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Recent studies have shown genetic and epigenetic aberrations resulting in aberrant activation of the Wingless-Int (Wnt) pathway,
thus influencing the initiation and progression of acute myeloid leukemia (AML). Of major importance, these findings may lead
to novel treatment strategies exploiting targeted modulation of Wnt signaling. This paper comprises the latest status of knowledge
concerning the role of Wnt pathway alteration in AML and outlines future lines of research and their clinical perspectives.

1. Acute Leukemia

Acute myeloid leukemia (AML), a hematologic malignancy
of the myeloid line of white blood cells in the bone marrow, is
the most common leukemia of the adult [1, 2]. Despite major
progress in the treatment of AML during the last couple of
years, the majority of patients still cannot be cured. Different
genetic causes result in variable clinical courses of AMLs and
different responses to standard chemotherapy including stem
cell transplant [1, 3, 4].

Due to high mortality rates and high relapse rates even
among transplanted patients, new therapeutic strategies are
required [4, 5].

The Wingless-Int (Wnt)/beta-catenin pathway has been
shown to play an essential role in the regulation of cell
proliferation, differentiation, and apoptosis of haematopoi-
etic stem cells [1, 2, 4, 5]. Recently, it was demonstrated
that deregulation of this pathway resulted in different malig-
nancies including AML. Thus, Wnt/beta-catenin signaling
molecules are attractive candidates for developing novel
targeted therapies for this disease [1–4, 6].

2. Wnt Signaling Pathway

Wnt (wingless) proteins constitute a family of cysteine-
rich glycosylated proteins that contribute to lymphopoiesis

and early stages of both B-cell and T-cell development [7–
10]. They function as extracellular signaling molecules that
may activate the Wnt/beta-catenin signaling pathway by
binding to the extracellular domain of Frizzled receptors. In
addition to their extracellular Wnt-binding domain, Frizzled
receptors have seven transmembrane-spanning sequences
and a C-terminal tail [10–12]. Wnt proteins regulate cell
proliferation, cell morphology, cell motility, and cell fate.

To date, 19 Wnt members have been identified in
humans and more than eight mammalian Frizzled genes
are known [11–13]. Wnt signaling results in the activation
of intracellular signaling cascades which are associated with
several forms of cancer [11, 14].

Binding of Wnt either to Frizzled and the low-density
lipoprotein receptor-related proteins (LRPs) 5 and 6 or to
Frizzled protein alone results in the stabilization of beta-
catenin, the major mediator of canonical Wnt signaling
[13, 14]. Frizzled receptors have no enzymatic motifs on
their intracellular domains, therefore intracellular signaling
molecules have to be recruited or released [12]. These are
members of the Dishevelled (Dvl) family.

Three members of Dvl, Dvl-1, Dvl-2, and Dvl-3, have
been characterized [15]. They lack any known enzymatic
activity but function as molecular adaptors on Frizzled
receptors due to their protein-protein interaction domains
and/or heterotrimeric G-proteins [12, 14]. Beta-catenin is
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associated in a cytoplasmic complex together with the
adenomatous polyposis coli (APC) protein, the cytoplasmic
serine/threonine kinase GSK-3beta, and axin [12, 16].

In unstimulated cells, axin in its phosphorylated form
is able to bind beta-catenin effectively. Upon Wnt sig-
naling, however, axin is dephosphorylated by the protein
phosphatase 2A (PP2A). The dephosphorylated form of
axin binds beta-catenin less efficiently than it does the
phosphorylated form, thereby promoting the release of beta-
catenin [17]. A complex of axin with one of the three
isoenzymes of casein kinase I (CKIα, δ, or ε) phosphorylates
beta-catenin on serine 45. This step is independent of
(GSK-3beta) and initiates the phosphorylation-degradation
cascade of beta-catenin. In the following step, beta-catenin is
phosphorylated at serine 33/37 by GSK-3beta [15].

The phosphorylated beta-catenin is, subsequently, rec-
ognized by the E3 ubiquitin ligase subunit beta-transducin
repeat-containing protein (beta-TrCP) and thereby targeted
for ubiquitination and subsequent degradation by the pro-
teasome [16, 18, 19].

In the presence of Wnt signaling, the phosphorylating
activity of GSK-3beta is inhibited leading to the stabilization
of beta-catenin [20]. This is mediated by the intracellular
protein Dvl through a Frizzled receptor [16]. The APC-GSK-
3beta-axin activity is dissociated and unphosphorylated
beta-catenin accumulates in the cytoplasm [16, 20]. From
there, free beta-catenin is able to translocate into the nucleus
where it interacts with TCF and LEF transcription factors
[20, 21].

Dvl not only stabilizes beta-catenin in the cytoplasm but
is also required in the nucleus where it interacts between
c-Jun and beta-catenin, respectively. This mediates the
formation of a Dvl-c-Jun-beta-catenin-TCF transcriptional
complex, binding on the promoter of Wnt target genes
[14]. For example, beta-catenin may stimulate cell-cycle
progression and differentiation by Wnt/beta-catenin target
gene expression of genes, including c-myc, cyclin D1, and
fibronectin [11, 14, 19].

3. Beta-Catenin

Beta-catenin is a 92 kDa protein consisting of several struc-
tural domains [12, 21–23]. The N-terminal region medi-
ates binding activity by phosphorylation sites for glycogen
synthase kinase-3beta GSK-3beta and beta-catenin [12, 20,
24]. The central domain contains 13 incomplete conserved
Armadillo repeat motifs facilitating protein-protein inter-
actions of, for example, cadherins, beta-catenin, the APC
protein, axin, or lymphoid-enhancing-transcription-factor-
(LEF-) 1/T-cell transcription factor (TCF) [12, 21, 24, 25].
A positively charged groove in a superhelix of this central
domain is hypothesized to interact with acidic regions of
APC, TCF transcription factors, and cadherin cell-adhesion
molecules [12, 26–28]. The C-terminal region encodes a
transcriptional transactivation domain. Both the central
domain and the C-terminal region are involved in the
signaling activity of beta-catenin [21, 29–31].

Beta-catenin acts as a structural protein at cell-cell
adherens junctions where it links cadherins to the actin

cytoskeleton [32–34]. In addition to beta-catenin, there are
two other catenins known as alpha-catenin and gamma-
catenin [35–37]. Beta-catenin associates with E-cadherin and
alpha-catenin, forming a cadherin-catenin protein complex
under in vivo conditions [21, 38]. Furthermore, beta-catenin
acts as a central molecule in the Wnt pathway, influencing
membrane structure and the shape of a cell [11, 16, 39].
Thus, beta-catenin has a dual cellular function in mediating
cell-cell adhesion as well as Wnt signaling [21, 40, 41].

4. Wnt Pathway Signaling in AML

The Wnt/beta-catenin pathway has been shown to play a crit-
ical role in the regulation of cell proliferation, differentiation,
and apoptosis [1, 4–6] of different malignant entities. It is
highly regulated in AML and also involved in the self-renewal
process of hematopoietic stem cells [5, 7, 8].

It was recently published that AMLs are associated with
an aberrant activation of the Wnt pathway, thus representing
an attractive way of targeted therapeutic intervention [3].
However, the exact mechanism in the physiology of leukemia
cell lines and the impact of the Wnt pathway on the course of
the disease in vivo still need to be clarified [4, 6].

Within the canonical Wnt signaling pathway, beta-
catenin acts as the major effector molecule affecting self-
renewal of hematopoietic stem cells while its dysregulation
has been suggested in leukemic stem cell lines [3, 6–8].
Aberrant activation of this pathway can lead to a variety
of malignant abnormalities with one of them being acute
myeloid leukaemia. Recent published data proved that
reduction of intracellular beta-catenin levels in AML cell
lines and patient samples decreased their rate of proliferation
in vitro without affecting cell viability in contrast to what
is known for normal human CD34+ progenitor cells [2, 4,
5, 10]. It was shown that downregulation of beta-catenin
caused a G1/G2 phase increase of cells while lowering the
amount of S phase cells, which has recently been reported
for multiple myeloma [6]. Other data, however, suggests that,
despite effective downregulation of beta-catenin in primary
AML cell lines, a decreased proliferation rate could not
always be observed [7, 8, 10]. Thus, targeted therapy against
beta-catenin might not be successful in all patients [5, 7].

Overexpression of beta-catenin seems to be an indepen-
dent adverse prognostic factor, its overregulation could be
found in the vast majority of AML samples [2, 4, 8]. In
a recently published study the intracellular concentration
of beta-catenin was downregulated by a short hairpin RNA
lentivirus deteriorating the proliferation of leukemic cell
lines, even resulting in a reduced engraftment potential after
xenotransplantation [1, 4, 5]. Interestingly, in several studies,
beta-catenin expression did not always correlate with AML
subtype or karyotype, which was possibly due to a low
number of investigated patients and cell lines [5, 6]. These
published data support the fact that, in most AML samples,
Wnt/b-catenin is overregulated and that this is a feature
shared by leukemic stem cells regardless of their CD34 status
[8, 9].

We recently identified several drugs as Wnt inhibitors
[11, 12, 42, 43]. It was shown that downregulation and
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inhibition of the Wnt/beta-catenin pathway significantly
reduced tumor cell viability in lymphoma and myeloma cell
lines in vitro. Systemic application of these drugs in balb/c
mice resulted in a decreased tumor growth and a prolonged
overall survival [42, 43]. These data could be used to establish
further drug studies, in AML cell lines.

All these data greatly contribute to our understanding
of the role of beta-catenin and the Wnt pathway in the
development of AML. The canonical Wnt pathway could
be shown to be of major importance in the pathogenesis of
acute leukaemia. In spite of divergent results in recent studies
influencing this pathway seems to be a promising treatment
strategy and should be followed up in further studies for
future clinical use in patients with AML.
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