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Many desirable properties make fractals a powerful mathematic model applied in several image processing and pattern recognition
tasks: image coding, segmentation, feature extraction, and indexing, just to cite some of them. Unfortunately, they are based on
a strong asymmetric scheme, consequently suffering from very high coding times. On the other side, linear transforms are quite
time balanced, allowing them to be usefully exploited in realtime applications, but they do not provide comparable performances
with respect to the image quality for high bit rates. In this paper, we investigate different levels of embedding orthogonal linear
transforms in the fractal coding scheme. Experimental results show a clear improved quality for compression ratios up to 15 : 1.

1. Originality and Contribution

The literature about both linear transform-based image com-
pression (discrete cosine transform—DCT, Discrete Wavelet
Transform—DWT) and fractal image coding is sizeable.
Nevertheless, there are still few contributions exploring
possible fusions of the two approaches. From a theoretic
point of view, the novelty of the proposed paper is just to
investigate several ways in which the former can embed,
or even be embedded in, the latter. As pointed out by
the experimental results, fusing these methodologies allows
to significantly speed up the fractal coding process, while
retaining most of the objective quality of the decoded image,
even at high compression rate. This represents a highly
desirable feature for image coders in all those applications
managing high-resolution images (e.g., GIS, satellite image
databases, and cultural heritage).

2. Introduction

Fractal image compression is based on the self-similarity
property of an image, and performs image compression
by applying a series of transformations to the image. To
perform image decompression, these transformations are
applied iteratively until the system converges, a condition
which may be assessed by using the Hutchinson metric.

The main disadvantage of previous techniques for fractal
image compression is the large amount of computation
that they require. Several methods have been proposed in
order to speed up fractal image coding [1, 2]. Speedup
methods based on nearest neighbour search by feature
vectors outperform all the others in terms of decoded image
quality at a comparable compression rate [3], but they often
suffer from the high dimensionality of the feature vector
[4]; Saupe’s operator represents a suitable example. To cope
with this drawback, dimension reduction techniques are
introduced. Saupe reduced the dimension of the feature
vector by averaging pixels while in [5] discrete cosine
transform (DCT) is used to cut out redundant information.

In the same way, linear transforms (LT) have been
widely exploited to extract representative features or to
codify groups of pixels in image indexing and compression
applications. Indeed, Linear transforms form the basis of
many compression systems as they decorrelate the image
data and provide good energy compaction. For example, the
discrete fourier transform (DFT) [6] is used in many image
processing systems while DCT [6] is used in standards like
JPEG, MPEG, and H.261. Still others are Walsh-Hadamard
transforms (WHT) [6] and Haar Transforms (HT) [6]. There
are many attempts in the literature for combining fractal
coding with the discrete cosine transform [7–9] or with the
discrete wavelet transform [10, 11], all of them facing the



2 ISRN Signal Processing

speedup problem of the coding phase. In more detail, in [7],
image blocks are classified as smooth, diagonal/subdiagonal
edge, and horizontal/vertical edge. The classification oper-
ation is performed using only the lowest horizontal and
vertical DCT coefficients of the given block. Since the scheme
is simple, the overhead is minor compared to the complexity
of the encoder, but the speedup it can achieve is no larger
than 3, which is quite smaller than that achievable by nearest
neighbour search based methods. Zhao and Yuan, previously
proposed a similar approach [9], in which the most attention
was paid for reducing the bit rate; indeed, the original image
is first compressed by DCT domain fractal transform instead
of spatial domain fractal transform, then the difference image
between the original image and its fractal approximation is
quantized and encoded by a Huffman code. In this case,
image ranges and domains are only partitioned in low and
high-activity blocks while full search is performed only
for the latter. A Similar approach has been developed by
Zhang and Po in [11] by using HT instead of DCT. Range
blocks and corresponding domain blocks are classified into
edge selective categories by the energy compacted wavelet
coefficients. The searching is carried out between the same
classes for range/domain comparisons which significantly
reduces the computational complexity, so that the speedup
achieved is up by 12-times over the conventional full search
method. All these methods make use of the lowest horizontal
and vertical DCT/HT coefficients of a given block, but not
exploiting nearest coefficients that also have an outstanding
hand in the total energy. Fractal coding in wavelet domain
has been also investigated by using the wavelet zerotree as
in [8, 10], where a fractal method is adaptively applied to
the parts of an image that can be encoded more efficiently
relative to an EZW (embedded zerotree wavelet) coder at a
given rate. However, in these cases wavelet coefficients are
not used to speed up the coding phase but to improve the
decoded image quality at a given rate. Hence, this paper
sets as its main goal of investigation the ways of embedding
an orthogonal LT T into the standard PIFS- (partitioned
iterated function systems-) based coding scheme. In more
details, at first, linear properties of T are exploited to
dramatically reduce the computational cost of the encoding
phase, by arranging its coefficients in a suitable way, Figure 1
depicts the architecture of such a scheme. Range and
domain blocks are extracted from the input image, and an
orthogonal linear transform (LT) is applied to extract feature
vectors. Domain feature vectors are organized in a tree data
structure, while range feature vectors are used to search the
best approximating domain in the tree during the coding
phase, speeding up the range/domain matching process.
The residual information is computed as the difference
between LT transformed versions of the original range and
the approximated range; residual coefficients are quantized
and stored in the final bit stream. In Figure 2, the decoding
process is shown. The fractal decoded image is obtained
iteratively by applying affine transformations to an all-
black image. The T transform is applied to fractal decoded
ranges while residual coefficients are dequantized separately;
transformed range coefficients are summed with residual
information and then T−1 inverse transformed to obtain the

output range. The hybrid approach significantly outperforms
Saupe’s method for relatively small compression ratios, while
becoming comparable when the bit-rate increases.

3. Theoretical Concepts

Partitioned iterated function systems (PIFS) consist of a set
of local affine contractive transformations, which exploits
the image self-similarities to cut out redundancies, while
extracting salient features. In more details, given an input
image I , it is partitioned into a set R = {r1, r2, . . . , r|R|}
of disjoint square regions of size |r| × |r|, named ranges.
Another set D = {d1,d2, . . . ,d|D|} of larger regions is
extracted from the same image I . These regions are called
domains and can overlap. Their size is |d|×|d|, where usually
|d| = 2|r|. Since a domain is quadruple sized with respect to
a range, it must be shrunk by a 2× 2 average operation on its
pixels. Due to the large number of domains, downsampling
operations will introduce an overhead if performed for each
range/domain comparison; the same result can be obtained
in a more effective way by downsampling the whole image
IC = c(I). The downsampled image IC is a quarter of the
input image I , so that downsampled domains are directly
extracted from IC with side-length |r| × |r|.

The image I is encoded range by range: for each range
r, it is necessary to find a domain d and two real numbers
α and β such that the quadratic error is minimized with
respect to the Euclidean norm. It is customary to impose
that |α| ≤ 1 in order to ensure convergence in the decoding
phase. To find the best approximating domain d, however,
requires an exhaustive search over the whole set D, which
is an impractical operation. Therefore, ranges and domains
are classified by means of a feature vector in order to reduce
the cost of searching the domain pool: if the range r is being
encoded, only the domains having a feature vector close to
that of r are considered [12].

On the other hand, a transformation T is called linear if it
has two mathematical properties: (a) additivity (T(x + y) =
T(x) + T(y)) and (b) homogeneity (T(αx) = αT(x)). The
linear transform domain features are very effective when
the patterns are characterized by their spectral properties;
so, here, we investigate the feature extraction capability of
the discrete fourier transform (DFT), the discrete cosine
transform and the Haar transform (HT) [6].

4. Speeding up the Coding Phase

In order to reduce the computational cost of exhaustive
search while still preserving a good image quality, we scan
the domains in the pool to compute feature vectors that are
organized in a K-dimensional-tree structure [13] (KD-tree)
and will help us to choose the most promising candidate
domains for encoding a given range.

Let r and d be a range and a domain block, respectively,
and let T be a two-dimensional orthogonal linear transform
(FFT, DCT or HT), the range block r can be rewritten in
terms of d by applying an affine transformation r = α · d +
β · o(1) + e, where α and β are two scalar values, o(1) is an
all ones matrix of size |r| × |r|, and e is the |r| × |r| matrix
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Figure 1: The architecture of the proposed fractal coder.
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Figure 2: The architecture of the proposed fractal decoder.

of the residual error. As the PIFS decoder has no knowledge
of the residual error e, it must be minimized during coding
process, so that the r̂ = α · d + β · o(1) well approximates
r = α·d+β·o(1)+e. A feature vector u can be extracted from
r̂ and d by reorganizing the coefficients of the transformation
T ;

r̂ = α · d + β · o(1)

Applying T=⇒ T(r̂) = T
(
α · d + β · o(1)

)
Linearity of T=⇒ T(r̂) = α · T(d) + β · T(o(1))

Transforming β=⇒ T(r̂) = α · T(d) + β ·O,

(1)

where

O =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

0 0 · · · 0

...
...

. . .
...

0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦. (2)

Γ being the transformed domain T(d), the transformed
range can be rewritten as

T(r) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α · Γ00 + β α · Γ01 · · · α · Γ0n−1

α · Γ10 α · Γ11 · · · α · Γ1n−1

...
...

. . .
...

α · Γn−10 α · Γn−11 · · · α · Γn−1n−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦. (3)

Notice that only the first term of T(r) is affected by
β, and it represents the mean of r. As the main desired
property of the feature vector is the independence from α
and β, the first element of the T(r) matrix is then discarded
while the remaining ones are rearranged in a linear vector
u = {Γ01,Γ10, . . . ,Γn−1n−1} of dimension n2−1 by means of a
zig-zag scanning that starts from the position (0, 1). In order
to also cancel out effects of α on u, its elements are divided
by the quantity u, indeed,

u = 1
n2 − 1

n2−1∑
i=0

α · Γi = α · 1
n2 − 1

n2−1∑
i=0

Γi = α · Γ. (4)

Finally, the real feature vector u is given by

u =
{
αΓ01

u
,
αΓ10

u
, . . . ,

αΓn−1n−1

u

}

=
{
αΓ01

αΓ
,
αΓ10

αΓ
, . . . ,

αΓn−1n−1

αΓ

}

=
{
Γ01

Γ
,
Γ10

Γ
, . . . ,

Γn−1n−1

Γ

}
.

(5)

5. Residual Information Coding

Linear transformations can be exploited within the fractal
coding approach to a further extent, the residual information
encoding. Indeed, in the proposed hybrid approach, the
transform T is applied to each of the pool domains during
indexing stage while it is applied to every range during
encoding. Consequently, during encoding, T(r) and T(d) are
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Figure 3: Graphical representation of the H(t) histogram for the
Lena image at a compression ratio of 16.5.

both known while the transform T(r̂ ) of approximate range
r̂ can be simply obtained as T(r̂ ) = T(α · d + β · o(1))
by exploiting T linearity (as discussed in previous sections)
without any further computing cost. Coefficients of the T
transformation can be further exploited to save part of the
original energy lost through fractal encoding. More precisely,
as r̂ is calculated by minimizing the approximation error
e for the range r, we can assume δr = T(r) − T(r̂ ) is
represented by average small values which can be quantized
by a reduced number of bits. To this aim, each δr(i, j) is
rounded to the nearest integer. Moreover, during decoding,
the approximate range r̂ is obtained by means of fractal
decoding, so, knowing δr and T(r̂), we could recover T(r)
in terms of T(r̂ ) + δr . It is clear indeed that the core of
following discussion is the proposal of a highly efficient
strategy to store if not all, at least a fraction of information
contained in δr while still preserving a useful quality/bit
rate ratio. The compact representation of values δr(i, j)
within the file is the most crucial aspect of the proposed
method. Hereafter, this topic is presented in detail. The
greater the module of a coefficient δr(i, j) the more relevant
its encoding accuracy. The range of δr coefficients is not
formally bounded, but we need to restrict this interval to a
limited range in order to maximize the effectiveness of the
proposed quantization strategy. Experimentally, we found
that the most of the energy of δr coefficients could be isolated
by selecting only those falling in a limited range [ε, 2 · ε].
The constant ε is an integer value, which is computed so that
modules of δr(i, j) coefficients near to 3/2ε for any r ∈ I
are maximized. The δr(i, j) coefficients are approximated by
3/2ε if their module falls in the range [ε, 2·ε] and set to zero
otherwise. To this regard it is possible to define a criterion to
automatically set the ε value. For every range block r in I ,
δr(i, j) coefficients are computed and a global histogram H
is generated, where H(t) is the number of times the module
|δr(i, j)| of some δr(i, j) equals 3/2t. Thus, the value of ε is

given by ε = argmaxk
∑2k

t=k(tH(t)). A graphical example of

Lena’s histogram together with the corresponding value for ε
with a compression ratio of 16.5 is reported in Figure 3.

An even greater attention has to be paid for quantization
and encoding of values δr(i, j). After ε has been computed,
coefficients with |δr(i, j)| lower than ε are set to zero, so that
only values greater than threshold ε can be found within each
block. So if a block does not contain any |δr(i, j)| > 0, this
means that it has not useful residual information and it needs
no further processing than a flag set to 0 in the bitstream,
otherwise the flag is set to 1. Because many rows i of the
block δr can be empty, a further bit-rate reduction can be
achieved separating the rows i containing δr(i, j) /= 0 from
those containing δr(i, j) = 0, for all j. More precisely, each
row i of block δr is associated to a bit b, where b = 1 if there
exist j | δr(i, j) /= 0 otherwise b = 0, for a total of |r| bits
(where |r| is the side length of the range block r). In the
proposed approach, δr(i, j) coefficients are approximated to
a constant value of 3/2ε (the center of range [ε, 2ε]) rather
than being singularly quantized; so that for each coefficient it
is sufficient to store in the file just the sign and column info
j. As this results in block δ in a sparse matrix, each element
can be considered as an ordered couple (i, j); while due
to the aforementioned representation (which distinguishes
between empty and notempty rows), it is possible to further
reduce the bit-rate. Considering that the values δr(i, j) are
consecutively read from the file, one row after the other,
it is possible to save in the file only the column j of each
coefficient as for all the coefficients sharing the same row
the columns are increasingly ordered. Consequently, while
reading a column sequence, if the one just read is smaller
than the previous one, this implies that the present column
index belongs to a following row. Whereas the correct row
to which the column sequence belongs can be retrieved as
the first notempty row (previously flagged with a 1) and not
necessarily be the very following row i + 1, because empty
rows are frequent. In the end, for each block containing
residual information, only 1 + |r| + 2 · K · log2(|r|) bits are
saved, where K is the number of δr(i, j) /= 0, otherwise just a
single bit set to 0 is saved. A graphical representation of the
residual encoding process is provided in Figure 4.

Overall, the residual encoding framework can be
resumed in the following lines.

Coding Process.

(a) Delta computation δr(i, j) = T(r) − T(r̂), 0 ≤ i, j <
|r|,

(b) If |δr(i, j)| < ε or |δr(i, j)| > 2 · ε set δr(i, j) = 0,

(c) For all i, j | δr(i, j) > 0 write δr(i, j) in compact
form.

Decoding Process.

(a) Image decoding I through PIFS,

(b Read δr from file,

(c) For each range r̂ with δr /= 0,

(d) compute T(r̂) and replace r̂ with T−1(T(r̂) + δ) in
image I .
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Figure 4: A real example of the residual coding with ε = 18.

6. Experimental Results

Tests have been conducted on a dataset of twenty images,
twelve of them coming from the Waterloo Bragzone Standard
database [14], and the remaining eight from the web. A large
variability in testing conditions has been ensured by selecting
test images containing patterns, smooth regions, and details.
They are all 8-bit grayscale images at a resolution of 512
by 512 pixels. The main aim of our tests is to assess the
efficiency of the LT-based feature vector and the improve-
ments provided by LT coding of residual information. The bit
allocation for the range/domain approximation parameters
is set as follows: 4 bits for α, 7 bits for β, log2(|D|) bits
for the domain coordinates (where |D| represents the size
of the domain pool), and 3 bits for the isometry. The
compression ratio has been calculated as the ratio between
the original image size and the encoded image size while the
objective image quality has been measured in terms of peak
signal-to-noise ratio (PSNR). In order to further assess the
performance of the hybrid scheme, we also compared it with
Saupe’s algorithm [3].

A comparison with Saupe’s algorithm, as shown in
Figure 5, underlines the particular behavior of the hybrid
scheme 3 variants (PIFS-LTD, PIFS-LTH, and PIFS-LTF).
It obviously comes out that the FFT provides very poor
performances, which represents a further confirmation that
LT yielding real and imaginary coefficients are not effective
at all when applied into the PIFS coding. Figure 5 also points
out that DCT- and Haar-based feature vectors (in PIFS-
LTD and PIFS-LTH, resp.) have almost quite comparable
performances. Furthermore, they show better performances
than the FFT (PIFS-LTF) and Saupe’s vector. The main
reason motivating the superiority of the PIFS-LTD and PIFS-
LTH is that DCT and Haar transforms retain the most of
the image information in its first coefficients, so when a
shorter vector is obtained by truncating the original one to a
little number of coefficients, more representative features are
retained. On the contrary, this does not happen for Saupe’s
vector that is usually reduced by averaging its components.

In Figure 6, the results obtained through the integra-
tion of both domain classification method (PIFS-LTD and
PIFS-LTH) and linear transform-based residual information
encoding (in this case DCT) are shown. The advantage
provided by residual information encoding is more relevant
for small compression ratios. The reason for this can be
found considering that for high-quality fractal decoded
images the residual features relatively small values which are
more easily encoded via the proposed technique. Figure 7
also confirm this thesis. The first image in its top row is the
original image while the following two show the nonresidual
coded block in blue at two different compression ratios,
4.8 and 11.5. Notice that residual coded pixels in the last
column outnumber that in the second one, because of the
larger distortion introduced by the fractal encoder. The
second and third rows show a detail of the decoded image
with (third row) and without (second row) residual coding,
underlining that details added by residual information can
damp blocking artifacts.

In Table 1, encoding times and corresponding PSNR
values with and without residual coding are reported for
both Saupe- and LT-based fractal encoders. Results refer to
the 512 × 512 grayscale Lena image while the system runs
on an Intel Core Duo 2.0 Ghz with 1 GB RAM. Results in
Table 1 clearly underline the superiority of the LT-based
classification scheme with respect to Saupe’s approach. This
is due to the ability of Linear Transformations (such as the
DCT) to compact the most part of the signal energy in their
first coefficient, turning in a more accurate indexing of the
range/domain pool. The last column also points out that
residual coding contribution is of about 0.5–0.8 dB to the
final quality estimation of the decoded image.

The hybrid scheme proposed in this paper has also been
compared with state-of-the-art classification approach such
as [7]. The outcomes of this comparison are reported in
Table 2. The first row shows time and PSNR of the full
range/domain search for the 256× 256 grayscale Lena image
while the second row reports analogous information when
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Figure 5: Average PSNR/CR comparison over all the test images for the hybrid approaches PIFS/LT and Saupe’s method.

Table 1: Comparison among Saupe’s operator and several LT-based feature vectors on the Lena image 512 × 512 for a compression ratio
fixed at 16.5 without residual information coding (first two columns) and with residual information coding (last two columns).

Method
Without residual coding With residual coding

Time PSNR Time PSNR

Saupe 20.05 sec 32.90 dB 23.05 sec 33.44 dB

PIFS-LFT 21.35 sec 31.92 dB 24.67 sec 32.45 dB

PIFS-LTD 23.15 sec 33.94 dB 26.50 sec 34.60 dB

PIFS-LTH 22.45 sec 33.95 dB 25.24 sec 34.80 dB

Duh’s speedup method is adopted. As it can be seen Duh’s
classification scheme produce a speedup of about a factor 3,
confirming what the authors claim in [7]. On the contrary,
the proposed speedup technique provides a speedup of about
a factor 150 without the residual coding and 90 in the case the
residual information is encoded too. This is attributable to
the number of range/domain comparisons performed during
the encoding process. Indeed, Duh’s approach divides the

total amount of range/domain comparisons by 3, while in the
proposed scheme the each range is compared with no more
than 50 domains with a feature vector similar to that of the
range.

A further comparison with state of the art techniques
is given by considering the hybrid fractal/wavelet approach
proposed by Iano et al. [15] as shown in Table 3. This
technique presents a certain affinity to the proposed method,
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Figure 6: Average PSNR/CR comparison over all the test images for the hybrid approaches PIFS/LT with/without DCT residual coding and
Saupe’s method.

Table 2: Comparison among Duh’s approach and several LT-based feature vectors on the Lena image 256 × 256 for a compression ratio
fixed at 18.28 without residual information coding (first two columns) and with residual information coding (last two columns).

Method
Without residual coding With residual coding

Time PSNR Time PSNR

Full search 437.94 sec 28.90 dB — —

Duh 144.55 sec 28.40 dB — —

Saupe 2.87 sec 27.10 dB 4.54 sec 27.90 dB

PIFS-LFT 2.65 sec 25.80 dB 3.80 sec 26.10 dB

PIFS-LTD 2.81 sec 27.90 dB 4.10 sec 28.10 dB

PIFS-LTH 2.98 sec 27.80 dB 4.01 sec 28.02 dB

Table 3: Comparison among the set partitioning in hierarchical
trees (SPIHT), Iano’s and Saupe’s approach, and several LT-based
feature vectors with residual information coding on the 512 × 512
Lena image, for a bpp fixed at about 0.48.

Method Bit rate PSNR

SPIHT 0.48 bpp 32.59 dB

Iano 0.49 bpp 32.81 dB

Saupe 0.48 bpp 33.41 dB

PIFS-LFT 0.45 bpp 32.38 dB

PIFS-LTD 0.42 bpp 34.50 dB

PIFS-LTH 0.46 bpp 34.73 dB

as they both code base information through fractals, then
exploiting additional processing to code the residual (detail)
information.

7. Conclusions

In this paper, we presented two different ways to exploit
linear transformations for a PIFS-based fractal encoding
strategy. Indeed, linear transformations have been used
to define a range/domain classification vector which
drastically reduces the computational weight of encoding
stage, by avoiding most of least significant range/domain
comparison. Furthermore, linear transform properties have
been exploited for residual information encoding, resulting
in a decoded image quality far superior than in classic
fractal approaches. A comparison with the Saupe fractal
approach clearly shows the improvements achieved through
the proposed method while a comparison with three among
the most known linear transforms (FFT in PIFS-LTF, DCT
in PIFS-LTD and Haar in PIFS-LTH) confirms how all of
these differently contribute to enhance the basic scheme.
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without residual coding A detail of the crown (CR = 4.8) A detail of the crown (CR = 11.5)

Image coded (CR = 4.8) with noncoded
residual blocks in blue

Image coded (CR = 11.5) with noncoded
residual blocks in blue

Figure 7: Residual coding for the image clock. On the first row: the original image, coded image at CR of 4.8 with noncoded residual blocks
in blue, coded image at CR of 11.5 with noncoded residual blocks in blue. On the second row: coded image at a CR of 4.8 without residual
coding, a detail of the crown, the same detail at a CR of 11.5. On the third row: coded image at a CR of 4.8 with residual coding, a detail of
the crown, the same detail at a CR of 11.5.

The proposed hybrid approach has also been compared with
a state-of-the-art classification scheme underlying that it can
obtain higher speedup factors but at a comparable decoded
image quality.
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