4d into the conduction bands, and structures C and G
from transitions of hybridization σ bonding between O-2p
and Mo-4d into the conduction bands, and structures D and
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Figure 9: Calculated reflectivity, absorption coefficient, loss func-
tion and complex conductivity function of tetragonal PbMoO4

from (100) and (001).

H from transitions of Pb-6 s into the conduction bands. The
calculated static dielectric constants are 5.337 and 4.910 from
(100) and (001).

The refractive index and the extinction coefficient are
displayed in Figure 8. The static refractive index is found to
have the values 2.310 and 2.216 from polarization vectors
(100) and (001), which are in agreement with experimental
data 2.28 and 2.40 [18] from (100) and (001). Figure 9
shows the calculated results on the reflectivity, absorption
coefficient, loss function, and complex conductivity function
from polarization vectors (100) and (001). We hope the
calculated values can help to offer a theoretical basis for the
experiment and application of tetragonal PbMoO4.

4. Conclusions

The paper reports detailed investigations on the structural,
electronic, chemical bonding, and optical properties of tet-
ragonal PbMoO4 using the plane-wave ultrasoft pseudopo-
tential technique based on the first-principles density-func-
tional theory (DFT). The calculated equilibrium lattice pa-
rameters are in agreement with experiments. Our calculated
results of the band structure and DOSs show that this com-
pound is an indirect band gap of 2.838 eV. The charge den-
sities and population analysis are obtained and analyzed,
which show that Mo and O are mainly covalent, whereas
Pb and O are mainly ionic. The complex dielectric function
has been shown, and the peaks position distributions of im-
aginary parts of complex dielectric function have been ex-
plained, which show electron transitions in the electronic
bands.
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