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This paper presents a systematic methodology for the generation of high-level performance models for analog component blocks.
The transistor sizes of the circuit-level implementations of the component blocks along with a set of geometry constraints applied
over them define the sample space. A Halton sequence generator is used as a sampling algorithm. Performance data are generated
by simulating each sampled circuit configuration through SPICE. Least squares support vector machine (LS-SVM) is used as a
regression function. Optimal values of the model hyper parameters are determined through a grid search-based technique and a
genetic algorithm- (GA-) based technique. The high-level models of the individual component blocks are combined analytically
to construct the high-level model of a complete system. The constructed performance models have been used to implement a GA-
based high-level topology sizing process. The advantages of the present methodology are that the constructed models are accurate
with respect to real circuit-level simulation results, fast to evaluate, and have a good generalization ability. In addition, the model
construction time is low and the construction process does not require any detailed knowledge of circuit design. The entire
methodology has been demonstrated with a set of numerical results.

1. Introduction

An analog high-level design process is defined as the transla-
tion of analog system-level specifications into a proper topol-
ogy of component blocks, in which the specifications of all
the component blocks are completely determined so that the
overall system meets its desired specifications optimally [1–
3]. The two important steps of an analog high-level design
procedure are high-level topology generation/selection [4, 5]
and high-level specification translation [6]. At the high-level
design abstraction, a topology is defined as an interconnec-
tion of several analog component blocks such as amplifier,
mixer and filter. The detailed circuit-level implementations
of these component blocks are not specified at this level of
abstraction. The analog component blocks are represented
by their high-level models.

During the past two decades, many optimization-based
approaches have been proposed to handle the task of to-
pology generation/selection [7–11]. These approaches in-
volves the task of topology sizing, where the specification
parameters of all the component blocks of a topology are

determined such that the desired system specifications are
optimally satisfied. The two important modules for this type
of design methodology are a performance estimation module
and an optimization engine. The implementation of the
design methodology is based upon the flow of information
between these two modules.

The performance models that are used in the high-level
design abstraction are referred to as high-level perform-
ance models. An analog high-level performance model is a
function that estimates the performance of an analog com-
ponent block when some high-level design parameters of the
block are given as inputs [12, 13]. The important require-
ments for a good high-level performance model are as fol-
lows. (i) The model needs to be low dimensional. (ii) The
predicted results need to be accurate. The model accuracy
is measured as the deviation of the model predicted value
from the true function value. The function value in this case
is the performance parameter obtained from transistor level
simulation [12]. (iii) The evaluation time must be short. This
is measured by the CPU time required to evaluate a model.
(iv) The time required to construct an accurate model must
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be small, so that the design overhead does not become high.
As a rough estimate, the construction cost is measured as

Tconstruction = Tdata generation + Ttraining, (1)

where the terms are self-explanatory. There exists a tradeoff
between these requirements since a model with lower pre-
diction error generally takes more time for construction and
evaluation.

In this work, we have developed the performance models
using least squares support vector machine (LS-SVM) as the
regressor. The transistor sizes of the circuit-level implemen-
tations of the component blocks along with a set of geometry
constraints applied over them define the sample space. Per-
formance data are generated by simulating each sampled cir-
cuit configuration through SPICE. The LS-SVM hyper para-
meters are determined through formal optimization-based
techniques. The constructed performance models have been
used to implement a high-level topology sizing process. The
advantages of this methodology are that the constructed
models are accurate with respect to real circuit-level simula-
tion results, fast to evaluate and have a good generalization
ability. In addition, the model construction time is low
and the construction process does not require any detailed
knowledge of circuit design. The entire methodology has
been demonstrated with a set of experimental results.

The rest of the paper is organized as follows. Section 2
reviews some related works. Section 3 presents the back-
ground concepts on least squares support vector machines.
An outline of the methodology is provided in Section 4.
The model generation methodology is described in detail
in Section 5. The topology sizing process is described in
Section 6. Numerical results are provided in Section 7 and
finally conclusion is drawn in Section 8.

2. Related Work

A fairly complete survey of related works is given in [14]. An
analog performance estimation (APE) tool for high-level
synthesis of analog integrated circuits is described in [15, 16].
It takes the design parameters (e.g., transistor sizes, biasing)
of an analog circuit as inputs and determines its performance
parameters (e.g., power consumption, thermal noise) along
with anticipated sizes of all the circuit elements. The estima-
tor is fast to evaluate but the accuracy of the estimated results
with respect to real circuit-level simulation results is not
good. This is because the performance equations are based
on simplified MOS models (SPICE level 1 equations). A
power estimation model for ADC using empirical formulae
is described in [13]. Although this is fast, the accuracy with
respect to real simulation results under all conditions is off
by orders of magnitude. The technique for generation of
posynomial equation-based performance estimation models
for analog circuits like op-amps, multistage amplifiers,
switch capacitor filters, and so forth, is described in [17, 18].
An important advantage of such a modeling approach is that
the topology sizing process can be formulated as a geometric
program, which is easy to solve through very fast techniques.
However, there are several limitations of this technique.
The derivation of performance equations is often a manual

process, based on simple MOS equations. In addition, al-
though many analog circuit characteristics can be cast in
posynomial format, this is not true for all characteristics. For
such characteristics, often an approximate representation is
used. An automatic procedure for generation of posynomial
models using fitting technique is described in [19, 20]. This
technique overcomes several limitations of the handcrafted
posynomial modeling techniques. The models are built from
a set of data obtained through SPICE simulations. Therefore,
full accuracy of SPICE simulation is achieved through such
performance models. A neural network-based tool for au-
tomated power and area estimation is described in [21]. Cir-
cuit simulation results are used to train a neural network
model, which is subsequently used as an estimator. Fairly
recently, support vector machine (SVM) has been used for
modeling of performance parameters for RF and analog cir-
cuits [22–24]. In [25], SVM-optimized by GA has been used
to develop a soft fault diagnosis method for analog circuits.
In [26], GA and SVM has been used in conjunction for devel-
oping feasibility model which is then used within an evo-
lutionary computation-based optimization framework for
analog circuit optimization.

2.1. Comparison with Existing Methodologies. The present
methodology uses nonparametric regression technique for
constructing the high-level performance models. Compared
with the other modeling methodologies employing symbolic
analysis technique or simulation-based technique, the advan-
tages of the present methodology are as follows. (i) Full accu-
racy of SPICE simulations and advanced device models, such
as BSIM3v3 are used to generate the performance models.
The models are thus accurate compared to real circuit-level
simulation results. (ii) There is no need for any a priori
knowledge about the unknown dependency between the
inputs and the outputs of the models to be constructed. (iii)
The generalization ability of the models is high. (iv) The
model construction time is low and the construction process
does not require any detailed circuit design knowledge.

The EsteMate methodology [21] using artificial neural
network (ANN) and the SVM-based methodology discussed
in [22, 23] are closely related with the present methodology.
The methodology that we have developed, however, has a
number of advantages over them. These are as follows.

(1) In the EsteMate methodology, the specification pa-
rameters of a component block constitute the sample
space for training data generation. The specification
parameters are electrical parameters and there exists
strong nonlinear correlations amongst them. There-
fore, sophisticated sampling strategies are required
for constructing models with good generalization
ability in the EsteMate methodology. On the other
hand, in our method, the transistor sizes along with a
set of geometry constraints applied over them define
the sample space. Within this sample space, the cir-
cuit performance behavior becomes weakly nonlin-
ear. Thus simple sampling strategies are used in our
methodology to construct models with good general-
ization ability.
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(2) In EsteMate, for each sample, a complete circuit siz-
ing task using a global optimization algorithm is
required for generation of the training data. This is
usually prohibitively time consuming. On the other
hand, in our method, simple circuit simulations
using the sampled transistor sizes are required for
data generation. Therefore, the cost of training data
generation in our method is much less compared to
that in the EsteMate methodology [21]. With the
EsteMate methodology, the training sample points
are so generated that performances such as power is
optimized. On the other hand, in our methodology,
the task of performance optimization has been
considered as a separate issue, isolated from the per-
formance model generation procedure. Our strategy
is actually followed in all practical optimization-
based high-level design procedures [1, 27].

(3) The generalization ability of the models constructed
with our methodology is better than that generated
through the EsteMate methodology. This is because
the latter uses ANN regression technique. Neural net-
work-based approaches suffer from difficulties with
generalization, producing models that can overfit the
data. This is a consequence of the optimization algo-
rithms used for parameter selection and the statistical
measures used to select the “best” model. SVM for-
mulation, on the other hand, is based upon structural
risk minimization (SRM) principle [28], which has
been shown to be superior to traditional empirical
risk minimization (ERM) principle, employed by
the conventional neural networks. SRM minimizes
an upper bound on the expected risk, as opposed
to ERM that minimizes the error on the training
data. Therefore an SVM has greater generalization
capability.

(4) The SVM-based methodology, as presented in [23],
uses heuristic knowledge to determine the model
hyper parameters. The present methodology uses op-
timization techniques to determine optimal values
for them. GA-based methodology for determination
of optimal values for the model hyper parameters is
found to be faster compared to the grid search tech-
nique employed in [22].

3. Background: Least Squares Support
Vector Regression

In recent years, the support vector machine (SVM), as a
powerful new tool for data classification and function esti-
mation, has been developed [28]. Suykens and Vandewalle
[29] proposed a modified version of SVM called least squares
SVM. In this subsection, we briefly outline the theory behind
the LS-SVM as function regressor.

Consider a given set of training samples {xk, yk}k=1,2,...,Ntr

where xk is the input value and yk is the corresponding target

value for the kth sample. With an SVR, the relationship bet-
ween the input vector and the target vector is given as

̂y(x) = wTφ(x) + b, (2)

where φ is the mapping of the vector x to some (probably
high-dimensional) feature space, b is the bias, and w is the
weight vector of the same dimension as the feature space. The
mapping φ(x) is generally nonlinear which makes it possible
to approximate nonlinear functions. The approximation er-
ror for the kth sample is defined as

ek = yk − ŷk(xk). (3)

The minimization of the error together with the regression is
given as

min J(w, e) = 1
2
wTw + γ

1
2

Ntr
∑

k=1

e2
k , (4)

with equality constraint

yk = wTφ(xk) + b + ek, k = 1, 2, . . . ,n, (5)

where Ntr denotes the total number of training datasets and
the suffix k denotes the index of the training set, that is, kth
training data, γ is the regularization parameter.

The optimization problem (4) is considered to be a con-
strained optimization problem and a Lagrange function is
used to solve it. Instead of minimizing the primary objective
(4), a dual objective, the so-called Lagrangian, is formed of
which the saddle point is the optimum. The Lagrangian for
this problem is given as

L(w, b, e,α) = J(w, e)−
Ntr
∑

k=1

αk
(

wTφ(xk) + b + ek − yk
)

,

(6)

where αks’ are called the Lagrangian multipliers. The saddle
point is found out by setting the derivatives equal to zero:

∂L

∂w
= 0 −→ w =

Ntr
∑

k=1

αkφ(xk),

∂L
∂b

= 0 −→ w =
Ntr
∑

k=1

αk = 0,

∂L
∂ek

= 0 −→ αk = γek,

∂L

∂αk
= 0 −→ wTφ(xk) + b + ek − yk = 0.

(7)

By eliminating ek andw through substitution, the final model
is expressed as a weighted linear combination of the inner
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product between the training points and a new test object.
The output is given as

̂y(x) = 〈w,φ(x)〉

=
〈 Ntr
∑

k=1

αkφ(xk),φ(x)

〉

+ b

=
Ntr
∑

k=1

αk
〈

φ(xk),φ(x)
〉

+ b

=
Ntr
∑

k=1

αkK(xk, x) + b,

(8)

where K(xk, x) is the kernel function. The elegance of using
the kernel function lies in the fact that one can deal with
feature spaces of arbitrary dimensionality without having to
compute the map φ(x) explicitly. Any function that satisfies
Mercer’s condition can be used as the kernel function. The
Gaussian kernel function used in the present work is defined
as

K(xk, x) = exp

(

−‖xk − x‖2

σ2

)

, (9)

and is commonly used, where σ2 denotes the kernel band-
width. The two important parameters, kernel parameter σ2,
and the regulation parameter γ as defined in (4) are referred
to as hyper parameters. The values of these parameters
have to determined critically in order to make the network
efficient.

4. An Outline of the Methodology

The high-level performance model of an analog component
block is mathematically represented as

ρ = P
(

X
)

, (10)

where ρ is a set of performance parameters and X is a set of
specification parameters. The input specification parameters
are referred to as the high-level design parameters. It is to be
noted that out of various possible specification parameters,
only the dominant parameters are to be considered as inputs.
The selection of these is based upon the designer’s knowledge
[12]. These high-level design parameters describe a space
referred to as the sample space. This sample space is explored
to extract sample points through suitable algorithms. The
numerical values of the sample points (both inputs and
outputs of the performance model to be constructed) are
generated through SPICE simulations. The data points so
generated are divided into two sets, referred to as the training
set and the test set. A least squares SVM network approx-
imating a performance model is constructed by training
the network with the training set. The test dataset is used
to validate the SVM model. Suitable kernel functions are
selected for constructing the SVM. An initial SVM model
is constructed through some initial values of the hyper
parameters. An iterative process is then executed to contruct

the final LS-SVM so as to maximize its efficiency through
optimal determination of the hyper parameters. An outline
of the process for constructing the performance model of a
single component block is illustrated in Figure 1(a).

For a complex system, consisting of many component
blocks, the high-level performance model of the complete
system is constructed at the second level of hierarchy, where
the high-level models of the individual component blocks
are combined analytically (see Figure 1(b)). The constructed
performance models are used to implement a high-level
topology sizing process. For a given unsized high-level topol-
ogy of an analog system, the topology parameters (which are
the specification parameters of the individual blocks of the
high-level topology) are determined such that the desired
design goals are satisfied. The entire operation is performed
within an optimization procedure, which in the present
work is implemented through GA. The constructed LS-SVM
models are used within the GA loop. An outline of the sizing
methodology is shown in Figure 1(c).

The following two important points may be noted in
connection with the present methodology. First, the high-
level performance model of a complete system is generated
in a hierarchical manner. The major advantage of this hi-
erarchical approach is reusability of the high-level model of
the individual component blocks. The high-level model of
the component blocks can be utilized whenever the corre-
sponding component blocks are part of a system, provided
the functionality and performance constraints are identical.
This generally happens. The issue of reusability of the com-
ponent block level high-level models is demonstrated in
Experiment 3, provided later. However, this advantage comes
at the cost of reduced accuracy of the model of the complete
system. This tradeoff is a general phenomenon in analog
design automation process. It may, however, be noted that it
is possible to construct the high-level performance model of
a complete system using the regression technique discussed
here. For some customized applications, this may be done.
Second, the requirement of low dimensionality of the models
must be carefully taken care of. The scalability of our ap-
proach of model generation is not high, compared to ana-
lytical approach. However, compared to other black-box ap-
proaches like ANN-based, the scalability of our SVM-
based approach is high. In addition, many of the global
optimization algorithms suffer from the problem of “curse of
dimensionality.” For a topology sizing procedure, employing
high-dimensional model the design space in which to search
for optimal design points becomes too large to be handled by
simple optimization algorithms. Therefore, while selecting
the inputs of the model, only the dominant specification
parameters need to be considered.

The detailed operations of each of the steps outlined
above are discussed in the following sections and subsections.

5. High-Level Performance Model Generation

In this section, we describe the various steps of the perfor-
mance model generation procedure in detail.
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parameters through

optimization algorithm

Sample space definition
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Yes

No
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(block-n)
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parameters based on
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Unsized topology,
optimization

objectives

Cost evaluation using
performance model

Optimized
topology

(c)

Figure 1: An outline of the methodology; (a) model generation for individual blocks, (b) model generation for a complete system, and (c)
high-level topology sizing.
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5.1. Sample Space Definition, Data Generation, and Scaling.
In (10), both ρ and X are taken to be functions of a set of
geometry parameters α (transistor sizes) of a component
block, expressed as

X =R(α),

ρ = Q(α).
(11)

R and Q represents the mapping of the geometry parameters
to electrical parameters. This is illustrated in Figure 2. The
multidimensional space spanned by the elements of the set
α is defined as circuit-level design space Dα. The sample
space is a subspace within Dα (see Figure 3), defined through
a set of geometry constraints. These geometry constraints
include equality constraints as well as inequality constraints.
For example, for matching purpose, the sizes of a differential
pair transistors are equal. The inequality constraints are
determined by the feature size of a technology and conditions
that the transistors are not excessively large. With elementary
algebraic transformations, all the geometry constraints are
combined into a single nonlinear vector inequality, which is
interpreted element wise as

Cg(α) ≥ 0 ⇐⇒ ∀i∈{1···q}Cgi(α) ≥ 0. (12)

Within this sample space, the circuit performance behav-
ior becomes weakly nonlinear [27, 30]. Therefore, simple
sampling strategies are used to construct models with good
generalization ability. In the present work, the sample points
are extracted through Halton sequence generation. This is a
quasirandom number generator which generates a set of uni-
formly distributed random points in the sample space [31].
This ensures a uniform and unbiased representation of the
sample space. The number of sample data plays an important
role in determining the efficiency of the constructed LS-
SVM model. Utilizing a separate algorithm, it is possible to
determine an optimum size of the training sample data such
that models built with smaller training set than this optimum
value will have lower accuracy than the models built with
optimum number of training sample and models built with
larger training data than the optimum number will have no
significant higher accuracy. However, in the present work, in
order to make the sampling procedure simple, the number of
sample data is fixed which is determined through a trial and
error method.

The training data generation process is outlined in
Figure 4. For each input sample (transistor sizes) extracted
from the sample space Dg , the chosen circuit topology of a
component block is simulated using SPICE through Cadence
Spectre tool using the BSIM3v3 model. Depending upon the
selected input-output parameters of an estimation function,
it is necessary to construct a set of test benches that would
provide sufficient data to facilitate automatic extraction of
these parameters via postprocessing of SPICE output files.
A set of constraints, referred to as feasibility constraints are
then applied over the generated data to ensure that only
feasible data are taken for training.

The generated input-output data are considered to be
feasible, if either they themselves satisfy a set of constraints

Q(α)

R(α)

α1

α2

P(X)

X1

X2

ρ1

ρ2

Output
space

Input
space

Sample
space

Figure 2: Nonlinear relation between the sample space and the
input and output space.

Cg (α) < 0

Cg (α) > 0

α1

α2

Dg (α)

Figure 3: 2D projection of a four-dimensional sample space.

or the mapping procedures (R, Q) through which they are
generated satisfy a set of constraints. The constraints are as
follows [30].

(1) Functionality constraints Cf : these constraints are
applied on the measured node voltages and currents.
They ensure correct functionality of the circuit and
are expressed as

Cf =
{

fk(v, i) ≥ 0, k = 1, 2, . . . ,n f

}

. (13)

For example, the transistors of a differential pair must
work in saturation.

(2) Performance constraints Cp: these are applied di-
rectly on the input-output parameters, depending
upon an application system. These are expressed as

Cp =
{

fk
(

ρ
) ≥ 0 fk

(

X
)

≥ 0 k = 1, 2, . . . ,np

}

. (14)

For example, the phase margin of an op-amp must be
greater than 45◦.

The total set of constraints for feasibility checking is thus
C = {Cf ∪ Cp}. It is to be noted that through the process
of feasibily checking, various simulation data are discarded.
This at a glance may give an impression about wastage of
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Design of experiments

Data generation

Feasibility checking

Data processing

SPICE simulation

Sample space Dg (transistor sizes)

Figure 4: An outline of the procedure for generation of training
data.

costly simulation time. However, for an analog designer (who
is a user of the model), this is an important advantage.
This is because, the infeasible data points will never appear
as solution whenever the model is used for design char-
acterization/optimization. Even from the model developer’s
perspective, this is not a serious matter considering the
fact that the construction process is in general a onetime
process [24]. The feasibility constraints remain invariant if
the performance objectives are changed. Even if the design
migrates by a small amount, these constraints usually do not
change [27]. This, however, demands an efficient determina-
tion of the feasibility constraints.

Data scaling is an essential step to improve the learn-
ing/training process of SVMs. The data of the input and/or
output parameters are scaled. The commonly suggested
scaling schemes are linear scaling, log scaling, and two-sided
log scaling. The present methodology employs both linear
scaling as well as logarithmic scaling depending upon the
parameters chosen. The following formula are used for linear
and logarithmic scaling within an interval [0, 1] [32]:

Linear: d′j =
dj − lb

ub − lb
,

Logarithmic: d′j =
log
(

dj/lb
)

log(ub/lb)
,

(15)

where dj is the unscaled jth data of any parameter bounded
within the interval [lb,ub]. Linear scaling of data balances
the ranges of different inputs or outputs. Applying log scale
to data with large variations balances large and small mag-
nitudes of the same parameter in different regions of the
model.

5.2. LS-SVM Construction. In this subsection, we discuss the
various issues related to the construction of the LS-SVM
regressor.

Table 1: List of kernel functions.

Name Function expression

Linear kernel K(xk , x) = xTk x

Polynomial kernel K(xk , x) = (1 + xTk x)
d

RBF kernel K(xk , x) = exp{(−‖xk − x‖2
2)/σ2}

MLP kernel K(xk , x) = tanh(κxTk x + θ)

5.2.1. Choice of Kernel Function. The first step of construc-
tion of an LS-SVM model is the selection of an appropriate
kernel function. For the choice of kernel function K(xk, x),
there are several alternatives. Some of the commonly used
functions are listed in Table 1, where d, σ , κ, and θ are
constants, referred to as hyper parameters. In general, in any
classification or regression problem, if the hyper parameters
of the model are not well selected, the predicted results will
not be good enough. Optimum values for these parameters
therefore need to be determined through proper tuning
method. Note that the Mercer condition holds for all σ
and d values in the radial basis function (RBF) and the
polynomial case, but not for all possible choices of κ and θ
in the multilayer perceptron (MLP) case. Therefore, the MLP
kernel will not be considered in this work.

5.2.2. Tuning of Hyper Parameters. As mentioned earlier,
when designing an effective LS-SVM model, the hyper
parameter values have to be chosen carefully. The regular-
ization parameter γ, determines the tradeoff cost between
minimizing the training error and minimizing the model
error. The kernel parameter σ or d defines the nonlinear
mapping from the input space to some high-dimensional
feature space [33].

Optimal values of the hyper parameters are usually deter-
mined by minimizing the estimated generalization error. The
generalization error is a function that measures the general-
ization ability of the constructed models, that is, the ability
to predict correctly the performance of an unknown sample.
The techniques used for estimating the generalization error
in the present methodology are as follows.

(1) Hold-out method: this is a simple technique for esti-
mating the generalization error. The dataset is sep-
arated into two sets, called the training set and the
test set. The SVM is constructed using the training set
only. Then it is tested using the test dataset. The test
data are completely unknown to the estimator. The
errors it makes are accumulated to give the mean test
set error, which is used to evaluate the model. This
method is very fast. However, its evaluation can have
a high variance. The evaluation may depend heavily
on the data points that end up in the training set and
on those which end up in the test set, and thus the
evaluation may be significantly different depending
on how the division is made.

(2) “k”-fold cross-validation method: in this method,
the training data is randomly split into k mutually
exclusive subsets (the folds) of approximately equal
size [33]. The SVM is constructed using k − 1 of the
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subsets and then tested on the subset left out. This
procedure is repeated k times. Averaging the test error
over the k trials gives an estimate of the expected
generalization error. The advantage of this method
is that the accuracy of the constructed SVM does
not depends upon how the data gets divided. The
variance of the resulting estimate is reduced as k is
increased. The disadvantage of this method is that it
is time consuming.

Primarily there are three different approaches for optimal
determination of the SVM hyper parameters: heuristic
method, local search method and global search method. The
σ value is related to the distance between training points and
the smoothness of the interpolation of the model. A heuristic
rule has been discussed in [34] for estimating the σ value
as [σmin, σmax] where σmin is the minimum distance (non-
zero) between two training points and σmax is the maximum
distance between two training points. The regularization
parameter γ is determined based upon the tradeoff between
the smoothness of the model and its accuracy. The bigger
its value the more importance is given to the error of the
model in the minimization process. Choosing a low value
is not suggested while using exponential RBF to model
performances which are often approximately linear or weakly
quadratic in most input variables. While constructing LS-
SVM-based analog performance model, heuristic method
has been applied for determining the hyper parameters in
[23]. The hyper parameters generated through heuristic
method are often found to be suboptimal as demonstrated in
[12]. Therefore, determination of hyper parameters through
formal optimization procedure is suggested [33].

The present methodology employs two techniques for
selecting optimal values of the model hyper parameters. The
first one is a grid search technique and the other one is
a genetic algorithm-based technique. These are explained
below considering the RBF as the kernel function. For other
kernels, the techniques are accordingly used.

(1) Grid Search Technique. The basic steps of the grid search-
based technique is outlined below.

(1) Consider a grid space of (γ, σ2), defined by log2γ ∈
{lbγ,ubγ} and log2σ

2 ∈ {lbσ2 ,ubσ2}, where [lbγ,ubγ]
and [lbσ2 ,ubσ2 ] define the boundary of the grid space.

(2) For each pair within the grid space, estimate the gen-
eralization error through hold-out/k-fold cross-vali-
dation technique.

(3) Choose the pair that leads to the lowest error.

(4) Use the best parameter to create the SVM model as
predictor.

The grid search technique is simple. However, this is
computationally expensive since this is an exhaustive search
technique. The accuracy and time cost of the grid method are
tradeoff depending on the grid density. In general, with the
increase in grid density, the computational process becomes
expensive. On the other hand, sparse density lowers the
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parameters

(chromosomes)

No

Yes

Stop?

Calculate fitness of
each candidate

solution

Train LS-SVM

Obtain optimal parameters

Create offspring
(crossover, mutation)

Selection

Figure 5: Outline of GA-based hyperparameter selection proce-
dure.

accuracy. The grid search technique is therefore performed
in two stages. In the first stage, a coarse grid search is per-
formed. After identifying a better region on the grid, a finer
grid search on that region is conducted in the second stage.
In addition, the grid search process is a tricky task since a
suitable sampling step varies from kernel to kernel and the
grid interval may not be easy to locate without prior knowl-
edge of the problem. In the present work, these parameters
are determined through trial and error method.

(2) Genetic Algorithm-Based Technique. In order to reduce
the computational time required to determine the optimal
hyper parameter values without sacrificing the accuracy,
numerical gradient-based optimization technique can be
used. However, it has been found that often the SVM model
selection criteria have multiple local optima with respect to
the hyper parameter values [28]. In such cases, the gradient-
based method have chances to be trapped in bad local
optima. Considering this fact, we use a genetic algorithm-
based global optimization technique for determining the
hyper parameter values.

In the GA-based technique, the task of selection of the
hyper parameters is same as an optima searching task, and
each point in the search space represents one feasible solution
(specific hyper parameters). Each feasible solution is marked
by its estimated generalization ability, and the determination
of a solution is equal to determination of some extreme point
in the search space.

An outline of a simple GA-based process is shown in
Figure 5. The chromosomes consist of two parts, log2γ
and log2σ

2. The encoding of the hyper parameters into a
chromosome is a key issues. A realcoded scheme is used as
the representation of the parameters in this work. Therefore,
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the solution space coincides with the chromosome space. In
order to produce the initial population, the initial values of
the designed parameters are distributed in the solution space
evenly. The selection of population size, is one of the factors
that affects the performance of GA. The GA evaluation
duration is proportional to the population size. If the pop-
ulation size is too large, a prohibitive amount of time for
optimization will be required. On the other hand, if the pop-
ulation size is too small, the GA can prematurely converge
to a suboptimal solution, thereby reducing the final solution
quality. There is no generally accepted theory for determin-
ing optimal population size. Usually, it is determined by
experimentation or experience.

During the evolutionary process of GA, a model is
trained with the current hyper parameter values. The hold-
out method as well as the k-fold cross-validation method
are used for estimating the generalization error. The fitness
function is an important factor for estimation and evolution
of SVMs providing satisfactory and stable results. The fitness
function expresses the users’ objective and favours SVMs
with satisfactory generalization ability. The fitness of the
chromosomes in the present work is determined by the av-
erage relative error (ARE) calculated over the test samples.
The fitness function is defined as

F = 1
ARE

(

γ, σ2
) . (16)

Thus, maximizing the fitness value corresponds to minimiz-
ing the predicted error. The ARE function is defined as

ARE = 1
Nteρ′

Nte
∑

1

(

ρ′ − ρ
)

. (17)

Here Nte, ρ, and ρ′ are the number of test data, the SVM
estimator output, and the corresponding SPICE simulated
value, respectively. The fitness of each chromosome is taken
to be the average of five repetitions. This reduces the sto-
chastic variability of the model training process in GA-based
LS-SVM.

The genetic operator includes the three basic operators
such as selection, crossover, and mutation. Roulette wheel se-
lection technique is used for the selection operation. The
probability pi of selecting the ith solution is given by

pi = Fi
∑Npop

i=1 Fi
, (18)

where Npop is the size of the population. Besides, in order
to keep the best chromosome in every generation, the idea
of elitism is adopted. The use of a pair of real-parameter
decision variable vectors to create a new pair of offspring
vectors is done by the crossover operator. For two parent
solutions x1 and x2, the offspring is determined through a
blend crossover operator. For two parent solutions x1 and
x2, such that x1 < x2, the blend crossover operator (BLX-β)
randomly picks a solution in the range [x1 − β(x2 − x1), x2 +
β(x2−x1)]. Thus, if u be a random number in the range (0,1)
and α = (1 + 2β)u− β, then the following is an offspring:

xnew = (1− αx1) + αx2. (19)

If β is zero, this crossover creates a random solution in the
range (x1, x2). It has been reported for a number of test
cases that BLX-0.5 (with β = 0.5) performs better than BLX
operators with any other β value. The mutation operator is
used with a low probability to alter the solutions locally to
hopefully create better solutions. The need for mutation is to
maintain a good diversity of the population. The normally
distributed mutation operator is used in this work. A zero
mean Gaussian probability distribution with standard devia-
tion ηi for the ith solution is used. The new solution is given
as

xnew = xi + N
(

0,ηi
)

. (20)

The parameter ηi is user-defined and dependent upon the
problem. Also, it must be ensured that the new solution lies
within the specified upper and lower limits. When the dif-
ference between the estimated error of the child population
and that of the parent population is less than a predefined
threshold over certain fixed generations, the whole process
is terminated and the corresponding hyper parameter pair is
taken as the output.

It may be mentioned here that there is no fixed method
for defining the GA parameters, which are all empirical in
nature. However, the optimality of the hyper parameter val-
ues is dependent upon the values of the GA parameters. In
the present work, the values of the GA parameters are
selected primarily by trial and error method over several
runs.

5.3. Quality Measures. Statistical functions are generally used
to assess the quality of the generated estimator. The ARE
function defined in (17) is one such measure. Another com-
monly used measure is the correlation coefficient (R). This is
defined as follows:

R = Nte
∑

ρρ′ −∑ ρ
∑

ρ′
√

[

Nte
∑

ρ2 − (∑ ρ
)2
][

Nte
∑

ρ′2 − (∑ ρ′
)2
]
. (21)

The correlation coefficient is a measure of how closely the
LS-SVM outputs fit with the target values. It is a number
between 0 and 1. If there is no linear relationship between the
estimated values and the actual targets, then the correlation
coefficient is 0. If the number is equal to 1.0, then there is
a perfect fit between the targets and the outputs. Thus, the
higher the correlation coefficient, the better it is.

6. Topology Sizing Methodology Using GA

The topology sizing process is defined as the task of deter-
mining the topology parameters (specification parameters of
the constituent component blocks) of a high-level topology
such that the desired specifications of the system are satisfied
with optimized performances. In this section, we discuss
a genetic algorithm-based methodology for a topology sizing
process employing the constructed LS-SVM performance
models.

An outline of the flow is shown in Figure 6. A high-
level topology is regarded as a multidimensional space, in
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Figure 6: Topology sizing methodology using GA optimizer with
LS-SVM model.

which the topology parameters are the dimensions. The valid
design space for a particular application consists of those
points which satisfy the design constraints. The optimization
algorithm searches in this valid design space for the point
which optimizes a cost function. The optimization targets,
that is, the performance parameters to be optimized and
system specifications to be satisfied are specified by the user.
The GA optimizer generates a set of chromosomes, each
representing a combination of topology parameters in the
given design space. Performance estimation models for esti-
mating the performances of a topology of the entire system
are constructed by combining the LS-SVM models of the
individual component blocks through analytical formulae.
The performance estimation models take each combination
of topology parameters and produce an estimation of the
desired performance cost of the topology as the output.
A cost function is computed using these estimated per-
formance values. The chromosomes are updated according
to their fitness, related to the cost function. This process
continues until a desired cost function objective is achieved
or a maximum number of iterations are executed.

7. Numerical Results

In this section, we provide experimental results demonstrat-
ing the methodologies described above. The entire method-
ology has been implemented in MATLAB environment and

CLV−in V+
in

M8M9

M10

M11
M1 M2

M6

M3 M4
M7

M5

Figure 7: PMOS OTA circuit.

the training of the LS-SVM has been done using MATLAB
toolbox [35].

7.1. Experiment 1. A two-stage CMOS operational transcon-
ductance amplifier (OTA) is shown in Figure 7. The tech-
nology is 0.18 μm CMOS process, with a supply voltage of
1.8 V. The transistor level parameters along with the various
feasibility constraints are listed in Table 2. The functional
constraints ensure that all the transistors are on and are in
the saturation region with some user-defined margin. We
consider the problem of modeling input referred thermal
noise (ρ1), power consumption (ρ2), and output impedance
(ρ3) as functions of DC gain (X1), bandwidth (X2), and
slew rate (X3). From the sample space defined by the
transistor sizes, a set of 5000 samples is generated using
a Halton sequence generator. These are simulated through
AC analysis, operating point analysis, noise analysis, and
transient analysis using SPICE program. Out of all samples,
only 1027 samples are found to satisfy the functional and
performance constraints listed in Table 2.

The estimation functions are generated using LS-SVM
technique. The generalization errors are estimated through
the hold-out method and the 5-fold cross-validation meth-
od. The hyper parameters are computed through the grid
search and the GA-based technique. In the grid search tech-
nique, the hyper parameters (σ2, γ) are restricted within the
range [0.1, 6.1] and [10, 510]. The grid search algorithm is
performed with a step size of 0.6 in σ2 and 10 in γ. These
parameters are fixed based on heuristic estimations and
repeated trials. The determined hyper parameter values
along with the quality measures and the training time are
reported in Tables 3 and 4 for the hold-out method and the
cross-validation method, respectively. From the results, we
observe that the average relative errors for the test samples
are low (i.e., the generalization ability of the models is high)
when the errors are estimated using the cross-validation
method. However, the cross-validation method is much
slower compared to the hold-out method.

For GA, the population size is taken to be ten-times the
number of the optimization variables. The crossover prob-
ability and the mutation probability are taken as 0.8 and
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Table 2: Transistor sizes and feasibility constraints for OTA.

Parameters Ranges

Transistor sizes
Geometry constraints

W1 =W2 (280 nm, 400μm)

W3 =W4 =
W6 =W7

(1μm, 20μm)

W8 =W9 (280 nm, 10μm)

W5 (1μm, 50μm)

W10 =W11 (280 nm, 400μm)

CL (1 pF, 10 pF)

Parameters Range

Functional constraints
Vgs −Vth ≥0.1 V

Vop ≈0.9 V

Voff ≤2 mV

Slew rate (0.1 V/μs, 20 V/μs)

Performance constraints Bandwidth ≥2 MHz

DC gain ≥70 dB

Phase margin (45◦, 60◦)

Table 3: Grid search technique using hold-out method.

Model σ2 γ
ARE (%) R Ttr

Training Test Training Test (min)

ρ1 3.43 173.26 1.82 2.48 0.999 0.998 118.19

ρ2 2.10 112.04 2.32 4.18 0.918 0.905 117.83

ρ3 5.43 387.55 2.02 3.14 0.999 0.937 118.13

Table 4: Grid search technique using 5-fold cross-validation meth-
od.

Model σ2 γ
ARE (%) R Ttr

Training Test Training Test (min)

ρ1 4.10 326.32 1.27 1.33 0.999 0.999 583.12

ρ2 2.76 112.04 2.37 2.42 0.980 0.970 583.62

ρ3 5.33 142.65 1.82 1.85 0.998 0.998 582.67

0.05, respectively. These are determined through a trial and
error process. The hyper parameter values and the quality
measures are reported in Tables 5 and 6. From the results the
above observations are also noted.

A comparison between the grid-search technique and the
GA-based technique with respect to accuracy (ARE), corre-
lation coefficient (R), and required training time is made in
Table 7. All the experiments are performed on a PC with PIV
3.00 GHz processor and 512 MB RAM. We observe from the
comparison that the accuracy of SVM models constructed
using the grid search technique and the GA-based technique
are almost the same. However, the GA-based technique is
at least ten-times faster than the grid search method. From
(1), we conclude that the construction cost of the GA-based
method is much lower than the grid search-based method,
since the data generation time is same for both the methods.

The scatter plots of SPICE-simulated and LS-SVM
estimated values for normalized test data of the three models
are shown in Figures 8(a), 8(b), and 8(c), respectively. These

Table 5: GA technique using hold-out method.

Model σ2 γ
ARE (%) R Ttr

Training Test Training Test (min)

ρ1 2.38 250.13 2.16 3.38 0.999 0.998 12.06

ρ2 5.62 480.19 2.12 3.82 0.994 0.961 10.83

ρ3 5.19 140.15 1.98 2.90 0.999 0.998 11.56

Table 6: GA technique using 5-fold cross-validation.

Model σ2 γ
ARE (%) R Ttr

Training Test Training Test (min)

ρ1 3.98 350.13 1.35 1.36 0.999 0.999 46.66

ρ2 3.02 150.19 2.12 3.02 0.994 0.980 44.83

ρ3 5.32 540.15 1.81 1.90 0.999 0.990 46.61

scatter plots illustrate the correlation between the SPICE sim-
ulated and the LS-SVM-estimated test data. The correlation
coefficients are very close to unity. Perfect accuracy would
result in the data points forming a straight line along the
diagonal axis.

7.2. Experiment 2. The objective of this experimentation is
to quantitatively compare between our methodology and the
EsteMate [21]. The power consumption model is recon-
structed using the EsteMate technique. The specification
parameter space is sampled randomly. A set of 5000 samples
is considered. For each selected sample, an optimal sizing is
performed and the resulting power consumption is mea-
sured. The sizing is done with a simulated annealing-based
optimization procedure and standard analytical equations
relating transistor sizes to the specification parameters [36]
following the EsteMate procedure. Of these, 3205 samples
are accepted and the rest are rejected. The determination of
the training set took 10 hours of CPU time. The training is
done through an artificial neural network structure with two
hidden layers. The number of neurons for the first layer is 9,
the number of neurons for the second layer is 6. The hold-out
method is used for estimating the generalization ability.

A comparison between the two methodologies is re-
ported in Table 8. From the results, we find that the data
generation time is much less in our method compared to
the EsteMate method. In addition, we find that the accuracy
of our method is better than the EsteMate method. The
experimental observations verify the theoretical arguments
given in Section 2.1.

7.3. Experiment 3. The objective of this experimentation is
to demonstrate the process of constructing high-level perfor-
mance model of a complete system and the task of topology
sizing.

System Considerations. We choose a complete analog sys-
tem—interface electronics for MEMS capacitive sensor sys-
tem as shown in Figure 9(a). In this configuration, a half-
bridge consisting of the sense capacitors C1,C2 is formed
and driven by two pulse signals with 180◦ phase difference.
The amplitude of the bridge output Vx is proportional to the
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Figure 8: Scatter plot of the constructed models.

Table 7: Comparison between GA and Grid search technique for LS-SVM construction.

Model Algorithm σ2 γ
ARE (%) R Ttr

Training Test Training Test (min)

ρ1
GA 2.38 250.13 2.16 3.38 0.999 0.998 12.06

Grid search 3.43 173.26 1.82 2.48 0.999 0.998 118.19

ρ2
GA 5.62 480.19 2.12 3.82 0.994 0.961 10.83

Grid search 2.10 112.04 2.32 4.18 0.980 0.905 117.83

ρ3
GA 5.19 140.15 1.98 2.90 0.999 0.998 11.56

Grid search 5.43 387.55 2.02 3.14 0.999 0.937 118.13

capacitance change ΔC and is amplified by a voltage ampli-
fier. The final output voltage Vout is given by

Vout = V0
2ΔC

2C0 + Cp
Av, (22)

where C0 is the nominal capacitance value, Cp is the parasitic
capacitance value at the sensor node, V0 is the amplitude
of the applied ac signal, and Av is the gain of the system,

depending upon the desired output voltage sensitivity. The
topology employs a chopper modulation technique for low
1/ f noise purpose.

The desired functional specifications to be satisfied are
(i) output voltage sensitivity (i.e., the total gain, since the
input sensitivity is known) and (ii) cutoff frequency of the
filter. The performance parameters to be optimized are (i)
input-referred thermal noise, (ii) total power consumption,
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Table 8: Comparison between our methodology and EsteMate.

Method
Number of samples ARE (%)

Generation time Train time
Training Test Training Test

Ours 821 206 2.12 3.82 14 min 10.83 min

EsteMate [21] 2564 641 2.88 6.53 10 hour 21 min

Table 9: Functional specs and design constraints.

Parameters Desired specs

Sensing capacitance 100 fF

Capacitance sensitivity 0.4 fF

Linear range ±6 g

Modulation frequency 1 MHz

Modulation voltage 500 mV

Input voltage sensitivity ≥1 mV/g

Output voltage sensitivity ≥100 mV/g

Cutoff frequency ≤40 KHz

Table 10: Transistor sizes and feasibility constraints for preampli-
fier.

Transistor sizes
Geometry constraints

Gm1 Gm2

W1 =W2 (280 nm, 400μm) (280 nm, 200μm)

W3 =W4 =W6 =W7 (1μm, 20μm) (1μm, 20μm)

W8 =W9 (280 nm, 10μm) (280 nm, 10μm)

Ibias (1μA, 40μA) (1μA, 10μA)

Parameters Range

Functional constraints
Vgs −Vth ≥0.1 V

Vop ≈0.9 V

Voff ≤2 mV

Performance constraints

Input linearity ≥15 mV

Swing ≥750 mV

Bandwidth ≥2 MHz

Phase margin (45◦, 60◦)

and (iii) parasitic capacitance at the sensor node Vx. The
functional specifications and design constraints for the
system are based on [37] and are listed in Table 9.

Identification of the Component Blocks and the Corresponding
Performance Models. The synthesizable component blocks
are the preamplifier (PA), inverter (IN) of the phase
demodulator, low-pass filter (LF), and the output amplifier
(OA). These are constructed using OTAs and capacitors.
Figure 9(b) shows the implementations of the amplifier and
the filter blocks using OTAs and capacitor [38, 39].

High-level performance models for the synthesizable
component blocks corresponding to the performance
parameters—(i) input referred thermal noise, (ii) power
consumption, and (iii) sensor node parasitics are con-
structed. The specification parameters which have dominant
influence on the first two performances as well as on the
functional specification, that is, the output voltage sensitivity

Table 11: Accuracy of preamplifier block.

Training Test

Models σ2 γ ARE R ARE R

Noise 2.88 288.93 1.25 0.9991 1.75 0.9991

Power 1.18 203.18 2.05 0.9989 2.35 0.9989

Parasitics 3.45 123.93 0.58 0.9999 0.62 0.9999

and the cutoff frequency are the transconductance values
of all the OTAs involved. On the other hand, for the last
performance parameter, that is, sensor node parasitics, tran-
sconductance value of the first OTA of the preamplifier
block is the single design parameter. Thus the Gm values
of the OTAs are considered as high-level design parameters.
In summary, we construct three performance models, input
referred thermal noise, power consumption, and sensor node
parasitics as functions of the Gm values of the OTAs.

Construction of Performance Models for the PA Block. The
geometry constraints and the feasibility constraints for the
PA block of the topology are tabulated in Table 10. Similar
types of constraints are considered for the other component
blocks also. The input-output parameters of the models to
be constructed are extracted through techniques discussed
earlier. The sensor node parasitic capacitance is measured
utilizing the half-bridge circuit shown in Figure 9(a), with
only one amplifier block. Considering ΔC = 5 fF, C0 = 65 fF,
a square wave signal with amplitude V0 = 500 mV is applied
and transient analysis is performed. Measuring the signal at
the node Vx, Cp is calculated using (22).

Table 11 shows the hyper parameter values, percentage
average relative error, and correlation coefficient of the con-
structed performance models for the preamplifier, with re-
spect to SPICE-simulated value.

Reusability of Models and Construction of High-Level Model
for the Complete System. The performance models corre-
sponding to the noise and the power consumption for the
PA block are reused for the other component blocks. This
is because all the component blocks have topological simi-
larities and each of them is constructed from OTA circuits,
as demonstrated in Figure 9(b). The issue of reusability of
individual high-level models in a complete system is thus
applied here.

The high-level models of the PA, IN, LF and OA blocks
are combined analytically to construct the model of the
complete system. The input referred noise and power
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Table 12: Synthesized topology parameters.

Topology parameters Synthesized value

Gm1 216.30 μS

Gm2 14.67 μS

Gm3 17.97 μS

Gm4 16.80 μS

Gm5 15.92 μS

Gm6 13.96 μS

Gm7 131.73 μS

Gm8 16.15 μS

CL 63 pF

consumption of the total system is given by

V 2
nT = V 2

n1(Gm1,Gm2) +
V 2
n2(Gm3,Gm4)

A2
1

+
V 2
n3(Gm5,Gm6)

A2
1

+
V 2
n4(Gm7,Gm8)

A2
1

,

(23)

PT = P1(Gm1,Gm2) + P2(Gm1,Gm2)

+ P3(Gm1,Gm2) + P4(Gm1,Gm2).
(24)

A1 is the gain of the preamplifier. Vn1(Gm1,Gm2) is the
thermal noise model for the PA block, Vn2(Gm3,Gm4) is that
for the IN block of the phase demodulator, and so on. It is to
be noted that Vn2(Gm3,Gm4) need not be constructed again.
It is same as Vn1(Gm1,Gm2). This is true for Vn3(Gm5,Gm6)
and Vn4(Gm7,Gm8). This reusability principle is applied
for the power consumption model of all the blocks. The
sensor node parasitics Pa = Pa(Gm1) is the same as the
input parasitics of the preamplifier. It is to be noted that
while constructing the high-level performance model of a
complete system, the interactions between the transistors
are taken care of while constructing the component-level
performance model utilizing SPICE simulation data and
the coupling between the blocks are considered through
analytical equations.

Optimization Problem Formulation and Results. With these,
the optimization problem for the topology sizing task is for-
mulated as follows:

Minimize ω1VnT + ω2PT + ω3Pa

such that (Vout)target −Vin

[

Gm1

Gm2

Gm3

Gm4

Gm5

Gm6

Gm7

Gm8

]

≤ ε1

fc − Gm6

2πCL
≤ ε2

Gmimin ≤ Gmi ≤ Gmimax

CLmin ≤ CL ≤ CLmax,
(25)

where ωi are the associated weights.
The target output voltage sensitivity of the system (i.e.,

the total gain of the system) is taken as 145 mV/g and the

Table 13: Comparison of predicted performances and SPICE value.

Performances Pred SPICE Error %

Noise (nV/
√

Hz) 19.65 20.32 3.40

Power (μW) 572.78 592 3.36

Parasitics (fF) 92.05 94.12 2.24

Sensitivity 145.16 138 4.93

Cutoff (KHz) 35.28 38 7.70

cutoff frequency is taken as 35 KHz. The synthesis procedure
took 181 seconds on a PIV, 3.00 GHz processor PC with
512 MB RAM. The crossover and the mutation probability
are taken as 0.85 and 0.05, respectively. These are determined
through a trial and error process. Table 12 lists the synthe-
sized values of the topology parameters, as obtained from the
synthesis procedure.

Validation. To validate the synthesis procedure, we simulate
the entire system at the circuit-level using SPICE. Exact val-
ues of Gm are not achievable often. In such cases, the nearest
neighbouring values are realized. An approximate idea about
the transistor sizes required to implement the synthesized
Gm values are made from the large set of data gathered
during the estimator construction. A comparison between
the predicted performances and simulated values is pre-
sented in Table 13. We observe that the relative error between
predicted performances and simulated performances in each
case is acceptable. However, for the output sensitivity and
the cutoff frequency, the error is high. This is because the
circuit-level nonideal effects have not been considered in
the topology sizing process while formulating the final cost
function and constraint functions. Following conventional
procedure, this has been done purposefully in order to make
the functions simple and the process converge smoothly
[1, 27]. The acceptability and feasibility of the results are
ensured to a large extent, since the utilized model is based
on SPICE simulation results. The robustness of the results,
however, could be verified by process corner analysis [27].

8. Conclusion

This paper presents a methodology for generation of high-
level performance models for analog component blocks
using nonparametric regression technique. The transistor
sizes of the circuit-level implementations of the component
blocks along with a set of geometry constraints applied over
them define the sample space. Performance data are gen-
erated by simulating each sampled circuit configuration
through SPICE. Least squares support vector machine (LS-
SVM) is used as a regression function. The generalization
ability of the constructed models has been estimated through
a hold-out method and a 5-fold cross-validation method.
Optimal values of the model hyper parameters are deter-
mined through a grid search-based technique and a GA-
based technique. The high-level models of the individual
component blocks are combined analytically to construct the
high-level model of a complete system. The entire method-
ology has been implemented under MATLAB environment.
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The methodology has been demonstrated with a set of
experiments. The advantages of the present methodology
are that the constructed models are accurate with respect
to real circuit-level simulation results, fast to evaluate and
have a good generalization ability. In addition, the model
construction time is low and the construction process does
not require any detailed knowledge of circuit design. The
constructed performance models have been used to imple-
ment a GA-based topology sizing process. The process has
been demonstrated by considering the interface electronics
for an MEMS capacitive accelerometer sensor as an example.
It may be noted that multiobjective optimization algorithms
[40] can also be used in the proposed approach for solving
(25).
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