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This paper presents the prediction of pollution severity of the polymeric insulators used in power transmission lines using adaptive
neurofuzzy inference system (ANFIS) model. In this work, laboratory-based pollution performance tests were carried out on 11 kV
silicone rubber polymeric insulator under AC voltage at different pollution levels with sodium chloride as a contaminant. Leakage
current was measured during the laboratory tests. Time domain and frequency domain characteristics of leakage current, such
as mean value, maximum value, standard deviation, and total harmonics distortion (THD), have been extracted, which jointly
describe the pollution severity of the polymeric insulator surface. Leakage current characteristics are used as the inputs of ANFIS
model. The pollution severity index “equivalent salt deposit density” (ESDD) is used as the output of the proposed model. Results
of the research can give sufficient prewarning time before pollution flashover and help in the condition based maintenance (CBM)

chart preparation.

1. Introduction

In a power system, outdoor insulators play an important role
in maintaining the reliability of the system. Ceramic insula-
tors are widely used in power transmission and distribution
lines for a long time. In recent times, polymeric insulators are
mostly preferred because of their superior insulation perfor-
mance, in terms of contamination endurance compared with
conventional ceramic insulators [1, 2]. When these insulators
are installed near industrial, agricultural, or coastal areas,
airborne particles are deposited on these insulators, and the
pollution builds up gradually, which result in the flow of
leakage current (LC) during wet weather conditions such
as dew, fog, or drizzle. The LC density is nonuniform, and
in some areas sufficient heat is developed leading to the
formation of dry bands. Voltage redistribution along the
insulator causes high electric field intensity across dry bands
leading to the formation of partial arcs. When the surface
resistance is sufficiently low, these partial discharges will
elongate along the insulator profile which may eventually
cause the insulator flashover. Pollution flashover along
power line insulator has been a long-standing problem

for the security and reliability of power transmission line.
Considering the recent developments in extra high voltage
power transmission in India, it is imperative to predict
the pollution severity of insulator surface before pollution
flashovers occur and to provide an early warning for the
operators. It is important to point out that the failure at any
single point of the transmission network can bring down
the entire system. Recent reports [3, 4] on grid disturbance
in India indicate the loss of five thousand million rupees
and 97% of interconnected generation on 2nd January
2001. Similar disturbances of lesser magnitudes were also
observed during the period of December 2002 and 2005,
Febuary and December 2006, January/Febuary 2007 and
March 2008. One of the major causes identified was the
pollution/contamination-induced flashovers. These events
have amply portrayed that the performance of overhead
transmission line string insulators and those used in outdoor
substations are critical factors which govern the reliability of
power delivery systems.

Quantities recommended to express pollution severity
are the equivalent salt deposit density (ESSD), the leakage
current, the air pollution measurements, and the nonsoluble
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FiGure 1: Photo and dimensions of the 11 kV composite insulator.
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FIGURE 2: Schematic diagram of the experimental setup.

deposit density (NSDD) [5]. It has been verified that the leak-
age current affected by the operating voltage, temperature,
and humidity can provide more comprehensive description
about the state of the polluted insulators than other methods.

Suda [6] studied the LC waveforms and frequency
characteristics of an artificially polluted cap and pin type
insulator and classified the transition of LC waveforms into
six stages in order to predict the flashover. Reddy and
Nagabhushana [7] studied the leakage current behavior on
artificially polluted ceramic insulator surface and derived
the relationship between the surface resistance and leakage
current. Sarathi and Chandrasekar [8] have shown that
application of moving average technique for the trend
analysis of leakage current signal could be useful to predict
the surface condition of outdoor polymeric insulators. Chan-
drsekar and Kalaivanan [9] have investigated the harmonic
content in polluted porcelain insulator and concluded that
the harmonic content analysis is the effective diagnosis tool
for outdoor insulators.

Neural networks have been intensively studied in the
past decades. Cline et al. [10], Kontargyri et al. [11], and
Saleh Al Alawi et al. [12] have implemented the neural
network to predict the insulator flashover. Ahmad et al.
[13] have successfully implemented the ANN model to
predict the ESDD for contaminated porcelain insulators,
but in this work, meteorological data like rainfall, wind
velocity and so forth. are considered as the input to ANN
model, which will vary according to the area and climate.
Li et al. [14] have studied the time domain parameter
of leakage current and give these parameters as input to
ANN to predict the ESDD value. Considering the above
facts, it is important to predict the pollution severity of

the transmission line insulators taking into account both
time and frequency domain characteristics of LC. In ANN,
the number of learning steps is high, and also the learning
phase has intensive calculations. For complex problems,
it may require days or weeks to train the network. The
trained ANN can respond only if the input parameters
are within training limits (minimum value to maximum
value). Suppose that the inputs slightly deviate from the
training limits, it may not give accurate results. The pollution
problem in the outdoor insulator is very fuzzy due to external
environmental factors, so the inputs selected to train the
network and inputs given in real-time implementation may
be slightly varying. So a new network model needs to be
developed to overcome the drawbacks of simple artificial
neural network model [11-14], and ANFIS-based model will
be most suitable for prediction of ESDD values of power
transmission line insulators. Having known all this, present
paper focuses on prediction of pollution severity (ESDD
value) on the surface of polymer insulators by using an
adaptive neurofuzzy inference system (ANFIS).

2. Experimental Setup and Data Collection

A11KkV silicone rubber insulator was used for the contami-
nation experiments. Figure 1 shows the overall dimension of
al1kV silicone rubber insulator used in this study. Figure 2
shows the schematic diagram of the experimental setup,
where PU is protection unit, DSO is digital storage oscillo-
scope, DAS is data acquisition system, and PC is personal
computer. The test insulator was suspended vertically inside
the fog chamber (1.5m x 1.5m X 1.5m). The test voltage
was 11 kVrms, 50 Hz. Pollution tests were conducted as per
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TABLE 1: Leakage current time and frequency domain features.

Leakage current features [input to model]

ESDD (mg/cm?) Mean value Maximum value Standard Total harmonic
[o/p of model] (Iem ), mA (Temax)s MA deviation (o) distortion (THD)%
0.01 0.039 0.13 0.0495 78.56

0.06 0.047 0.14 0.0583 54.35

0.08 0.286 2.07 0.3892 37.34

0.12 1.428 4.11 2.0302 24.34

0.25 2.160 4.24 3.6160 12.23

IEC 60507 clean fog test procedure [15]. Before tests, the
insulator surfaces were cleaned by washing with isopropylic
alcohol and rinsing with distilled water, in order to remove
any trace of dirt and grease. To reproduce saline pollution
typical of coastal areas, a contamination layer consisting of
NaCl and 40 g of kaolin mixed with 1 litre of deionized water
was applied to the surface of insulator. The concentration
of NaCl salt was varied to give Equivalent salt deposit
density (ESDD) in mg/cm?. Four ultrasonic nebulizers
were used to maintain the required relative humidity level
inside the fog chamber. Relative humidity inside the fog
chamber was measured using a wall-mounted hygrotherm
instrument.

2.1. Leakage Current Measurement. The leakage current was
measured through a series resistance in the ground lead.
A high sampling rate data acquisition system (National
Instruments, 1.25 MSa/sec) was used in the present study. In
this study, all the signals were captured at a sampling rate of
5kHz, and the data was stored in PC for further processing.
Laboratory tests were carried out in silicone rubber insulator
at different pollution levels varying from 0.01 ESDD to
0.25 ESDD, at a constant 100% relative humidity conditions.
50 leakage current signals were recorded at each ESDD
level. The mean, maximum, standard deviation, and total
harmonic distortion (THD) were calculated based on the
formulas as follows:

(Zf\il Ie(i)>

Iem - T,

Temax = max(Iem (1)),

\/z V(L (z) len)*

THD = \/220:2 Ihz,rms

rms

rms = A Z Ih rms’

where N is the total number of sampling points in the
test time; I.(7) is the leakage current value in one sampling
period; Iy is the mean value of leakage current in the test

(1)

X 100%,

time; Iemax 1S the maximum value of leakage current in the
test time; o is the standard deviation of leakage current in the
test time. The total data set 250 (50 x 5) is divided into three
parts as training, validation, and testing. Training sets varied
from 60 to 180 sets. The remaining 70 data sets are divided
into 40 for validation and 30 for testing the model. The one
set of recorded leakage current signal is shown in Figure 3,
and its features are tabulated in Table 1.

The present work has been carried out in the high
voltage pollution testing laboratory. However, the proposed
methodology can be applied at selected highly polluted areas,
and suitable leakage current sensors will be installed in the
composite insulators. The acquired leakage current signals
from all such sensors on towers will be transmitted to central
data logging system in substation. The data logging system
will be connected with a high-end configuration computer,
which will process the data continuously and simultaneously
for all insulators and features are extracted and given to the
ANFIS model. This is not a simple task, and it probably
requires an expensive infrastructure. The laboratory-based
measurement leakage current signal was verified with real-
time leakage current signal in literature work [16].

3. Performance Measure

Assessment of the performance of ANFIS model is done
by optimal values of Root mean square error (RMSE),
coefficient of determination (R?), and correlation coefficient

(r).

Root Mean Square Error (RMSE). The formula for RMSE is

ZZ:] (Xobs

2\ 172
B Xest)
n bl

where n is number of data points, X, is observed value Xy,
and estimated value.

RMSE = ( (2)

Correlation Coefficient (r). Correlation coefficient is a mea-
sure of strength and direction of a linear relationship
between two random variables. In this work, Pearson’s
product moment correlation coefficient, denoted by r, has
been adopted to determine the value of correlation efficient
between two signals. If a series of n measurements of X and
Y are written as x; and y; where i = 1,2,...,n, then the
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FIGURE 3: Leakage current signals for different ESDD values.

Pearson product-moment correlation coefficient to estimate
the correlation of X and Y is written as

S 90
e (n—-1)8.S, ’

(3)

where x and y are the sample means of Xops and Xeg, Sy and
Sy are the sample standard deviations of Xobs and Xes.. The
value of correlation coefficient is between —1 and +1 which
measures the degree to which two signals are linearly related.
If there is perfect linear relationship with positive slope
between the two signals, then the correlation coefficient will
be +1. If there is a perfect linear relationship with negative
slope between the two signals, then the correlation coefficient
will be —1. Correlation coefficient of 0 indicates that there is
no linear relationship between the signals.

Coefficient of Determination (R*). There are different defini-
tions of R%. In the case of linear regression,

Z?:l (Xobs - Xest)2

RP=1- — .
Z?:l (Xobs _Xobs)

(4)

4. Back Propagation Neural Network

Artificial neural networks are highly parallel, adaptive learn-
ing system that can learn a task by generalizing from case
studies of the tasks. If a problem can be posed as an input-
output mapping problem, an ANN can be used as a black
box that learns the mapping from input-output examples
from known cases of task. In the present work, ANN has

TABLE 2: Back propagation neural network specifications.

No. of inputs 4
No. of neurons in hidden layer 11
No. of neurons in output layer 1
Learning rate (7) 0.01
No. of iterations 2500
No. of training sets 180
No. of test input sets 70
Convergence criteria 0.001

been applied to the problem of predicting the pollution
severity of polymeric insulators. Among the various ANN
architectures available in the literature, the multilayer feed-
forward network with back propagation learning algorithm
has been used for the present study because of its simple
approach and good generalization capability [17, 18]. The
details of the optimized neural network used in the present
study are shown in Table 2.

The convergence property and accuracy of the learning
process for the BNN are significantly dependent on the
scaling of the input-output data set. Hence, before training
BPNN, the normalization of input-output data should be
carried out. So their input values are normalized to 1 based
on the following:

— (}/1 - ymin)
yi a ()/max - ymin) ' (5)



Advances in Artificial Neural Systems

RMSE

0 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18

Number of hidden layer neurons

FIGURE 4: RMSE evaluation for different hidden layer neurons.

15

Number of hidden layer neurons = 11

10

RMSE

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Number of iteration

F1GURE 5: RMSE evaluation for different number of iteration.

The important factors influencing the performance of the
neural network are the number of processing elements in the
hidden layer and the number of iterations. Figure 4 shows
the root mean square error value obtained with the different
number of hidden layer neurons. It clearly indicates that
the root mean square error value obtained with 11 hidden
layer neurons was the minimum. As the number of hidden
layer neurons increases, the neural network takes more time
to learn. To obtain an optimum value for the number of
iterations, the mean square error value of the network has
been evaluated by maintaining the value of learning rate to
be 0.01 with 11 hidden layer neurons. Figure 5 shows the
performance of the network for different iteration numbers.
It clearly indicates that during training the present network
reaches the convergence criteria near 3000 iterations. It
indicates that 3000 iterations are sufficient for the successful
training of the optimized neural network.

5. Adaptive Neurofuzzy Inference System

A unique approach in neurofuzzy system is the adaptive
neurofuzzy inference system (ANFIS), which has been
proven better performance in modeling nonlinear function
[19]. The ANFIS models possess human-like expertise within
a particular domain which adapts itself and learns to do
better in changing environment condition [20]. An ANFIS

aims at automatically generating unknown fuzzy rules from
a given input and output data sets [21]. Figure 6 shows a
typical architecture of ANFIS.

Notice that in Figure 6, each circle shows a fixed node,
whereas every square indicates an adaptive node. So the rule
base system has two if-then rules of Takagi-Sugeno’s type as:

Rulei:ifxis A;and yis B, then f; = pix +qiy +ri, i =
1,2.

Layer 1. Each node i in this layer is an adaptive node and
outputs of these nodes are given by

O, = uAi(x),
Ov,i = uBi-2(y),

fori=1,2, or

, (6)
for i = 3,4,

where pA;(x) and puB;_,(y) are membership functions that
determine the degree to which the given x and y satisfy the
quantifiers A; and B;_,. In this work, the membership func-
tion for A can be any appropriate parameterized membership
function, such as the generalized bell function

1
1+ (x = )P

pA(x) (7)

where {a;,b;,c;} is the parameter set. As the values of
these parameters change, the bell-shaped function varies
accordingly. Parameters in this layer are referred to as premise
parameters.

Layer 2. In this layer, each node is a fixed node labeled IT that
determines the firing strength of related rule, whose output
is the product of all the incoming signals

0, = w;i = pA;(X)uBi(y), i=1,2. (8)
Layer 3. In this layer, every node is a circle node labeled N,
which computes the ratio of firing strength of each rule to the
sum of all of them; the so-called normalized firing strength.

wi
wy + wz’

O3 =0; = i=1,2. (9)

Layer 4. The output of each adaptive node in this layer is
O4i = @i fi = @i(pix + qiy + i), (10)
where @; is a normalized firing strength from layer 3 and

{pi» qi» 1i} are called as consequence parameters.

Layer 5. Final layer, the single node in this layer is a fixed
node labeled >, which computes the overall output as the
summation of all incoming signals,

Ziwifi
Ziwi '

overall output = Os; = > @;f; = (11)

Thus, an adaptive network has been constructed. The
proposed ANFIS-based pollution severity system is based
upon Jang’s ANFIS [19], which is a fuzzy inference system
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TABLE 3: Two passes in the hybrid learning procedure for ANFIS.

Forward pass

Backward pass

Premise parameters
Consequent parameters

Fixed
Least squares estimate

Gradient descent
Fixed

Signals Node output Error rates
TaBLE 4: Summary of general specifications of the used architecture.
Adaptive . . Algorithmic Partition of Required initial Extracted
Adaptive architecture . Structural change
FIS type learning structure  spaces knowledge knowledge type
ANFIS Multilayer Hybr1.d: supervised Ac?aptwe fuzzy Numerical data No If-then fuzzy
feed-forward network (gradient descent) grid rules
1 1
0 : : 0 : :
0 1 2 3 4 5 0 1 2 3 4 5
L.C (max) (mA) L.C (max) (mA)
1 T T 1 T T
0 . : 0 ' :
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FIGURE 7: MFs parameters before and after ANFIS model bell-shaped MFs.
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TABLE 5: Statistical indices for performance assessment of the different types of ANFIS models.
Type of Mf No. of MF o RMSE o RMSE RZ 4
Training Validation Testing

Trimf 2 0.007213 0.01282 0.00689 0.945 0.8462
3 0.005301 0.01155 0.00683 0.967 0.9167
4 0.003438 0.01485 0.02847 0.875 0.8413
5 0.001705 0.00602 0.00282 0.974 0.9122
gaussmf 2 0.014395 0.00962 0.01609 0.962 0.8642
3 0.016005 0.01687 0.01742 0.879 0.8932
4 0.002167 0.00141 0.00031 0.999 0.9812
5 0.009562 0.01225 0.00934 0.979 0.9232
gbellmf 2 0.009173 0.01072 0.01048 0.899 0.8652
3 0.001831 0.00513 0.00323 0.998 0.9945
4 0.001245 0.00496 0.00289 0.999 0.9952
5 0.003399 0.01258 0.00894 0.969 0.9171
0.2 - - these data were given as inputs to train the ANFIS. Ini-
Types of MFs: gbell tially, the system was developed with different types of
0.15 Number of MFs: 3 | membership functions (MFs) like triangular-shaped built-
Initial step size: 0.01 in membership function (trimf), Gaussian curve built-
82 o | in membership function (gaussmf), and generalized bell-
s shaped built-in membership function (gbellmf); each MF
was tested with different linguist variables (2 [HIGH
0.05 1 LOW]3[HIGH MEDIUM LOW] 4[HIGH MEDIUM LOW
\[Converging point VERY LOW] 5[VERY HIGH HIGH MEDIUM LOW VERY
of . . . . i LOW) to each input. The ANFIS model was trained by
0 100 200 300 400 500 hybrid learning algorithm. Figure 7 illustrates the gbellmf

Number of iteration

F1cUre 8: RMSE evaluation of different no. of integration for ANFIS
model.

implemented on the architecture of a five-layer feed-forward
network. Using a hybrid learning procedure, the ANFIS
model can construct an input-output mapping based on
both human knowledge (in the form of if-then rules) and
input-output data observations. In the hybrid learning algo-
rithm, in the forward pass, the functional signals go forward
till layer 4, and the consequent parameters are identified by
the least squares estimate. In the backward pass, the error
rates propagate backward and the premise parameters are
updated by the gradient descent. The consequent parameters
thus identified are optimal (in the consequent parameter
space) under the condition that the premise parameters are
fixed. Accordingly, the hybrid approach is much faster than
the strict gradient descent. Table 3 summarizes the activities
in each pass. A summary of the general specifications
including the learning algorithm, required initial knowledge,
domain partitioning, rule structuring, and extracted knowl-
edge type are given in Table 4.

6. Results and Discussion

In this study, automatic pollution prediction system was
developed based on the leakage current feature measure-
ment. The time and frequency domain feature of leakage
current were extracted from the laboratory testing, and

membership functions before and after training. The std and
mean inputs boundaries were adapted well, and max, THD
inputs boundaries were slightly adapted, because the initial
assignment of these boundaries was very close to actual input
data. Figure 8 shows the training error curves with initial step
size equal to 0.01. The converging criterion was obtained
at 250th iteration. The performance of each model was
tested by performance-measured coefficients. The detailed
simulated results obtained by the developed ANFIS model
for predicting the ESDD value of the polymer insulator were
tabulated in Table 5.

According to Table 5, generalized bell-shaped (gbell)
with 3 or 4 MFs is the best architecture model to predict
the pollution severity of the polymeric power line insulators,
because it gives lowest RMSE value during the training,
validation process and lowest RMSE, highest R?, and r during
the testing process. Even though two architecture models are
fit for this problem, 3 MFs architecture model was selected,
because it has been trained with less time compared with
the 4 MFs architecture model. The final performance of any
model strictly depends on the number of training data sets,
and initially different architecture ANFIS model was trained
with 180 training data sets for getting best fit architecture
model, then the training data sets vary from 60 to 180 sets to
train the best fit model (gbell, 3 MFs) in order to get optimal
training data sets to train the model.

The performance of the ANFIS model was compared
with back propagation neural network (BNN) model. The
same input training and testing data sets were applied to
BNN model, and the performance measurement indices were
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TaBLE 6: Comparative performance assessment of models.
Performance measures
Models
RMSE R? r
BNN 0.02524 0.943 0.9732
ANFIS 0.00323 0.998 0.9945

tabulated in Table 6. According to Table 6, ANFIS model
gives more accurate results than BNN. The output of ANFIS-
based model was mostly matching the tested values, because
it gives lowest RMSE [0.00323], highest R?[0.998], and
r[0.9945] compared to BNN model. This was because of
the highly nonlinear mapping capability and self-adaptive
nature of the fine tuning of the MFs of ANFIS. After the
initial training step of the ANFIS model, which was the
optimization of the consequence parameters, the system
adapts such that the pollution severity index value (ESDD)
predicting was significantly close to the actually tested values
of the polymer insulators. The RMSE to predict the ESDD
values based on neural network is 0.02524 at developed BNN
model and 0.035 at literature work [14], which was recently
a published work with the same kind of input feature used to
train the BNN model. Considering the above test results, the
ANFIS model would give better accuracy than BNN models.

The accurate prediction of pollution severity index
[ESDD] of polymeric insulator in power transmission line is
automated by ANFIS model by on-line training. Actually, the
pollution flashover may take place once the pollution severity
index reaches it critical value. If the ANFIS model predicts
the ESDD value prior to critical value, then the operator
will get a warning instruction to wash the particular polluted
polymeric insulator in the transmission tower to avoid the
pollution flashover.

7. Conclusion

A methodology for the prediction of the pollution severity
of polymeric insulators using ANFIS model was presented.
The ANFIS model was designed based on the time and
frequency domain characteristics of the polymeric insulator
leakage currents. The performance of the developed model
was justified by root mean square error, coefficient of deter-
mination (R?), and correlation coefficient (r). The respective
results are quite satisfactory and superior compared to BNN
model. The new prediction model helps to automate the
process of identification surface condition of the polymeric
insulator, installed near industrial and agricultural or coastal
areas. Hence, the present model could be used to predict the
pollution severity of polymeric insulator and, therefore, can
be used to establish condition-based maintenance practices.
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