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We derive a differential equation and recursive formulas of Sheffer polynomial sequences utilizing
matrix algebra. These formulas provide the defining characteristics of, and the means to compute,
the Sheffer polynomial sequences. The tools we use are well-known Pascal functional and
Wronskian matrices. The properties and the relationship between the two matrices simplify the
complexity of the generating functions of Sheffer polynomial sequences. This work extends He
and Ricci’s work (2002) to a broader class of polynomial sequences, from Appell to Sheffer, using
a different method. The work is self-contained.

1. Introduction

Sheffer polynomial sequences arise in numerous problems of applied mathematics,
theoretical physics, approximation theory, and several other mathematical branches. In the
past few decades, there has been a renewed interest in Sheffer polynomials. di Bucchianico
recently summarized and documented more than five hundred old and new findings related
to the study of Sheffer polynomial sequences in [1]. One aspect of such study is to find a
differential equation and recursive formulas for Sheffer polynomial sequences. For instance,
in [2], He and Ricci developed the differential equation and recursive formula for Appell
polynomials, which is a subclass of Sheffer polynomial sequences. In this paper, we derive
differential equation and recursive formulas for Sheffer polynomial sequences by using
matrix algebra.

The remainder of the paper is organized as follows. In Section 2, we define Pascal
functional and Wronskian matrices for analytic functions and derive their properties and
the relationships between the functional matrices. In Section 3, we develop a differential
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equation for Sheffer polynomial sequences and present differential equations for some well-
known Sheffer polynomials such as Laguerre, Lower factorial, Exponential, and Hermite
polynomials. In Section 4, we discuss three recursive formulas for Sheffer polynomial
sequences. An example will illustrate how these three forms of recursive formulas are useful
in their own right.

2. Preliminaries

Let us start with the definitions of the generalized Pascal functional matrix of an analytic
function [3] and the Wronskian matrix of several analytic functions. To avoid any
unnecessary confusion, we use f (k) to stand for the kth order derivative of f and use fk

to represent the kth power of f in the entire paper. In addition, f (0) = f and f0 = 1.

Definition 2.1. Let f(t) be an analytic function. The generalized Pascal functional matrix of
f(t), denoted by Pn[f(t)], is an (n + 1) by (n + 1) matrix and is defined as

(Pn

[
f(t)
])

i,j =

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎝
i

j

⎞

⎠f (i−j)(t) if i ≥ j,

0 otherwise,

for i, j = 0, 1, 2, . . . , n. (2.1)

Definition 2.2. The nth order Wronskian matrix of f1(t), f2(t), f3(t), . . ., and fm(t) is an (n + 1)
bym matrix and is defined as

Wn

[
f1(t), f2(t), f3(t), . . . , fm(t)

]
=

⎡

⎢⎢⎢⎢⎢⎢
⎣

f1(t) f2(t) f3(t) · · · fm(t)

f ′
1(t) f ′

2(t) f ′
3(t) · · · f ′

m(t)

...
...

...
. . .

...

f
(n)
1 (t) f

(n)
2 (t) f

(n)
3 (t) · · · f

(n)
m (t)

⎤

⎥⎥⎥⎥⎥⎥
⎦

. (2.2)

We study the Pascal functional and Wronskian matrices in a neighborhood of t = 0.
Hence, when we mention analytic, we mean analytic near t = 0.

Note 1. Often, readers will encounter expressions such as Pn[f(x, t)]t=0 or Wn[f(x, t)]t=0. In
this context, the variable t is the working variable for the Pascal functional or the Wronkian
matrix and the variable x is merely a parameter.

In the following, we list some properties and relationships between the Pascal
functional and Wronskian matrices that will be the main tool for our work.

Property 1. (a) Pn[·] and Wn[·] are linear, that is, for any constants a and b, and any analytic
functions f(t) and g(t),

Pn

[
af(t) + bg(t)

]
= aPn

[
f(t)
]
+ bPn

[
g(t)
]
,

Wn

[
af(t) + bg(t)

]
= aWn

[
f(t)
]
+ bWn

[
g(t)
]
.

(2.3)
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(b) For any analytic functions f(t) and g(t),

Pn

[
f(t)
]Pn

[
g(t)
]
= Pn

[
g(t)
]Pn

[
f(t)
]
= Pn

[
f(t)g(t)

]
. (2.4)

Furthermore, if f(t)/= 0, then (Pn[f(t)])
−1 = Pn[f−1(t)], where f−1(t) denotes the

multiplicative inverse of f(t).
(c) For any analytic functions f(t) and g(t),

Pn

[
f(t)
]Wn

[
g(t)
]
= Pn

[
g(t)
]Wn

[
f(t)
]
= Wn

[(
fg
)
(t)
]
. (2.5)

Furthermore, for any analytic functions g(t), and f1(t), f2(t), . . ., and fm(t),

Pn

[
g(t)
]Wn

[
f1(t), f2(t), . . . , fm(t)

]
= Wn

[(
gf1
)
(t),
(
gf2
)
(t), . . . ,

(
gfm
)
(t)
]
. (2.6)

(d) For any analytic functions g(t) and f(t) with f(0) = 0 and f ′(0) /= 0,

Wn

[
g
(
f(t)
)]

t=0 = Wn

[
1, f(t), f2(t), f3(t), . . . , fn(t)

]

t=0
Λ−1

n Wn

[
g(t)
]
t=0, (2.7)

where Λn = diag[0!, 1!, 2!, . . . , n!]. The notational convention Λn will be used throughout this paper.

Proof. The proofs of Property 1(a), 1(b), and 1(c) can be found in [4].
For Property 1(d), let us express the functions f(t) and g(t) as series around t = 0;

f(t) =
∑∞

j=0 fjt
j and g(t) =

∑∞
j=0 gjt

j . Since f(0) = 0 and f ′(0)/= 0, the leading term of fk(t) is
tk. Therefore,

(
d

dt

)(k)

g
(
f(t)
)
∣∣∣∣∣
t=0

=
(

d

dt

)(k) ∞∑

j=0

gjf
j(t)

∣∣∣∣∣∣
t=0

=
(

d

dt

)(k) k∑

j=0

gjf
j(t)

∣∣∣∣∣∣
t=0

(2.8)

because (d/dt)(k)fj(t)|t=0 = 0 for all j > k. By (2.8) and noting gk = g(k)(0)/k!, we have

Wn

[
g
(
f(t)
)]

t=0 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 0 0 · · · 0

0 f ′(0) 0 · · · 0

0 f ′′(0)
(
f2)′′(0) · · · 0

...
...

...
. . .

...

0 f (n)(0)
(
f2)(n)(0) · · · (fn

)(n)(0)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

g(0)(0)
0!

g(1)(0)
1!

g(2)(0)
2!
...

g(n)(0)
n!

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

= Wn

[
1, f(t), f2(t), f3(t), . . . , fn(t)

]

t=0
Λ−1

n Wn

[
g(t)
]
t=0.

(2.9)

This completes the proof.
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3. Sheffer Polynomial Sequence and Its Differential Equation

Let us first define a Sheffer polynomial sequence by a pair of generation functions (g(t), f(t))
as often done [5].

Definition 3.1. Let g(t) be an invertible analytic function, that is, g(0)/= 0, and f(t) be analytic
function with f(0) = 0 and let f ′(0)/= 0 that admits compositional inverse. Let f(t) denote the
compositional inverse of f(t). Then, {sn(x)} is the Sheffer polynomial sequence for (g(t), f(t))
if and only if

1

g
(
f(t)
)exf(t) =

∞∑

k=0

sk(x)
k!

tk. (3.1)

Note 2. Since (1/g(f(t)))exf(t) is analytic, by Taylor’s Theorem,

sk(x) =
(

d

dt

)(k) 1

g
(
f(t)
)exf(t)

∣∣∣∣∣∣∣
t=0

. (3.2)

The family of Sheffer polynomial sequences contains two simpler subclasses of
polynomial sequences, Appell and associated polynomial sequences [5]. An Appell
polynomial sequence is a Sheffer polynomial sequence where f(t) = t. Hence, we say {an(x)}
is the Appell polynomial sequence for g(t) if and only if {an(x)} is the Sheffer polynomial
sequence for (g(t), t). Associated polynomial sequence is a Sheffer polynomial sequence
where g(t) = 1. Hence, we say {qn(x)} is the associated polynomial sequence for f(t) if and
only if {qn(x)} is the Sheffer polynomial sequence for (1, f(t)).

We define the Sheffer polynomial sequence in vector form to utilize Wronskian
matrices.

Definition 3.2. The Sheffer vector for (g(t), f(t)), denoted by Sn(x), is defined as

Sn(x) =
[
s0(x) s1(x) s2(x) · · · sn(x)

]T
, (3.3)

where {sn(x)} is the Sheffer polynomial sequence for (g(t), f(t)).
As noted in Note 2, the Sheffer vector can be expressed as

Sn(x) =
[
s0(x) s1(x) s2(x) · · · sn(x)

]T
= Wn

⎡

⎢
⎣

1

g
(
f(t)
)exf(t)

⎤

⎥
⎦

t=0

. (3.4)

In order to derive the differential equation for Sheffer polynomial sequence, we
develop the following lemma.
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Lemma 3.3. Let {sn(x)} be the Sheffer polynomial sequence for (g(t), f(t)). Then,

Wn[s0(x), s1(x), . . . , sn(x)]TΛ−1
n

= Wn

[
1, f(t), f

2
(t), . . . , f

n
(t)
]

t=0
Λ−1

n Pn

[
1

g(t)

]

t=0
Pn

[
ext
]
t=0.

(3.5)

Proof. Using (3.4) and Property 1(d), we have

Sn(x) = Wn

⎡

⎢
⎣

exf(t)

g
(
f(t)
)

⎤

⎥
⎦

t=0

= Wn

[
1, f(t), f

2
(t), . . . , f

n
(t)
]

t=0
Λ−1

n Wn

[
ext

g(t)

]

t=0
. (3.6)

Using Property 1(c) and noting Wn[ext]t=0 = [1 x x2 · · · xn]T , we obtain

Sn(x) = Wn

[
1, f(t), f

2
(t), . . . , f

n
(t)
]

t=0
Λ−1

n Pn

[
1

g(t)

]

t=0

[
1 x x2 · · ·xn

]T
. (3.7)

Taking the kth order derivative with respect to x on both sides of (3.7) and dividing by k!
yields

1
k!

[
s
(k)
0 (x) s(k)1 (x) s(k)2 (x) · · · s

(k)
n (x)

]T
= Wn

[
1, f(t), f

2
(t), . . . , f

n
(t)
]

t=0
Λ−1

n Pn

[
1

g(t)

]

t=0

×
[

0 · · · 0 1

(
k + 1

k

)

x

(
k + 2

k

)

x2 · · ·
(
n

k

)

xn−k
]T

.

(3.8)

The left-hand of (3.8) is the kth column of Wn[s0(x), s1(x), . . . , sn(x)]
TΛ−1

n , and the

right-hand of (3.8) is the kth column of Wn[1,f(t),f
2
(t),. . .,f

n
(t)]t=0Λ

−1
n Pn[1/g(t)]t=0

Pn[ext]t=0.

After the introduction of definitions and the lemma, we are ready to develop
differential equations for Sheffer polynomials.
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Theorem 3.4. Let {sn(x)} be the Sheffer polynomial sequence for (g(t), f(t)). Then, it satisfies the
following differential equation:

n∑

k=1

(
βkx + αk

)s(k)n (x)
k!

− nsn(x) = 0, (3.9)

where βk = (f(t)/f ′(t))(k)|t=0 and αk = (−g ′(t)f(t)/g(t)f ′(t))(k)|t=0.

Proof. Let us consider Wn[t(d/dt)(exf(t)/g(f(t)))]t=0. On one hand, by Property 1(c), we
have

Wn

⎡

⎢
⎣t

d

dt

⎛

⎜
⎝

exf(t)

g
(
f(t)
)

⎞

⎟
⎠

⎤

⎥
⎦

t=0

= Pn[t]t=0Wn

⎡

⎢
⎣

d

dt

⎛

⎜
⎝

exf(t)

g
(
f(t)
)

⎞

⎟
⎠

⎤

⎥
⎦

t=0

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 0 0 0 · · · 0 0 0

1 0 0 0 · · · 0 0 0

0 2 0 0 · · · 0 0 0

0 0 3 0 · · · 0 0 0

...
...

...
. . . . . .

...
...

...

. . . . . .

0 0 0 0 · · · n − 1 0 0

0 0 0 0 · · · 0 n 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

s1(x)

s2(x)

s3(x)

...

sn(x)

sn+1(x)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

(3.10)

On the other hand, by Properties 1(c) and 1(d) and Lemma 3.3, we have

Wn

⎡

⎢
⎣t

d

dt

⎛

⎜
⎝

exf(t)

g
(
f(t)
)

⎞

⎟
⎠

⎤

⎥
⎦

t=0

= Wn

⎡

⎢
⎣

⎛

⎜
⎝x −

g ′
(
f(t)
)

g
(
f(t)
)

⎞

⎟
⎠

t

f ′
(
f(t)
)

exf(t)

g
(
f(t)
)

⎤

⎥
⎦

t=0

= Wn

[
1, f(t), . . . , f

n
(t)
]

t=0
Λ−1

n Wn

[(
x − g ′(t)

g(t)

)
f(t)
f ′(t)

ext

g(t)

]

t=0

= Wn

[
1, f(t), . . . , f

n
(t)
]

t=0
Λ−1

n Pn

[
1

g(t)

]

t=0
Pn

[
ext
]
t=0

×Wn

[
x
f(t)
f ′(t)

− g ′(t)f(t)
g(t)f ′(t)

]

t=0

= Wn[s0(x), s1(x), . . . , sn(x)]TΛ−1
n Wn

[
x
f(t)
f ′(t)

− g ′(t)f(t)
g(t)f ′(t)

]

t=0
.

(3.11)
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Thus,

Wn

⎡

⎢
⎣t

d

dt

⎛

⎜
⎝

exf(t)

g
(
f(t)
)

⎞

⎟
⎠

⎤

⎥
⎦

t=0

=

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s0(x) 0 0 · · · 0

s1(x)
s′1(x)
1!

0 · · · 0

s2(x)
s′2(x)
1!

s′′2(x)
2!

· · · 0

...
...

...
. . .

...

sn(x)
s′n(x)
1!

s′′n(x)
2!

· · · s
(n)
n (x)
n!

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

β0x + α0

β1x + α1

β2x + α2

...

βnx + αn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.12)

Equating the last rows of (3.10) and (3.12), we get

nsn(x) =
n∑

k=0

s
(k)
n (x)
k!

(
βkx + αk

)
. (3.13)

Since f(0) = 0, α0 = β0 = 0, a rearrangement of (3.13) produces the desired result.

The following corollaries are immediate consequences of Theorem 3.4. When g(t) = 1,
αk = 0 for all k > 0, and we have a differential equation for associated polynomials.

Corollary 3.5. Let {qn(x)} be the associated polynomial sequence for f(t). Then, it satisfies the
following differential equation:

n∑

k=1

βkx
q
(k)
n (x)
k!

− nqn(x) = 0, (3.14)

where βk = (f(t)/f ′(t))(k)|t=0.

Setting f(t) = t in Theorem 3.4, we get a differential equation for Appell polynomials.

Corollary 3.6. Let {an(x)} be the Appell polynomial sequence for g(t). Then, it satisfies the following
differential equation:

n∑

k=2

αk−1
(k − 1)!

a
(k)
n (x) + (x + α0)a′

n(x) − nan(x) = 0, (3.15)

where αk = (−g ′(t)/g(t))(k)|t=0.

Proof. Since f(t) = t, β1 = 1 and βk = 0 for all k /= 1. Furthermore,

αk =
(−tg ′(t)

g(t)

)(k)
∣∣∣∣∣
t=0

= k

(−g ′(t)
g(t)

)(k−1)∣∣∣∣∣
t=0

= kαk−1. (3.16)

Hence, the above differential equation follows from Theorem 3.4.
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Remark 3.7. The above differential equation for Appell is equivalent to the one in Theorem 2.1
in [2].

Let us apply Theorem 3.4 to derive differential equations of some well-known Sheffer
polynomials. For the sake of brevity of context, we leave the detailed calculations of examples
in the paper to interested readers.

Example 3.8. Let L{a}
n (x) denote the Laguerre polynomial of order a, which is the Sheffer

polynomial for (g(t), f(t)) = ((1 − t)−a−1, t/(t − 1)). L{a}
n (x) =

∑n
k=0(

n+a
n−k )(n!/k!)(−x)k satisfies

the following differential equation:

x
(
L
{a}
n (x)

)′′ − (x − a − 1)
(
L
{a}
n (x)

)′
+ nL

{a}
n (x) = 0. (3.17)

In particular for a = 0, L{0}
n (x) = Ln(x), generally known as the Laguerre polynomial, satisfies

xL′′
n(x) − (x − 1)L′

n(x) + nLn(x) = 0. (3.18)

Example 3.9. Let pn(x) denote the Poisson-Charlier polynomial of order a, which is the Sheffer
polynomial for (g(t), f(t)) = (ea(e

t−1), a(et −1)). pn(x) =
∑n

k=0(
n
k )(−1)n−ka−k(x)k, where (x)k =

x(x − 1)(x − 2) · · · (x − k + 1) is lower factorial polynomial, satisfies the following differential
equation:

n∑

k=1

(
(−1)k+1x − a

)p(k)n (x)
k!

− npn(x) = 0. (3.19)

Example 3.10. The Actuarial polynomial, denoted by An(x), is the Sheffer polynomial for
(g(t), f(t)) = ((1 − t)−b, ln(1 − t)). An(x) =

∑n
k=0
(
b
k

)
(
∑n

j=k S(n, j)(j)k(−x)j−k), where S(n, k)
is the Stirling number of the second kind and (j)k is the lower factorial polynomial. Then,

n∑

k=2

(
x

k(k − 1)
+
b

k

)
A

(k)
n (x) − (x − b)A′

n(x) + nAn(x) = 0, for n ≥ 2. (3.20)

Example 3.11. The Lower factorial polynomial is the associated polynomial sequence for
f(t) = eat − 1. Lower factorial polynomial wn(x) = (x/a)n = (x/a)(x/a − 1) · · · (x/a − n + 1)
satisfies the following differential equation:

x
n∑

k=1

(−a)k−1
k!

w
(k)
n (x) − nwn(x) = 0. (3.21)

Example 3.12. The exponential polynomial is the associated polynomial sequence for f(t) =
ln(1 + t). Let φn(x) denote the exponential polynomial and φn(x) =

∑n
k=0 S(n, k)x

k, where
S(n, k) is the Stirling number of the second kind. Then,

x
n∑

k=2

(−1)kφ(k)
n (x)

k(k − 1)
+ xφ′

n(x) − nφn(x) = 0, for n ≥ 2. (3.22)
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Example 3.13. The Hermite polynomial of order v is the Appell polynomial sequence for
g(t) = evt

2/2. Let us denote the Hermite polynomial of order v as H
{v}
n (x) and H

{v}
n (x) =

∑�n/2�
k=0 (−v/2)k((n)2k/k!)xn−2k. Then

v
(
H

{v}
n (x)

)′′ − x
(
H

{v}
n (x)

)′
+ nH

{v}
n (x) = 0. (3.23)

4. Recurrence Relations for the Sheffer Polynomials

Finding recursive formulas is one of main interests on study of the Sheffer polynomial
sequences. For instance, Lehmer in [6] developed six recursive relations for the Bernoulli
polynomial sequence (one of Appell polynomial sequences). In this section, we derive three
recursive formulas. The first formula expresses sn+1(x) in terms of sn(x) and its derivatives,
and the second and third formulas express sn+1(x) in terms of sk(x) for k = 0, 1, . . . , n.

4.1. The First Recursive Formula for the Sheffer Polynomials

Theorem 4.1 (Recursive Formula I). Let {sn(x)} denote the Sheffer polynomial sequence for
(g(t), f(t)). Then, s0(x) = 1/g(0) and

sn+1(x) =
n∑

k=0

(
γkx + δk

)s(k)n (x)
k!

, for n ≥ 0, (4.1)

where γk = (1/f ′(t))(k)|t=0 and δk = (−g ′(t)/g(t)f ′(t))(k)|t=0.

Proof. The proof is similar to the proof of Theorem 3.4. Let us consider
Wn[(d/dt)(exf(t)/g(f(t)))]t=0.
On one hand,

Wn

⎡

⎢
⎣

d

dt

⎛

⎜
⎝

exf(t)

g
(
f(t)
)

⎞

⎟
⎠

⎤

⎥
⎦

t=0

=
[
s1(x) s2(x) s3(x) · · · sn+1(x)

]T
. (4.2)

On the other hand, by Properties 1(c) and 1(d) and Lemma 3.3, we have

Wn

⎡

⎢
⎣

d

dt

⎛

⎜
⎝

exf(t)

g
(
f(t)
)

⎞

⎟
⎠

⎤

⎥
⎦

t=0

= Wn

⎡

⎢
⎣

⎛

⎜
⎝x −

g ′
(
f(t)
)

g
(
f(t)
)

⎞

⎟
⎠

1

f ′
(
f(t)
)

exf(t)

g
(
f(t)
)

⎤

⎥
⎦

t=0

= Wn

[
1, f(t), . . . , f

n
(t)
]

t=0
Λ−1

n Pn

[
1

g(t)

]

t=0
Pn

[
ext
]
t=0

×Wn

[
x

1
f ′(t)

− g ′(t)
g(t)f ′(t)

]

t=0

= Wn[s0(x), s1(x), . . . , sn(x)]TΛ−1
n Wn

[
x

1
f ′(t)

− g ′(t)
g(t)f ′(t)

]

t=0
.

(4.3)
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Thus,

Wn

⎡

⎢
⎣

d

dt

⎛

⎜
⎝

exf(t)

g
(
f(t)
)

⎞

⎟
⎠

⎤

⎥
⎦

t=0

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s0(x) 0 0 · · · 0

s1(x)
s′1(x)
1!

0 · · · 0

s2(x)
s′2(x)
1!

s′′2(x)
2!

· · · 0

...
...

...
. . .

...

sn(x)
s′n(x)
1!

s′′n(x)
2!

· · · s
(n)
n (x)
n!

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

γ0x + δ0

γ1x + δ1

γ2x + δ2

...

γnx + δn

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

. (4.4)

Equating the last rows of (4.2) and (4.4), we get the desired result.

Example 4.2. For An(x) =
∑n

k=0
(
b
k

)
(
∑n

j=k S(n, j)(j)k(−x)j−k), the Actuarial polynomial,

A0(x) = 1, An+1(x) = (−x + b)An(x) + xA′
n(x), for n ≥ 0. (4.5)

Example 4.3. Let Ln(x) denote the Laguerre polynomial. Then,

L0(x) = 1, Ln+1(x) = (−x + 1)Ln(x) + (2x − 1)L′
n(x) − xL′′

n(x), for n ≥ 0. (4.6)

Example 4.4. Hermite polynomial is defined as the Sheffer polynomial sequence for
(g(t), f(t)) = (et

2/4, t/2) Let us denote the polynomial as Hn(x). Then,

H0(x) = 1, Hn+1(x) = 2xHn(x) −H ′
n(x), for n ≥ 0. (4.7)

Corollary 4.5 (Recursive Formula I for associated polynomial sequences). Let {qn(x)} denote
the associated polynomial sequence for f(t). Then, q0(x) = 1 and

qn+1(x) = x
n∑

k=0

γk
k!
q
(k)
n (x), for n ≥ 0, (4.8)

where γk = (1/f ′(t))(k)|t=0.

Proof. It follows from Theorem 4.1 since g(t) = 1 and hence δk = 0 for all k.

Example 4.6. For the exponential polynomial φn(x),

φ0(x) = 1, φn+1(x) = x
[
φn(x) + φ′

n(x)
]
, for n ≥ 0. (4.9)
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Corollary 4.7 (Recursive Formula I for Appell polynomial sequences). Let {an(x)} denote the
Appell polynomial sequence for g(t). Then, a0(x) = 1/g(0) and

an+1(x) = xan(x) +
n∑

k=0

δk
k!

a
(k)
n (x), for n ≥ 0, (4.10)

where δk = (−g ′(t)/g(t))(k)|t=0.

Proof. Since f(t) = t, δk = (−g ′(t)/g(t)f ′(t))(k)|t=0 = (−g ′(t)/g(t))(k)|t=0, γ0 = 1, and γk = 0 for
all other k in Theorem 4.1.

Example 4.8. For the Hermite polynomial of order v, denoted byH
{v}
n (x),

H
{v}
0 (x) = 1, H

{v}
n+1(x) = xH

{v}
n (x) − v

(
H

{v}
n

)′
(x), for n ≥ 0. (4.11)

Example 4.9. Let us consider the Stirling polynomial sequence Sn(x), which is the Sheffer
polynomial sequence for (g(t), f(t)) = (e−t, ln(t/1 − e−t)). To obtain the recursive formula
for Sn(x) by Theorem 4.1, we have to find f(t), that is, solve the insolvable transcendental
equation

et =
y

1 − e−y
(4.12)

for y.

This example shows a type of Sheffer sequences for which Theorem 4.1 fails to produce
a recursive formula. This motivate us to develop other recursive formulas, which represent
sn+1(x) in term of its previous terms sk(x) and the derivatives of f(t) and g(t).

4.2. The Second Recursive Formula for the Sheffer Polynomials

Theorem 4.10 (Recursive Formula II). Let {sn(x)} be the Sheffer polynomial sequence for
(g(t), f(t)). Then, s0(x) = 1/g(0) and

ε0sn+1(x) = xsn(x) +
n∑

k=0

(
n

k

)

θksn−k(x) −
n∑

k=1

(
n

k

)

εksn+1−k(x), for n ≥ 0, (4.13)

where εk = (f ′(f(t)))
(k)|t=0 = (1/f

′
(t))

(k)
|t=0 and θk = (−g ′(f(t))/g(f(t)))

(k)|t=0.

Proof. Let us considerWn[f ′(f(t))(d/dt)(exf(t)/g(f(t)))]t=0. On one hand, applying Property
1(c),
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Wn

⎡

⎢
⎣f ′
(
f(t)
) d

dt

⎛

⎜
⎝

exf(t)

g
(
f(t)
)

⎞

⎟
⎠

⎤

⎥
⎦

t=0

= Pn

⎡

⎢
⎣

d

dt

⎛

⎜
⎝

exf(t)

g
(
f(t)
)

⎞

⎟
⎠

⎤

⎥
⎦

t=0

Wn

[
f ′
(
f(t)
)]

t=0

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

s1(x) 0 0 · · · 0

s2(x) s1(x) 0 · · · 0

s3(x)

(
2

1

)

s2(x) s1(x) · · · 0

...
...

...
. . .

...

sn+1(x)

(
n

1

)

sn(x)

(
n

2

)

sn−1(x) · · · s1(x)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε0

ε1

ε2

...

εn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(4.14)

On the other hand, by Properties 1(a) and 1(c),

Wn

⎡

⎢
⎣f ′
(
f(t)
) d

dt

⎛

⎜
⎝

exf(t)

g
(
f(t)
)

⎞

⎟
⎠

⎤

⎥
⎦

t=0

= Wn

⎡

⎢
⎣

⎛

⎜
⎝x −

g ′
(
f(t)
)

g
(
f(t)
)

⎞

⎟
⎠

exf(t)

g
(
f(t)
)

⎤

⎥
⎦

t=0

= xWn

⎡

⎢
⎣

exf(t)

g
(
f(t)
)

⎤

⎥
⎦

t=0

− Pn

⎡

⎢
⎣

exf(t)

g
(
f(t)
)

⎤

⎥
⎦

t=0

Wn

⎡

⎢
⎣
g ′
(
f(t)
)

g
(
f(t)
)

⎤

⎥
⎦

t=0

= x

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

s0(x)

s1(x)

s2(x)

...

sn(x)

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥⎥
⎦

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

s0(x) 0 0 · · · 0

s1(x) s0(x) 0 · · · 0

s2(x)

(
2

1

)

s1(x) s0(x) · · · 0

...
...

...
. . .

...

sn(x)

(
n

1

)

sn−1(x)

(
n

2

)

sn−2(x) · · · s0(x)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

θ0

θ1

θ2

...

θn

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

(4.15)

Equating the last rows of (4.14) and (4.15) leads to

n∑

k=0

(
n

k

)

sn+1−k(x)εk = xsn(x) +
n∑

k=0

(
n

k

)

sn−k(x)θk. (4.16)

A rearrangement of the above yields the desired result.
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Example 4.11. Let L{a}
n (x) be the Laguerre polynomial of order a, pn(x) the Poisson-Charlier

polynomial of order a, and Mn(x) the Meixner polynomial of the first kind of order (b, c),
which is the Sheffer polynomial sequence for (g(t), f(t)) = (((1 − c)/(1 − cet))b, (1−et)/(c−1−
et)). Then,

L
{a}
0 (x) = 1, L

{a}
n+1(x) = (2n + a + 1 − x)L{a}

n (x) −
(
n2 + na

)
L
{a}
n−1(x), for n ≥ 0,

p0(x) = 1, apn+1(x) = (x − n − a) pn(x) − npn−1(x), for n ≥ 0,

M0(x) = 1, cMn+1(x) = ((c − 1)x + n(c + 1) + bc)Mn(x)

− (n(n − 1) + nb)Mn−1(x), for n ≥ 0.

(4.17)

Corollary 4.12 (Recursive Formula II for associated polynomial sequences). Let {qn(x)}
denote the associated polynomial sequence for f(t). Then, q0(x) = 1 and

ε0qn+1(x) = xqn(x) −
n∑

k=1

(
n

k

)

εkqn+1−k(x), for n ≥ 0, (4.18)

where εk = (f ′(f(t)))
(k)|t=0.

Example 4.13. Let φn(x) denote the exponential polynomial. Then,

φ0(x) = 1, φn+1(x) = xφn(x) +
n−1∑

k=0

(
n

k + 1

)

(−1)kφn−k(x), for n ≥ 0. (4.19)

Corollary 4.14 (Recursive Formula II for Appell polynomial sequences). Let {an(x)} denote
the Appell polynomial sequence for g(t). Then, a0(x) = 1/g(0) and

an+1(x) = xan(x) +
n∑

k=0

(
n

k

)

θkan−k(x), for n ≥ 0, (4.20)

where θk = (−g ′(t)/g(t))(k)|t=0.

Remark 4.15. Theorem 2.2 and Theorem 2.4 in [2] are special cases of Corollary 4.14.

Example 4.16. Let H{v}
n (x) denote the Hermite polynomial of order v. Then,

H
{v}
0 (x) = 1, H

{v}
n+1(x) = xH

{v}
n (x) − nvH

{v}
n−1(x), for n ≥ 0. (4.21)
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Here, we would like to revisit Example 4.9. In order to obtain the recursive formula for
the Stirling polynomial sequence {Sn(x)} by Theorem 4.10, we need to compute

εk =
(
f ′
(
f(t)
))(k)∣∣

∣
∣
t=0

=

⎛

⎝ 1

f
′
(t)

⎞

⎠

(k)
∣
∣
∣
∣
∣
∣
∣
t=0

=

(
t
(
et − 1

)

et − 1 − t

)(k)
∣
∣
∣
∣
∣
∣
t=0

. (4.22)

Equation (4.22) seems difficult to evaluate and does not lead to any nice result. This is a
motivation for us to develop yet another formula in Theorem 4.17.

4.3. The Third Recursive Formula for the Sheffer Polynomials

Theorem 4.17 (Recursive Formula III). Let {sn(x)} denote the Sheffer polynomial sequence for
(g(t), f(t)). Then, s0(x) = 1/g(0) and

sn+1(x) =
n∑

k=0

(
n

k

)
(
xαk + βk

)
sn−k(x), for n ≥ 0, (4.23)

where αk = (1/f ′(f(t)))
(k)|t=0 = (f(t))

(k+1)|t=0 and βk = (−g ′(f(t))/g(f(t))f ′(f(t)))
(k)|t=0.

Proof. We have

[
s1(x) s2(x) s3(x) · · · sn+1(x)

]T
= Wn

⎡

⎢
⎣

d

dt

⎛

⎜
⎝

exf(t)

g
(
f(t)
)

⎞

⎟
⎠

⎤

⎥
⎦

t=0

. (4.24)

Also,

Wn

⎡

⎢
⎣

d

dt

⎛

⎜
⎝

exf(t)

g
(
f(t)
)

⎞

⎟
⎠

⎤

⎥
⎦

t=0

= Wn

⎡

⎢
⎣

⎛

⎜
⎝x −

g ′
(
f(t)
)

g
(
f(t)
)

⎞

⎟
⎠

1

f ′
(
f(t)
)

exf(t)

g
(
f(t)
)

⎤

⎥
⎦

t=0

= Pn

⎡

⎢
⎣

⎛

⎜
⎝x −

g ′
(
f(t)
)

g
(
f(t)
)

⎞

⎟
⎠

1

f ′(f(t))

⎤

⎥
⎦

t=0

Wn

⎡

⎢
⎣

exf(t)

g
(
f(t)
)

⎤

⎥
⎦

t=0
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=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xα0 + β0 0 0 · · · 0

xα1 + β1 xα0 + β0 0 · · · 0

xα2 + β2 2
(
xα1 + β1

)
xα0 + β0 · · · 0

...
...

...
. . .

...

xαn + βn

(
n

1

)
(
xαn−1 + βn−1

)
(
n

2

)
(
xαn−2 + βn−2

) · · · xα0 + β0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s0(x)

s1(x)

s2(x)

...

sn(x)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(4.25)

Equating the last rows of (4.24) and (4.25), we get the desired result.

Example 4.18. Let An(x) be the Actuarial polynomial. Then,

A0(x) = 1, An+1(x) = −x
n∑

k=0

(
n

k

)

Ak(x) + bAn(x), for n ≥ 0. (4.26)

Corollary 4.19 (Recursive Formula III for associated polynomial sequences). Let {qn(x)}
denote the associated polynomial sequence for f(t). Then, q0(x) = 1 and

qn+1(x) = x
n∑

k=0

(
n

k

)

αkqn−k(x), for n ≥ 0, (4.27)

where αk = (1/f ′(f(t)))
(k)|t=0 = (f(t))

(k+1)|t=0 .

Example 4.20. Let φn(x) denote the exponential polynomial. By Corollary 4.19, we have the
following well-known result

φ0(x) = 1, φn+1(x) = x
n∑

k=0

(
n

k

)

φk(x), for n ≥ 0. (4.28)

Finally, let us finish up Example 4.9 and conclude this paper.
To obtain the recursive formula for the Stirling polynomial sequence {Sn(x)} by

Theorem 4.17, we need to compute

αk =

⎛

⎜
⎝

1

f ′
(
f(t)
)

⎞

⎟
⎠

(k)
∣∣∣∣∣∣∣∣
t=0

=
(
f(t)
)(k+1)∣∣∣∣

t=0
=
(
1
t
− 1
et − 1

)(k)
∣∣∣∣∣
t=0

βk =

⎛

⎜
⎝

−g ′
(
f(t)
)

g
(
f(t)
)
f ′
(
f(t)
)

⎞

⎟
⎠

(k)
∣∣∣∣∣∣∣∣
t=0

=
(
1
t
− 1
et − 1

)(k)
∣∣∣∣∣
t=0

.

(4.29)
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Noting t/(et − 1) is the exponential generating function for Bernoulli number sequence {Bn}
in [7], we can easily compute (4.29) to get

αk = βk =
(
1
t
− 1
et − 1

)(k)
∣
∣
∣
∣
∣
t=0

(
1
t

[
1 − t

et − 1

])(k)
∣
∣
∣
∣
∣
t=0

=

⎛

⎝−
∞∑

j=0

Bj+1
(
j + 1

)
!
tj

⎞

⎠

(k)
∣
∣
∣
∣
∣
∣
∣
t=0

=
−Bk+1

k + 1
.

(4.30)

Therefore, the recursive formula for the Stirling polynomial Sn(x) is S0(x) = 1 and

Sn+1(x) = −
n∑

k=0

(
n

k

)

(x + 1)
Bk+1

k + 1
Sn−k(x) = − (x + 1)

n + 1

n∑

k=0

(
n + 1

k + 1

)

Bk+1Sn−k(x). (4.31)
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