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This paper considers the applications of resampling methods to support vector machines (SVMs). We take into account the leaving-
one-out cross-validation (CV) when determining the optimum tuning parameters and bootstrapping the deviance in order to
summarize the measure of goodness-of-fit in SVMs. The leaving-one-out CV is also adapted in order to provide estimates of the
bias of the excess error in a prediction rule constructed with training samples. We analyze the data from a mackerel-egg survey and
a liver-disease study.

1. Introduction

In recent years, support vector machines (SVMs) have
been intensively studied and applied to practical problems
in many fields of science and engineering [1–3]. SVMs
have many merits that distinguish them from many other
machine learning algorithms, including the nonexistence
of local minima, the speed of calculation, and the use of
only two tuning parameters. There are at least two reasons
to use a leaving-one-out cross-validation (CV) [4]. First,
the criterion based on the method is demonstrated to be
favorable when determining the tuning parameters. Second,
the method can estimate the bias of the excess error in
prediction. No standard procedures exist by which to assess
the overall goodness-of-fit of the model based on SVM. By
introducing the maximum likelihood principle, the deviance
allows us to test the goodness-of-fit of the model. Since
no adequate distribution theory exists for the deviance,
we provide bootstrapping on the null distribution of the
deviance for the model having optimum tuning parameters
for SVM with a specified significance level [5–8].

The remainder of this paper is organized as follows. In
Section 2, using the leaving-one-out CV, we focus on the
determination of the tuning parameters and the evaluation
of the overall goodness-of-fit with the optimum tuning
parameters based on bootstrapping. The leaving-one-out CV

is also adapted in order to provide estimates of the bias of the
excess error in a prediction rule constructed with training
samples [9]. In Section 3, the one-against-one method is
used to estimate a vector of multiclass probabilities for each
pair of classes and then to couple the estimates together [3,
10]. In Section 4, the methods are illustrated using mackerel-
egg survey and liver-disease data. We discuss the relative
merits and limitations of the methods in Section 5.

2. Support Vector Machines and Resampling
Methods

2.1. Support Vector Machines. Given n training pairs
(x1, y1), (x2, y2), . . . , (xn, yn), where xi is an input vector and
yi ∈ {−1, +1}, the SVM solves the following primal problem:

min
β,b

1
2
βTβ + C

n∑

i=1

ξi

s.t. yi
{
βTφ(xi) + b

}
≥ 1− ξi,

ξi ≥ 0, i = 1, 2, . . . ,n,

(1)

where β is a unit vector (i.e., ‖β‖ = 1), T denotes the
transposition of the matrix, K(x, xi) ≡ φ(xi)

T φ(xi) is the
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kernel function, C is the tuning parameter denoting the
tradeoff between the margin width and the training data
error, and ξi ≥ 0 are slack variables. For an unknown input
pattern x, we have the decision function

f (x) =
n∑

i=1

αi yiK(x, xi) + b, (2)

where {αi, i = 1, 2, . . . ,n; αi ≥ 0} are the Lagrange multi-
pliers. We employ the Gaussian radial basis function as the
kernel function [3, 11, 12]

K(x, x′) = exp
(
−γ∥∥x − x′

∥∥2
)

, (3)

where γ > 0 is a fixed parameter, and

∥∥x − x′
∥∥2 = 〈x − x′, x− x′

〉
. (4)

Binary classification is performed by using the decision
function f (x): the input X = (x1, x2, . . . , xn)T is assigned
to the positive class if f (x) ≥ 0, and to the negative class
otherwise. Platt [13] proposed one method for producing
probabilistic outputs from a decision function by using
logistic link function

p
(
y = +1 | f ) = 1

1 + eA f +B , (5)

where fi = f (xi) and yi represent the output of the SVM
and the target value for the sample, respectively [14]. This
is equivalent to fitting a logistic regression model to the
estimated decision values. The unknown parameters A,B in
(5) can be estimated by minimizing the cross-entropy

Min
A,B

⎡
⎣−

n∑

i=1

{
yi ln pi +

(
1− yi

)
ln
(
1− pi

)}
⎤
⎦, (6)

where

pi = 1
1 + eA fi+B

. (7)

Putting

ti = yi + 1
2

=
⎧
⎨
⎩

0: yi = −1,

1: yi = +1,
(8)

from (6), (7), and (8), we obtain

− {ti ln pi +
(
1− yi

)
ln(1− ti)

}

= ti
(
A fi + B

)
+ ln

{
1 + exp

(−A fi − B
)}
.

(9)

Lin et al. [15] observed that the problem of ln(0) never
occurs for (9).

2.2. Leaving-One-Out Cross-Validation

2.2.1. CV Score. We must determine the optimum values
of tuning parameters C and γ in (1) and (3), respectively.
This can be done by means of the leaving-one-out CV; a by-
product is that the excess error rate of incorrectly predicting
the outcome is estimated.

Let the initial sample X = {X1, X2, . . . , Xi−1, Xi, Xi+1, . . . ,
Xn}with Xi = (xi, ti) be independently distributed according
to an unknown distribution. The leaving-one-out CV algo-
rithm is then given as follows (see, e.g., [5]).

Step 1. From the initial sample X, Xi are deleted in order to
form the training sample X[i] = {X1, X2, . . . , Xi−1, Xi+1, . . . ,
Xn}.

Step 2. Using each training sample, fit an SVM and predict

the decision value f̂[i] for Xi.

Step 3. From the decision value f̂[i], we can predict p̂[i] for
the deleted ith sample using (7) and calculate the predicted
log-likelihood t[i] ln p̂[i] + (1− t[i]) ln(1− p̂[i]).

Step 4. Steps 1 to 3 are repeated for i = 1, 2, . . . ,n.

Step 5. The CV score (i.e., averaged predicted log-likelihood)
is given by

CV = −2
n∑

i=1

{
t[i] ln p̂[i] +

(
1− t[i]

)
ln
(
1− p̂[i]

)}
. (10)

Step 6. Carry out a grid search over tuning parameters
C and γ, taking the tuning parameters with minimum
CV as optimal. It should be noted that the CV score
is asymptotically equivalent to AIC (akaike information
criterion) and EIC (extended information criterion) [16–18].

2.2.2. Excess Error Estimation. Let the actual error rate be the
probability of incorrectly predicting the outcome of a new
observation, given a discriminant rule on initial sample X;
this is useful for performance assessment of a discriminant
rule. Given a discriminant rule based on the initial sample,
the error rates of discrimination are also of interest. As
the same observations are used for forming and assessing
the discriminant rule, this proportion of errors, called the
apparent error rate, underestimates the actual error rate. The
estimate of the error rate is seriously biased when the initial
sample is small. This bias for a given discriminant rule is
called the excess error of that rule. To correct this bias and
estimate the error rates, we provide the bias correction of
the apparent error rate associated with a discriminant rule,
which is constructed by fitting to the training sample in the
SVM.

By applying a discriminant rule to the initial sample X,
we can form the realized discriminant rule ηX. Let ηX[i] be the
discrimination rule based on X[i]. Given a subject with xi, we
predict the response by ηX[i] (xi). The algorithm for leaving-
one-out CV that estimates the excess error rate when fitting
a SVM is given as follows [9].
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Step 1. Generate the training sample X[i], and construct the
realized discrimination rule ηX[i] based on X[i]. Then, define

Q
(
ti;ηX[i] (xi)

)
=
⎧
⎨
⎩

1: incorrect discrimination,

0: otherwise.
(11)

Then leaving-one-out CV error rate is given by

1
n

n∑

i=1

Q
(
ti;ηX[i] (xi)

)
. (12)

Step 2. Calculate the apparent error

1
n

n∑

i=1

Q
(
ti;ηX(xi)

)
. (13)

Step 3. The cross-validation estimator of expected excess
error is

r̂CV = 1
n

n∑

i=1

Q
(
ti;ηX(xi)

)− 1
n

n∑

i=1

Q
(
ti;ηX[i] (xi)

)
. (14)

2.3. Bootstrapping. Introducing the maximum likelihood
principle into the SVM, the deviance allows us to test the
goodness-of-fit of the model

Dev = 2
[

ln L̂ f − ln L̂c
]

= −2
n∑

i=1

{
ti ln p̂i + (1− ti) ln

(
1− p̂i

)}
,

(15)

where ln L̂c denotes the maximized log likelihood under
some current SVM, and the log likelihood for the saturated
model ln L̂ f is zero. The deviance given by (15) is, however,
not even approximately a χ2 distribution for the case in
which ungrouped binary responses are available [19, 20].
The number of degrees of freedom (d.f.) required for the
test for significance using the assumed χ2 distribution for
the deviance is a contentious issue. No adequate distribution
theory exists for the deviance. The reason for this is
somewhat technical (for details, see Section 3.8.3 in [19]).
Consequently, the deviance on fitting a model to binary
response data cannot be used as a summary measure of the
goodness-of-fit test of the model.

Based on the above discussion, the percentile of deviance
for goodness-of-fit test can in principle be calculated. How-
ever, the calculations are usually too complicated to perform
analytically, so Monte Carlo method can be employed [6, 7].

Step 1. Generate B bootstrap samples X∗ from the original
sample X. Let X∗

b denote the bth bootstrap sample.

Step 2. For the bootstrap sample X∗
b , compute the deviance

of (15), denoted by Dev∗(b).
Steps 1 and 2 are repeated independently B times, and the

computed values are arranged in ascending order.

Step 3. Take the value of the jth order statistic Dev∗(b) of the
B replications as an estimate of the quantile of order j/(B+1).

Step 4. The estimate of the 100(1−α)th percentile of Dev∗(b)
is used to test the goodness-of-fit of a model having a
specified significance level α = 1 − j/(B + 1). The value of
the deviance of (15) being greater than the estimate of the
percentile indicates that the model fits poorly. Typically, the
number of replication B is in the range of 50 ≤ B ≤ 400.

2.4. Influential Analysis. Assessing the discrepancies between
ti and p̂i at the ith observation in (15), the influence measure
provides guides and suggestions that may be carefully applied
to a SVM [19]. The effect of the ith observation on the
deviance can be measured by computing

ΔDev[i] = Dev−Dev[i], (16)

where Dev[i] is the deviance with ith observation deleted.
The distribution of ΔDev[i] will be approximated by χ2 with
d.f. = 1 when the fitted model is correct. An index plot is
a reasonable rule of thumb for graphically presenting the
information contained in the values of ΔDev[i]. The key
idea behind this plot is not to focus on a global measure
of goodness-of-fit but rather on local contributions to the
fit. An influential observation is one that greatly changes
the results of the statistical inference when deleted from the
initial sample.

Platt [13] proposed the threefold CV for estimating the
decision values in (9). However, the value of ΔDev[i] may
be negative because three SVMs are trained on splitted
three parts of training pairs (x1, y1), (x2, y2), . . . , (xn, yn).
Therefore, in the present paper, we train a single SVM on
the training pairs in order to evaluate the decision values f ′i s
and estimate probabilistic outputs according to [15].

3. Multiclass SVM

We consider the discriminant problem with K classes
and n training pairs (x1, t1), (x2, t2), . . . , (xn, tn), where xi

is an input vector and ti = (ti1, ti2, . . . , tiK ) [10, 21, 22].
Let pii, pi2, . . . , piK denote the response probabilities, with∑K

k=1 pik = 1, for multiclass classification with

tik =
⎧
⎨
⎩

1: input vector xi is from kth class,

0: otherwise.
(17)

The log-likelihood is given by

ln L =
n∑

i=1

K∑

k=1

{
tik ln

(
pik
)}
. (18)

For multi-class classification, the one-against-one
method (also called pairwise classification) is used to
produce a vector of multi-class probabilities for each pair
of classes, and then to couple the estimates together [10].
The earliest used implementation for multi-class SVM is
probably the one-against-one method of [21]. This method
constructs K(K − 1)/2 classifiers based on the training on
data from the kth and lth classes of training set.
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The SVM solves the primal formulation [3, 10, 23]

min
βkl ,bkl ,ξkl

1
2

(
βkl
)T

βkl + C
∑

t

ξklt

s.t.
(
βkl
)T

φ(xt) + bkl ≥ 1− ξklt , if yt = k,

(
βkl
)T

φ(xt) + bkl ≤ −1 + ξklt , if yt = l,

ξklt ≥ 0.

(19)

Given K classes of data for any x, the goal is to estimate

pk = Pr{t = k | x}, k = 1, 2, . . . ,K. (20)

We first estimate pairwise class probabilities

rkl ≈ Pr(t = k | t = k or l, x), (21)

by using

rkl ≈ 1
1 + eA f +B , (22)

where A and B are estimated by minimizing the cross entropy
using training data and the corresponding decision values f .

Hastie and Tibshirani [21] proposed minimizing the
Kullback-Leibler (KL) distance between rkl and μkl =
E[rkl] = pk/(pk + pl),

l
(

p
) =

∑

k /= l

nklrkl ln

(
rkl
μkl

)

=
∑

k<l

nkl

{
rkl ln

(
rkl
μkl

)
+ (1− rkl) ln

(
1− rkl
1− μkl

)}
,

(23)

where rlk = 1 − rkl and nkl is the number of training data in
the kth and lth classes.

Wu et al. [10] propose the second approach to obtain pk
from all these rkl’s by optimizing

min
1
2

K∑

k=1

∑

k:k /= l

(
rkl pi − rkl p j

)2

s.t.
K∑

k=1

pk = 0, pk ≥ 0.

(24)

Thus, we can adopt the leaving-one-out CV similar to the
method in Section 2.2.

Step 1. From the initial sample X, Xi are deleted in order
to form the training sample X[i] = {X1, X2, . . . , Xi−1, Xi+1,
. . . , Xn}.

Step 2. Using each training sample, fit a SVM in order to
estimate rkl[i] by (22), and predict ( p̂[i1], p̂[i2], . . . , p̂[iK]) for
the deleted ith sample X[i].

Step 3. Steps 1 and 2 are repeated for i = 1, 2, . . . ,n.
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Figure 1: Histogram of the bootstrapped Dev∗(b) for mackerel-egg
survey data.
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Figure 2: DIFDEV for mackerel-egg survey data.

Step 4. The CV score is given by

CV =
n∑

i=1

K∑

k=1

{
t[ik] ln

(
p̂[ik]

)}
. (25)

Step 5. Tuning parameters with minimum CV can be
determined as optimal by carrying out a grid search over C
and γ.

4. Examples

4.1. Mackerel-Egg Survey Data. We consider data consisting
of 634 observations from a 1992 mackerel egg survey [24].
There are the following predictors of egg abundance: the
location (longitude and latitude) at which samples were
taken, depth of the ocean, distance from the 200 m seabed
contour, and, finally, water temperature at a depth of 20 m.
We first fit a SVM. In the same manner as described in [11],
we determine tuning parameters C and γ. The optimum
values of the tuning parameters are (C, γ) = (28, 0.09).
The bootstrap estimator of the percentile for the deviance
is Dev∗(b) = 444.31. A comparison with the deviance
Dev = 443.132 from (15) suggests that the SVM fits the
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Table 1: Error rates for mackerel-egg survey data.

Model Apparent error rate
Leaving-one-out CV

error rate

SVM 0.159 0.167

GAM 0.158 0.175

Neural network with
three hidden units

0.153 0.181

Fisher’s linear
discriminant

0.180 0.185

Logistic discriminant 0.192 0.196

Table 2: Error rates for liver disease data.

Model

Training sample

Test sampleApparent
error

Leaving-one-out
CV error

SVM 0.085 0.209 0.292

Fisher’s linear
discriminant 0.366 0.360 0.340

Multinomial logistic
discriminant 0.229 0.196 0.323

data fairly well. For reference purposes, the histogram of the
bootstrapped Dev∗(b) for B = 400 is provided in Figure 1.

We can estimate the apparent errors rate of incorrectly
predicting outcome and leaving-one-out CV error rates
for several models as shown in Table 1. The smoothing
parameters in generalized additive models (GAM) [24] and
the number of hidden units in a neural network in Table 1
are determined using the leaving-one-out CV. From Table 1,
the leaving-one-out CV error rate for the SVM is the smallest
among all models, but the apparent error rate is the smallest
for the neural network. The CV scores are 477.04, 509.44,
and 541.61 for the SVM, logistic discriminant, and neural
network, respectively. This implies that the SVM is the best
among these three models from the point of view of CV.
Figure 2 shows the index plot of ΔDev[i], which indicates that
no. 399 and no. 601 are influential observations at the 0.01%
level of significance.

4.2. Liver Disease Data. We apply the proposed method
to laboratory data collected from 218 patients with liver
disorders [25–27]. Four liver diseases were observed: acute
viral hepatitis (57 patients), persistent chronic hepatitis (44
patients), aggressive chronic hepatitis (40 patients), and
postnecrotic cirrhosis (77 patients). The covariates consist
of four liver enzymes: aspartate aminotransferase (AST),
alanine aminotransferase (ALT), glutamate dehydrogenase
(GIDH), and ornithine carbamyltransferase (OCT). For each
(C, γ) pair, the CV performance is measured by training 70%
and testing the other 30% of the data. Then, we train the
whole training set by using the pair (C, γ) = (93, 0.20), which
achieves the minimum CV score (=187.93) and predicts the
test set. The apparent and leaving-one-out CV error rates
for traing and test samples for several models as shown
in Table 2. As shown, the apparent error rate for SVM of

training sample and the error rate for SVM of test sample
are the smallest among all models, but the leaving-one-out
CV error rate for SVM of training sample is larger than that
of the multinomial logistic discriminant model.

5. Concluding Remarks

We considered the application of resampling methods to
SVMs. Statistical inference based on the likelihood approach
for SVMs was discussed, and the leaving-one-out CV was
suggested for determining the tuning of parameters and
for estimating the bias of the excess error in prediction.
Bootstrapping is used to focus on the evaluation of the
overall goodness-of-fit with the optimum tuning parameters.
Data from a mackerel-egg survey and a liver-disease study are
used to evaluate the resampling methods.

There is one broad limitation to our approach: the
SVM assumed the independence of the predictor variables.
More generally, it may be preferable to visualize interactions
between predictor variables. The smoothing spline ANOVA
models [28] can provide an excellent means for handling
data of mutually exclusive groups and a set of predictor
variables. We expect that flexible methods for a discriminant
model using machine learning theory [1], such as penalized
smoothing splines, will be very useful in these real-world
contexts.
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