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Wind and solar (photovoltaic) power generations have rapidly evolved over the recent decades. Efficient and reliable planning
of power system with significant penetration of these resources brings challenges due to their fluctuating and uncertain
characteristics. In this paper, incorporation of both PV and wind units in the unit commitment of power system is investigated
and a risk-constrained solution to this problem is presented. Considering the contribution of PV and wind units, the aim is to
determine the start-up/shut-down status as well as the amount of generating power for all thermal units at minimum operating
cost during the scheduling horizon, subject to the system and unit operational constraints. Using the probabilistic method of
confidence interval, the uncertainties associated with wind and PV generation are modeled by analyzing the error in the forecasted
wind speed and solar irradiation data. Differential evolution algorithm is proposed to solve the two-stage mixed-integer nonlinear
optimization problem. Numerical results indicate that with indeterminate information about the wind and PV generation, a
reliable day-ahead scheduling of other units is achieved by considering the estimated dependable generation of PV and wind units.

1. Introduction

Nowadays, researches and applications of renewable energy
sources, such as solar and wind is growing rapidly. Tech-
nological and economical progress of efficient and reliable
wind turbines and photovoltaic (PV) panels as well as the
concerns about environmental issues has contributed to large
penetration of wind and solar energy in the power system.
The exploitation level of wind energy in several countries
in Europe has been reported to be up to 20% of the total
annual demand [1]. With further developments in the PV
technology and lower manufacturing costs, the outlook is
that the PV power will possess a larger share of electric power
generation in the near future. Grid-connected PV is ranked
as the fastest-growing power generation technology [2].
Although the PV installation costs are still high, PV generates
pollution-free and very cost-effective power which relies on
a free and abundant source of energy [3]. However, the
integration of these renewable sources into the power system
exhibits challenges mainly due to their natural intermittency
and limited predictability.

One of the most prominent issues regarding power
system operation is optimal scheduling of the units or the
unit commitment (UC) problem. The problem is referred
to as a nonlinear, nonconvex, large-scale, mixed integer, and
combinatorial problem [4], so that the efforts have always
been made to introduce new alternative solution techniques
and to enhance the solution quality and computational
efficiency. The objective is to determine the on/off state
and the amount of power generation for each unit in the
system such that the overall system operation cost over the
scheduling time period is minimized and the load demand
and operational constraints for the system and units are met
[5]. The presence of the solar and wind energy makes the
problem more difficult and embeds the stochastic parameters
into the problem to be handled. The amount of available
wind and solar power should be inevitably estimated with
a reliable level of accuracy. Moreover, additional power
reserves are needed to maintain the operation of the system
at the required stability margin. The scheduled system
reserves support the generator outages and, in addition, the
intermittent generations [6].
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The literature on the UC problem is vast. Various
solution methods including both classic and heuristic meth-
ods have so far been investigated and reported [7] as
the optimization method for the solution of the thermal
UC problem. Priority List (PL) [8], Lagrangian Relaxation
(LR) [9], Particle Swarm Optimization (PSO) [4], Genetic
Algorithm (GA) [10], and Shuffled Frog Leaping Algorithm
(SFLA) [11] are the most recent work. Each of the reported
methods has their own advantages and drawbacks. The
methods have been evaluated by considering the UC as a
determinate problem, although the same solution qualities
may be affected when uncertainty considerations due to the
load swings and renewable penetrations are involved in the
problem.

Some studies have focused on the integration of wind
power into the unit commitment problem. In [6], a stochas-
tic cost model and a UC solution method in a wind-
integrated power system considering the demand and wind
generation uncertainties is presented. In [12], the focus is
on the solution method whereas the uncertainty modeling
of wind generation is not explored. In [13], the WILMAR
model based on the scenario tree tool is suggested to study
the effects of stochastic wind and load on the UC. The
integration of considerable solar resources in power system
is also of great concern in operation and planning decisions.
Although the fluctuation rate of the wind power is more
significant than that of solar power, it necessitates taking
into consideration the solar estimation with a level of risk,
especially when it comes to have a high range of solar power
penetration. In this paper, solution of the UC with both wind
and PV power consideration is under study.

In the remainder of this paper, we present a simple
method based on the probabilistic confidence interval
accompanied with the differential evolution algorithm to
form a risk-constrained solution to the unit commitment
incorporating the uncertainties of PV and wind turbine
generation (WTG) in power system. The effectiveness of the
method is illustrated by application results to a test system.

2. UC Problem Formulation

The aim of solving the UC problem is to determine when
to start up and shut down thermal units so that the total
operating cost is minimized during the scheduling horizon,
while the system and the generator constraints are satisfied.
The generation costs of PV and WTG from the public utility
are the cheapest because they need no fuel. Accordingly, the
fuel cost is the significant component of the total operation
cost, normally modeled by a quadratic input/output curve,
written as

FCi
(
Pt
i

) = Ai + Bi · Pt
i + Ci ·

(
Pt
i

)2
. (1)

The summation of fuel, start-up, and shut-down costs of
the generating units form the total operation cost over the
planning period, which is given by

TC =
T∑

t=1

N∑

i=1

(
FCi
(
Pt
i

) · u(t)
)

+ SUT + SDT , (2)

where SUT is the start-up cost modeled as a two-valued (hot
start/cold start) staircase function and SDT is the shut-down
cost which is assumed zero [14]:

SUi =
⎧
⎨

⎩

CSi, if DTi > MDTi + CSHi,

HSi, if MDTi ≤ DTi ≤MDTi + CSHi,
(3)

where DTi is the down time of unit i.
The constraints in the optimization process are explained

as follows.

(a) Thermal Unit Constraints

(i) the unit initial operation status (must run, fixed
power, unavailable/available);

(ii) the rated range of generation capacity:

Pimin < Pt
i < Pimax ; (4)

(iii) ramp up/down rates:

Pt
imax = min

{
Pimax,Pt−1

i + τ · RUi

}
, (5)

Pt
imin = max

{
Pimin,Pt−1

i − τ · RDi

}
; (6)

(iv) the minimum up/down time limits of the units.

This constraint represents the minimum time for which
a unit must remain on/off before it can be shut down or
restarted, respectively:

Tc
ion > MUTi

Tc
ioff > MDTi

,

,
(7)

where c is the number of the cycle among all cycles (C)
which the scheduling horizon consists of. The summation of
Tc
ion and Tc

ioff over the whole cycles for each unit must be
equal to the scheduling horizon (T) which is 24 hours:

C∑

c=1

(
Tc
ion + Tc

ioff

)
= T. (8)

(b) Renewable Power Risk Constraint. As mentioned before,
the scheduling of power system in the presence of PV and
WTG units requires estimation of their available power over
the scheduling period. Nevertheless, even the most precise
prediction methods reveal errors compared to actual data.
From the viewpoint of secure operation scheduling of power
system, the important factor is to confine the generation
risks and uncertainties to a definite level and ensure a level
of confidence about the intermittent power. The maximum
power at risk will be calculated based on the desired level of
confidence (LC) defined by the operator. The risk constraint
is written as follows:

P
(
Powerrisk ≤ Powerrisk, max

)
> LC, (9)
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where P (Powerrisk < Powerrisk, max) indicates the prob-
ability of the power at risk (Powerrisk) being less than
the maximum power at risk Powerrisk, max. Powerrisk, max is
calculatedbased on LC and the probability density func-
tion (PDF) of the historical forecast errors, described in
Section 3.2.

(c) System Constraints

(i) the system hourly power balance:

N∑

i=1

ui(t) · Pt
i + PC,RES(t) = Dt; (10)

(ii) the spinning reserve (10-min) requirements;

N∑

i=1

ui(t) · Pt
imax ≥ Dt + Rt, (11)

where Pt
i max is obtained using (5) with τ = 10.

The overall fitness function is written as:

FF = TC + PT, (12)

where PT is the total penalty term (PT = PTres + PTcap)
for penalizing the spinning reserve constraint violations
PTres and also the excessive capacity PTcap, expressed by:

PTres =
T∑

t=1

R

⎛

⎝
(
Dt + Rt

)−
N∑

i=1

ui(t) · Pt
imax

⎞

⎠,

PTcap =
T∑

t=1

R

⎛

⎝
N∑

i=1

ui(t) · Pt
imin −Dt

⎞

⎠.

(13)

3. Renewable Power Risk Analysis

3.1. Wind and Solar Power Prediction. The day-ahead pre-
diction is generally used for power plant scheduling and
electricity trading [6]. The power from uncertain units
can be generally predicted by a variety of tools. Among
these tools, the artificial neural network (ANN) which is
wellknown and widely used for time series predictions
[15, 16] is utilized in this study. In this study, an MLP
network has been chosen because of the ease of application
particularly compared with other hybrid ANNs (e.g., ANFIS,
GA-ANN, etc.) [16]. Moreover, all needed functions are
already available in the MATLAB neural networks toolbox.

The MLP network is trained using levenberg-marquardt
technique which is fast for practical problems compared with
other back-propagation algorithms such as gradient decent.
Two independent networks are trained for solar and wind
power prediction. The appropriate number of hidden neu-
rons of each network determined using a forward heuristic
simulation [15]. The number of neurons is initialized by
a small number and incrementally changed in an iterative

process to reach a point at which no significant advance
is observed by increasing the number of hidden neurons.
At such a point, a compromise between memorization and
generalization ability is reached. The developed NNs have
one output containing a vector of renewable power for 24
hours day ahead. The historical data of wind speed and
solar irradiation is considered as the input parameters of the
forecast. Figures 1 and 2 show a sequence of 24-hour actual
and forecasted data as well as the forecast errors distribution
of wind and solar power for one week, respectively. It can
be seen that for long-term operation, the forecast errors are
likely normally distributed [17]. The error data is obtained as
the difference between the actual and estimated data:

Err = Xactual − Xestimated. (14)

3.2. Risk Analysis. Models that consider the generation from
wind and solar units completely deterministic ignore the
additional problems that forecast uncertainty embeds in
the system, while those that do not include meteorological
forecasts may overvalue the costs. Because of the stochastic
nature of the renewable, particularly wind power, accurate
forecast is very difficult. Hence, the effort is made to
minimize the effects of forecast errors and obtain a reliable
data about the renewable power to be applied to the UC.

In order to model the uncertainty of the renewable power
forecast, the dependable generation should be calculated
and considered in the scheduling decisions. The forecast
error of wind and solar power is likely normally distributed
especially for a long-term operation [17]. The maximum
error of the forecast is referred to as the value at risk, named
Powerrisk, max. The concept is the same as the value at risk
in financial risk management [18]. The value at risk can be
estimated with a level of confidence (LC) which is specified
by the generation planners [15]. For example, a 90% LC
conveys that the probability of forecasting error (Powerrisk)
being greater than the value of Powerrisk, max is less than
10%. To implement the risk constraint introduced by (9), it
requires to compute the value of Powerrisk, max from the given
LC and the PDF of the forecast error. The most important
risk occurs when the renewable power is overestimated (i.e.,
when the real-time actual generation is less than the fore-
casted level), thus, the upper side of the distribution curve
is considered. The value of Powerrisk, max is subtracted from
the generation forecast data and the resultant dependable
capacity is counted in the UC. Powerrisk, max is estimated as
follows:

α = 100− LC, (15)

P
[
e ≥ μe + zασe

]
<

α

100
. (16)

The minimum error value (e) by which (16) can be
satisfied will be referred to as the Powerrisk, max, given by
(Figure 3)

Powerrisk, max = ẽ = μe + zασe, (17)
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Figure 1: (a) Actual and estimated wind power. (b) Distribution of wind power forecast error from the applied NN model.
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Figure 2: (a) Actual and estimated solar power. (b) Distribution of solar power forecast error from the applied NN model.

where zα is the variance coefficient to express ẽ in terms
of the mean and standard deviation for a normal PDF
approximation.

4. Applied Optimization Method

4.1. Differential Evolution Algorithm. Differential evolution
algorithm, introduced by Price et al. [19], is a simple
population-based, stochastic evolutionary algorithm for
global optimization and is capable of handling nondifferen-
tiable, nonlinear and multimodal objective functions [20].
In DEA, the population consists of real-valued vectors with
dimension D that equals the number of design parameters.

The population size is adjusted by the parameter NP [19].
The initial population is uniformly distributed in the search
space. Each variable xk in an individual i is initialized within
its boundaries xk , min and xk , max. After the initialization step,
the algorithm yields the optimization solution through the
following iterative steps.

(1) Mutation. A mutant vector for each target vector (Xi,G)
of the current population is generated by the mutation
operator, as follows:

Vi,G+1 = Xr1,G + F · (Xr2,G − Xr3,G
)
, (18)
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Figure 3: Computation of the confidence interval using the forecast
error PDF.

where Xri,G is a randomly chosen vector among the popula-
tion in the generation G; F is a constant within (0, 2); Vi,G+1

is the mutant vector. In (18), if Xr1,G is replaced by Xbest,G,
which is the vector of lowest objective function value from
the current population, another form of the presented DE
(R-DE) called B-DE will be formed.

(2) Crossover. The crossover operator generates a new vector,
called trial vector. The trial vector takes the elements of
the target vector (Xi,G) and mutant vector (Vi,G+1) with the
probability of crossover constant (CR) [21]:

Ui,G+1 =
⎧
⎨

⎩

Vi,G+1, if randi ≤ CR or rand j = i

Xi,G, otherwise,
(19)

where randi is a random number in the interval (0, 1) and
randi is a random index selected among the dimension of
decision variable vectors (1, . . . ,D).

(3) Selection (Replacement). Each individual of the new
population is compared to the corresponding individual of
the previous population, and the best of them is selected as a
member of the population in the next generation (elitism).
The resultant individuals Xi,G+1 are admitted to the next
iteration:

Xi,G+1 =
⎧
⎨

⎩

Ui,G+1, if f
(
Ui,G+1

)
< f

(
Xi,G

)
,

Xi,G, otherwise,
i ∈ [1,NP].

(20)

The iterative steps continue until the convergence criterion
is satisfied or a specified number of iterations is completed.
The algorithm is further illustrated in Figure 4.

4.2. Implementation. Each individual vector in DE consists
of a sequence of integers representing on/off status of
generation units in the operating cycles during the planning
period. Therefore, each solution is a vector of N×C variables
for a system with N units and planning period divided into C
cycles. The program is developed in MATLAB programming
environment. The DE has an initial population of 50
solutions and is run for 100 iterations.

The minimum up- and down-time constraints are satis-
fied with no need to penalty functions, as described in [11].
After satisfying time constraints and before the selection
step of DE, the generation levels Pt

i of the on-state units
at each time step of the planning period are determined by
performing economic dispatch as a nested optimization loop
to minimize the total fuel cost [10]. The fitness function will
be calculated using the calculated Pi of units.

5. Case Study and Simulation Results

The case study is implemented on conventional 10-unit test
system for the UC. The data for load and units of this system
are presented in Tables 1 and 2 [10, 14]. A wind and a PV
unit are incorporated in the system, yielding totally 12 units.
The available data for wind speed and solar irradiation which
are transformed to power data is assumed as an aggregated
generation from Ardebil city in the north west of Iran from
January to December of 2005. The considered wind (unit
11) and PV (unit 12) capacities are 180 MW and 45 MW,
respectively. The spinning reserve requirement is assumed
to be 10% of the total load. Table 3 depicts the result of
generation scheduling of the supreme solution of DE for the
described test system. Each cell shows the amount of power
generation by each unit in the corresponding hour of the 24
hour schedule.

To show the effectiveness of DE, GA [14] with the
same population size and number of iterations is employed
as a reference. As a comparison, this method has better
convergence over than genetic algorithm (GA) as one of the
well-known powerful intelligent methods. Table 4 shows this
comparison in both cases of with and without renewable
power penetration.

The risk constraint of renewable power has been
implemented considering the LC to be 90%. The forecast
error distribution of wind and solar power was shown in
Figures 1(b) and 2(b), respectively. From these figures, the
mean of the forecast error is zero and the error is well
accumulated around the mean. By analyzing the forecast
error distributions, the risk constraint implies the reduction
of Powerrisk, max, namely, 0.03 p.u. from the forecasted wind
power and 0.016 p.u. from the forecasted solar power for
the case of normal distribution. Then, the resultant data are
input as the dependable generation of the PV and wind units.
Figure 5 depicts how the estimated value at risk has been
subtracted from the forecasted generation for 90% and 95%
level of confidence. The dependable generation is reduced
when a higher level of confidence is considered but ensures
the system operators that the planned generation can be
reached in real-time more confidently.

6. Conclusion

Ever increasing penetration of intermittent renewable gener-
ations into the existing power systems reveals new reliability
and security issues to the power system planners and
operators. In this paper, the impact of the uncertain nature
of solar and wind power on planning and dispatch of
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Table 1: Load demand for 24 hours.

Hour [h] 1 2 3 4 5 6 7 8 9 10 11 12

Demand [MW] 700 750 850 950 1000 1100 1150 1200 1300 1400 1450 1500

Hour [h] 13 14 15 16 17 18 19 20 21 22 23 24

Demand [MW] 1400 1300 1200 1050 1000 1100 1200 1400 1300 1100 900 800

Table 2: Operator data for ten thermal units in the system.

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 Unit 9 Unit 10

Pimax 455 455 130 130 162 80 85 55 55 55

Pimin 150 150 20 20 25 20 25 10 10 10

Ai 1000 970 700 680 450 370 480 660 665 670

Bi 16.19 17.26 16.60 16.50 19.70 22.26 27.74 25.92 27.27 27.79

Ci 0.00048 0.00031 0.002 0.00211 0.00398 0.00712 0.00079 0.00413 0.00222 0.00173

MUi 8 8 5 5 6 3 3 1 1 1

MDi 8 8 5 5 6 3 3 1 1 1

HSi 4500 5000 550 560 900 170 260 30 30 30

CSi 9000 10000 1100 1120 1800 340 520 60 60 60

CSHi 5 5 4 4 4 2 2 0 0 0

Init. state 8 8 −5 −5 −6 −3 −3 −1 −1 −1
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Table 3: Unit schedule in 24 hours and operation costs.

Power generation of units (MW) Generation
cost ($)

Start up
cost ($)Hour 1 2 3 4 5 6 7 8 9 10 11 12

1 403.83 150 0 0 0 0 0 0 0 0 146.164 0 11182.36 0

2 455 164.484 0 0 0 0 0 0 0 0 130.515 0 12283.21 0

3 455 246.849 0 0 0 0 0 0 0 0 148.150 0 13715.33 0

4 455 335.784 0 0 0 0 0 0 0 0 159.215 0 15266.41 0

5 455 392.241 0 0 0 0 0 0 0 0 152.758 0 16253.61 0

6 455 377.552 130 0 0 0 0 0 0 0 137.447 0 18888.36 1100

7 455 421.606 130 0 0 0 0 0 0 0 143.393 0 19659.66 0

8 455 451.134 130 0 0 20 0 0 0 0 140.825 3.04 20995.35 340

9 455 455 130 0 0 80 0 12.437 0 0 150.843 16.72 23424.47 60

10 455 455 130 130 0 65.287 0 0 0 0 138.672 26.04 24959.4 1120

11 455 455 130 130 0 74.301 25 0 0 10 137.778 32.92 27291.08 580

12 455 455 130 130 0 80 54.857 0 0 0 157.063 38.08 27306.24 0

13 455 455 130 130 0 0 26.978 0 0 10 153.581 39.44 25282.8 60

14 455 408.662 130 130 0 0 0 0 0 0 139.257 37.08 22293.57 0

15 455 453.295 0 130 0 0 0 10 0 0 120.384 31.32 21103.68 60

16 455 313.709 0 130 0 0 0 0 0 0 128.330 22.96 17741.61 0

17 455 261.078 0 130 0 0 0 0 0 0 141.441 12.48 16823.82 0

18 455 358.129 0 130 0 0 0 0 0 0 156.230 0.64 18517.56 0

19 455 434.034 0 130 25 0 0 0 0 0 155.965 0 20791.31 1800

20 455 455 130 130 74.0957 0 0 0 0 0 155.904 0 25037.3 1100

21 455 455 130 0 106.744 0 0 0 0 0 153.255 0 22843.32 0

22 455 330.949 130 0 25 0 0 0 0 0 159.050 0 19018.76 0

23 455 0 130 0 159.261 0 0 0 0 0 155.738 0 15046.02 0

24 455 0 130 0 58.1027 0 0 0 0 0 156.897 0 12965.68 0

Total 468690 6620

Table 4: Comparison of best result of DE with GA in thermal and
renewable integrated systems.

Method
Total operation cost ($)

With renewable
integration

Without renewable
integration

GA 509320 565825

DE 475310 564735

the thermal power system is examined. A class of MLP is
used to estimate the renewable generation level. Although
deterministic approaches use a point forecast of the power
output, the risk associated with wind and solar power is
derived from the mismatch between the historical predicted
data and the measured data. On this basis, the hourly
dependable generation of solar and wind power is input
to the UC problem to satisfy the reliability needs of the
power system operator. The resultant risk constraint is
considered to reach a compromise between system security
and total operation cost. By this approach, the need to
evaluate different stochastic scenarios for the wind and solar
power in the optimization process is also eliminated and the
computational burden is reduced. The risk-constrained UC
problem is solved using differential evolution algorithm and
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Figure 5: Estimated renewable power and applied power into UC
with 90% and 95% confidence level.

the optimal day ahead scheduling of the dispatchable units is
obtained. Simulation results indicate the effectiveness of the
method for the integration of PV and wind power in the UC
problem.
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Nomenclature

Pt
imin: Minimum output power of ith unit at hour t

Pt
imax: Maximum output power of ith unit at hour t

Pimin : Minimum rated generation level of unit i
Pimax: Maximum rated generation capacity of unit i
Pt
i : Output power of ith unit at hour t

τ: The UC time step, equals 60 min
RDi: Ramp-down rate of unit i
RUi: Ramp-up rate of unit i
Tt
ion: The period during which the ith unit is

continuously on
Tt
ioff : The period during which the ith unit is

continuously off
MUTi: Maximum up-time limit of unit i
MDTi: Minimum down-time limit of unit i
ui(t): Operation status of unit i at hour t (1 = ON,

0 = OFF)
PC, RES(t): The confident level of power available from

PV and wind units at hour t
Dt: System load demand at hour t
Rt: System reserve at hour t
Ai,Bi,Ci: The fuel cost function coefficients
CSHi: Cold start hour of unit i
HSi: Hot start cost of unit i
CSi: Cold start cost of unit i
SUi: Start-up cost for unit i
SDi: Shutdown cost for unit i
R(·): Unit ramp function
e∼: The value at risk of the estimated
μe: Mean value of the data forecast error
σe: Standard deviation of the forecasted data.
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