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The notion of a generalized circle number which has recently been discussed for l2,p-circles and
ellipses will be extended here for star bodies and a class of unbounded star discs.

1. Introduction

Generalized circle numbers have been discussed for l2,p-circles in Richter [1, 2] and for
ellipses in Richter [3]. All these numbers correspond on the one hand to an area content
property of the considered discs which is based upon the usual, that is, Euclidean, area
content measure and a suitably adopted radius variable. On the other hand, they reflect a
circumference property of the considered generalized circles with respect to a non-Euclidean
length measure which is generated by a suitably chosen non-Euclidean disc. Several basic
and specific properties of the circumference measure have been discussed in Richter [1–
3]. We refer here to only two of them which are closely connected with each other by
the main theorem of calculus. The first one is that the generalized circumference of the
generalized circle coincides with the derivative of the area content function with respect
to the adopted radius variable. The second one is that, vice versa, the area content of the
circle disc equals the integral of the generalized circumferences of the circles within the disc
with respect to the adopted radius variable. Integrating this way may be considered as a
generalization of Cavalieri and Torricelli’s method of indivisibles, where the indivisibles are
now the generalized circles within the given disc and measuring them is based upon a non-
Euclidean geometry. The far-reaching usefulness of this generalized method of indivisibles
has been demonstrated in the work of Richter [1–4], where several applications are dealt
with and where it was also shown that integrating usual, that is, Euclidean, lengths of the
same indivisibles does not yield the area content, in general. In the present paper, we will
prove that this method still applies when generalized circle numbers are derived for general
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star discs. In this sense, this paper deals with bounded and unbounded star discs. Notice that
because we will not assume symmetry of the unit disc, distances will depend on directions in
general.

To become more specific, let S be a star body in IR2, and let its area content be defined
as usual by its Lebesgue measure. Furthermore, let us call the boundary of � times the star
disc S the S-circle of S-radius �, � > 0 and denote it by �S(�). If we define the perimeter of
S by using different length measures, then we can observe different perimeter-to-(two-times-
S-radius) ratios, and these ratios differ from the corresponding (area-content)-to-(squared-S-
radius) ratio in general. If we choose, however, the length measure in a certain specific way,
then the first ratio coincides with the second one for all � > 0. In the most famous case when
S is the Euclidean disc and measuring circumference is based upon Euclidean arc-length, the
common constant value of the two ratios is the well-known circle number π .

If S is the symmetric and convex l2,p-circle, centered at the origin and thus defining a
norm then, according to Richter [1], the suitable arc-length measure is based upon the dual
norm, that is, the norm which is generated by the l2,p∗-circle {(x, y) : |x|p∗ + |y|p∗ = 1} with
p∗ ≥ 1 satisfying the equation 1/p + 1/p∗ = 1.

Similarly, if S is an l2,p-circle, p ∈ (0, 1), corresponding to an antinorm (see Moszyńska
and Richter [5]) then, according to Richter [2], the suitable arc-length measure is based upon
the star disc S(p∗∗) = {(x, y) ∈ �2 : |x|p∗∗ + |y|p∗∗ ≥ 1} with p∗∗ < 0 satisfying 1/p + 1/p∗∗ = 1.
The star disc S(p∗∗) corresponds to a specific semi-antinorm with respect to the canonical fan
(see Moszyńska and Richter [5]).

The situation for ellipses has been discussed in Richter [3]. If S = Da,b = {(x, y) ∈ �2 :
(x/a)2 + (y/b)2 ≤ 1} is an elliptically contoured disc and E(a,b) = ∂S its boundary then the
suitable arc-length measure on the Borel σ-field of subsets of the ellipse E(a,b) is based upon
the disc D(1/b,1/a). Note that againD(a,b) andD(1/b,1/a) correspond to dual norms.

The arc-length measure used for defining the p-generalized circle number allows both
for p ≥ 1 and for 0 < p < 1 the same additional interpretation in terms of the derivative of
the area content function with respect to the p-radius variable. This way, the notion of the
p-generalized circumference of the p-circle was introduced first in Richter [4] under more
general circumstances and motivated there by several of its applications. Several geometric
interpretations of this notion in cases of special norms and antinorms have been discussed
so far. As just to refer to a few of them, let us recall that this notion is a basic one for the
generalized method of indivisibles, that it allows to prove the so-called thin layers property
of the Lebesgue measure and to think of a certain mixed area content in a new way and that
it is closely connected with the solution to a certain isoperimetric problem. From a technical
point of view, a basic difference between the two situations is that in the convex case, one
uses triangle inequality for showing convergence of a sequence of suitably defined integral
sums, and that one makes use of the reverse triangle inequality fromMoszyńska and Richter
[5] for proving such convergence if the p-generalized circle corresponds to an antinorm.

The arc-length measure used for defining ellipses numbers has also an interpretation
in terms of the derivative of the area content function but with respect to a generalized
radius variable corresponding to E(a,b). The common notion behind the different definitions
of a generalized radius variable discussed so far in the literature is that of the Minkowski
functional (or gauge function) of a star body, but looking onto themotivating applications, for
example, from probability theory and mathematical statistics, let it become clear that further
generalizations are desirable in future work.

Here, we start our considerationwith the definition of the S-generalized circumference
of an S-circle corresponding to a star body and will discuss in Section 2 both its general
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geometric meaning and its specific interpretation either when S is generated by an arbitrary
norm or by an antinorm of special type.

It should be mentioned here that the Minkowski functional of a star body generates
a distance which is not symmetric in general, that is, it does not assign a length in the usual
sense to a generalized circle but a certain directed length.

In this sense, Section 2 deals mainly with generalized circle numbers for star bodies
while Section 3 is devoted to a certain class of unbounded star discs.

Definition 1.1. Let λ2 be the Lebesgue measure in �2 , S a star body, and AS(�) = λ2(�S) the
corresponding area content function. Then,

d

d�
AS

(
�
)
=: �S

(
�
)
, � > 0, (1.1)

will be called the S-generalized circumference of �S or the S-generalized arc-length of the
boundary �S(�) of �S, �S = {(�x, �y) ∈ �2 : (x, y) ∈ S}.

It follows from the properties of the Lebesgue measure that

AS

(
�
)

�2
=
�S

(
�
)

2�
= AS(1), ∀� > 0. (1.2)

The representation

AS

(
�
)
=
∫�

0
�S(r)dr (1.3)

may be understood as a generalized method of indivisibles for the Lebesgue measure, where
the indivisibles are multiples of the boundary of S and measuring their circumferences is
based upon �S. Equations (1.2) may suggest on the one hand to call AS(1) the S-generalized
circle number. On the other hand, one may consider at this stage of consideration a method of
introducing generalized circle numbers which follows basically the idea of the main theorem
of calculus being rather elementary if not even trivial. However, the papers of Richter [1–4]
which are closely connected with this approach allow a new look onto a class of geometric
measure representations or, similarly, onto a class of stochastic representations which are
quite fruitful for many applications. Several of these applications, especially in probability
theory and mathematical statistics, are discussed therein.

Clearly, there is always a necessity to give a geometric or otherwise mathematical
interpretation of the circumference �S(�). In other words, one naturally looks for a geometry
such that the arc-length of �S(�) with respect to this geometry coincides with the S-
generalized circumference �S(�). The non-Euclidean geometries being identified in this way
may be considered as geometries “being close to the Euclidean one” as those were discussed
in Hilbert [6] in connection with his fourth problem. If we can uniquely identify a geometry
such that the arc-lengthmeasure of S, ALS,S∗(�), which is based upon the geometry’s unit ball
S∗, satisfies

ALS,S∗
(
�
)
= �S

(
�
)
, (1.4)
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then we can observe already the nontrivial situation that

AS

(
�
)

�2
=

ALS,S∗

2�
= AS(1), ∀� > 0. (1.5)

At such stage of investigation, it will then be already much more motivated that the area
content of the unit star, AS(1), is called the S-generalized circle number, π(S).

In this sense, the considerations in Richter [1–3] deal with restrictions of the function
S → π(S) to l2,p-balls, p > 0, and to axes aligned ellipses.

2. Star Bodies

A subset S from �
2 is called a star body if it is star-shaped with respect to the origin and

compact and has the origin in its interior. A set of this type has the property that for every
z ∈ �

2 there exists a uniquely determined � > 0 such that z/� ∈ ∂S, where ∂S denotes the
boundary of the set S. This � equals the value of the Minkowski functional with respect to
the reference set S

hS

(
x, y

)
= inf

{
λ > 0 :

(
x, y

) ∈ λS
}
, (2.1)

at any point (x, y) ∈ ∂S. The function hS is often called the gauge function of S (see, e.g., in
Webster [7]) and coincides, for (x, y)/= (0, 0), with the reciprocal of the radial function (see,
e.g., in Thompson [9] and Moszyńska [8]),

�S
((
x, y

))
= sup

{
λ ≥ 0 : λ

(
x, y

) ∈ S
}
. (2.2)

The special cases that hS is a norm or an antinorm are of particular interest and will be
separately dealt with in Examples 2.13 and 2.14.

With a star body S, the pair (�2 , hS) may be considered as a generalized Minkowski
plane. The star disc and the star circle of S-radius �will be defined then byKS(�) = {r · s, s ∈
S, 0 ≤ r ≤ �} and �S(�) = ∂KS(�), respectively. The set S will be called the unit star in this
plane.

Let T be another star disc in �2 which will be specified later. Whenever possible, we
may define the T-arc-length of the curve �S(�) as follows.

Definition 2.1. If �n = {z0, z1, . . . , zn = z0} denotes a successive and positive (anticlockwise)
oriented partition of �S(�), then the positive directed T-arc-length of �S(�) is defined by

ALST

(
�
)
:= lim

n→∞

n∑

j=1

hT

(
zj − zj−1

)
, (2.3)

if the limit exists for and is independent of all described partitions of �S(�) with F(�n) =
max1≤j≤nhT (zj − zj−1) tending to zero as n → ∞.

Using triangle inequality or its reverse, one can show that if hS is a norm or antinorm
then taking the limit may be changedwith taking the supremum or the infimum, respectively.
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Notice that because hT is in general not a symmetric function, the orientation in the partition
may have essential influence onto the value of ALS,T(�) and is, therefore, assumed here
always to be positive.

For studying ALS,T (�), let a parameter representation of the unit-S-circle �S(1) be
given by �S(1) = {RS(ϕ)(cosϕ, sinϕ)T , 0 ≤ ϕ < 2π}. Later on, we will assume that RS is
a.e. differentiable. From the relation

hS

((
x, y

)T) = 1, ∀(x, y)T ∈ �S(1), (2.4)

it follows that

hS

((
cosϕ, sinϕ

)T) =
1

RS

(
ϕ
) , 0 ≤ ϕ < 2π. (2.5)

In other words, with the notation MS(ϕ) = hS((cosϕ, sinϕ)T ), we have

�S(1) =

⎧
⎨

⎩

(
cosϕ
MS

(
ϕ
) ,

sinϕ

MS

(
ϕ
)

)T

, 0 ≤ ϕ < 2π

⎫
⎬

⎭
. (2.6)

This motivates the following definition which generalizes more particular notions from
earlier considerations.

Definition 2.2. For an arbitrary star body S, the S-generalized sine and cosine functions are

sinS

(
ϕ
)
=

sinϕ
MS

(
ϕ
) , cosS

(
ϕ
)
=

cosϕ
MS

(
ϕ
) , ϕ ∈ [0, 2π), (2.7)

respectively.

Notice that there is an elementary geometric interpretation of these generalized
trigonometric functions when one considers a right-angled triangl Tr = ((0, 0)T , (x, 0)T ,
(x, y)T ) with x > 0 and y > 0 as follows. The S-generalized sine and cosine of the angle
ϕ ∈ [0, 2π) between the directions of the positive x-axes and the line through the points
(0, 0)T and (x, y)T are

sinS

(
ϕ
)
=

y

hS

((
x, y

)T) , cosS
(
ϕ
)
=

x

hS

((
x, y

)T) , (2.8)

respectively. These functions satisfy

hS

(
cosS

(
ϕ
)
, sinS

(
ϕ
))

= 1, (2.9)

generalizing the well-known formula cos2ϕ + sin2ϕ = 1.
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Definition 2.3. The S-generalized polar coordinate transformation

PolS : [0,∞) × [0, 2π) → �
2 (2.10)

is defined by

x = r cosS
(
ϕ
)
, y = r sinS

(
ϕ
)
, 0 ≤ ϕ < 2π, 0 ≤ r < ∞. (2.11)

Let us denote the quadrants in �2 in the usual anticlockwise ordering by Q1 up to Q4.

Theorem 2.4. The map PolS is almost one-to-one, for x /= 0, its inverse Pol−1S is given by

r = hS

(
x, y

)
, arctan

(∣∣∣
y

x

∣
∣∣
)
= ϕ in Q1, π − ϕ in Q2, ϕ − π in Q3, 2π − ϕ in Q4, (2.12)

and its Jacobian satisfies

J
(
r, ϕ
)
=
D
(
x, y

)

D
(
r, ϕ
) =

r

M2
S

(
ϕ
) . (2.13)

Proof. The proof follows that of Theorem 8 in Richter [3] and makes essentially use of the
fact that the derivatives of the S-generalized trigonometric functions sinS and cosS allow the
representations

sin′
S

(
ϕ
)
=

1
M2

S

(
ϕ
)
[
cosϕMS

(
ϕ
) − sinϕM′

S

(
ϕ
)]
,

cos′S
(
ϕ
)
=

1
M2

S

(
ϕ
)
[− sinϕMS

(
ϕ
) − cosϕM′

S

(
ϕ
)]
.

(2.14)

Using S-generalized polar coordinates, we can write

�S

(
�
)
=
{(

� cosS
(
ϕ
)
, � sinS

(
ϕ
))T

, 0 ≤ ϕ < 2π, � > 0
}
. (2.15)

We assume from now on that hT is positively homogeneous, put

hT

(
zj − zj−1

)
= hT

((
Δjx,Δjy

)T)
, (2.16)

and consider

hT

(
zj − zj−1

)
= hT

⎛

⎝
(

Δjx
(
ϕ
)

Δjϕ
,
Δjy

(
ϕ
)

Δjϕ

)T
⎞

⎠Δjϕ, (2.17)
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for sufficiently thin partition �n and Δjϕ > 0. We get in the limit, which was assumed in
Definition 2.1 to be uniquely determined

ALS,T

(
�
)
=
∫2π

0
hT

(
x′(ϕ

)
, y′(ϕ

))
dϕ = �

∫2π

0
hT

(
x′(ϕ

)

�
,
y′(ϕ

)

�

)

dϕ

= �

∫2π

0
hT

((
cos′S

(
ϕ
)
, sin′

S

(
ϕ
))T)

dϕ = �ALS,T (1).

(2.18)

It follows from the proof of Theorem 2.4 that

ALS,T

(
�
)
= �

∫2π

0
R2
S

(
ϕ
)
hT

(

MS

(
ϕ
)
(− sinϕ

cosϕ

)

+M′
S

(
ϕ
)
(− cosϕ

− sinϕ

))

dϕ, (2.19)

that is,

ALS,T

(
�
)
= �

∫2π

0
R2
S

(
ϕ
)
hT

(
O
(
ϕ
)
�S
(
ϕ
))
dϕ, (2.20)

with

O
(
ϕ
)
=

(
cosϕ − sinϕ

sinϕ cosϕ

)

, �S
(
ϕ
)
=

⎛

⎜
⎜⎜
⎝

R′
S

(
ϕ
)

R2
S

(
ϕ
)

1
RS

(
ϕ
)

⎞

⎟
⎟⎟
⎠

. (2.21)

The following lemmas and corollaries represent certain steps towards a reformulation
of formula (2.20).

Lemma 2.5. In the case of their existence, the partial derivatives hS,x and hS,y of the function
(x, y) → hS(x, y) satisfy the representation

(
0 −1
1 0

)(
hS,x

(
r coss

(
ϕ
)
, r sins

(
ϕ
))

hS,y

(
r coss

(
ϕ
)
, r sins

(
ϕ
))

)

= �
(
ϕ
)
�S
(
ϕ
)
. (2.22)

Proof. It follows from the relation

hS

(
r cosS

(
ϕ
)
, r sinS

(
ϕ
))

= r (2.23)

that the partial derivatives hS,x and hS,y satisfy the equation system

∂

∂ϕ
hS

(
cosS

(
ϕ
)
, sinS

(
ϕ
))

= 0,
∂

∂r
hS

(
r cosS

(
ϕ
)
, r sinS

(
ϕ
))

= 1. (2.24)
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Solving this differential equation system, we get

hS,x

(
r coss

(
ϕ
)
, r sins

(
ϕ
))

=
1

R2
S

(
ϕ
)
(
RS

(
ϕ
)
cos
(
ϕ
)
+ R′

S

(
ϕ
))

sin
(
ϕ
)
,

hS,y

(
r coss

(
ϕ
)
, r sins

(
ϕ
))

=
1

R2
S

(
ϕ
)
(
RS

(
ϕ
)
sin
(
ϕ
) − R′

S

(
ϕ
))

cos
(
ϕ
)
.

(2.25)

Hence,

(
hS,x

(
r coss

(
ϕ
)
, r sins

(
ϕ
))

hS,y

(
r coss

(
ϕ
)
, r sins

(
ϕ
))

)

=

(
0 1

−1 0

)

�
(
ϕ
)
�S
(
ϕ
)
.

(2.26)

Let B be a 2 × 2-matrix and BT = {B(x, y)T : (x, y)T ∈ T}. Clearly, multiplying the set
T by the matrix

( 0 −1
1 0

)
causes an anticlockwise rotation of T through the angle π/2. Hence, if

T is a star disc, then BT is a star disc too.

Corollary 2.6. For positively homogeneous hT , differentiable hS, formula (2.20) may be rewritten as

ALS,T

(
�
)
= �

∫ 2π

0
R2
S

(
ϕ
)
h( 0 1

−1 0

)
T

(∇hS

(
x, y

)|(x,y)=PolS(r,ϕ)
)
dϕ. (2.27)

Proof. Based upon Lemma 2.5, formula (2.20) may be reformulated as

ALS,T

(
�
)
= �

∫ 2π

0
R2
S

(
ϕ
)
hT

((
0 −1
1 0

)(
hS,x

(
r coss

(
ϕ
)
, r sins

(
ϕ
))

hS,y

(
r coss

(
ϕ
)
, r sins

(
ϕ
))

))

dϕ. (2.28)

Because of

hT

((
0 −1
1 0

)(
ξ

η

))

= inf

{

λ > 0 :

(
0 −1
1 0

)(
ξ

η

)

∈ λT

}

= inf

{

λ > 0 :

(
ξ

η

)

∈ λ

(
0 1

−1 0

)

T

}

= h( 0 1
−1 0

)
T

((
ξ

η

))

,

(2.29)

it follows the assertion.

Remark 2.7. The plug-in version ∇hS(x, y)|(x,y)=PolS(r,ϕ) of the gradient ∇hS(x, y) coincides
with the image of the gradient ∇hS(x, y) after changing Cartesian with S-generalized polar
coordinates, PolS(∇hS(x, y))(r, ϕ).
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Proof. Changing Cartesian coordinates (x, y) with S-generalized polar coordinates (r, ϕ), we
have r = hS(x, y) and ϕ = arctan(y/x). Starting from

∂

∂x
hS

(
x, y

)
=

∂

∂r
hS

(
x, y

) ∂

∂x
r +

∂

∂ϕ
hS

(
x, y

) ∂

∂x
ϕ, (2.30)

and the analogous one for (∂/∂y)hS(x, y), and taking into account that

∂

∂r
hS

(
x, y

)|(x,y)=PolS(r,ϕ) =
∂

∂r
hS

(
r cosS

(
ϕ
)
, r sinS

(
ϕ
))

= 1,

∂

∂ϕ
hS

(
x, y

)|(x,y)=PolS(r,ϕ) =
∂

∂ϕ
hS

(
r cosS

(
ϕ
)
, r sinS

(
ϕ
))

= 0,

(2.31)

it follows

∂

∂x
hS

(
x, y

)
=

∂r

∂x
|(x,y)=PolS(r,ϕ) = hS,x

(
r cosS

(
ϕ
)
, r sinS

(
ϕ
))
,

∂

∂y
hS

(
x, y

)
=

∂r

∂y
|(x,y)=PolS(r,ϕ) = hS,y

(
r cosS

(
ϕ
)
, r sinS

(
ϕ
))
.

(2.32)

Remark 2.8. For positively homogeneous hT and differentiable Minkowski functional hS of
the star disc S, formula (2.20) may be rewritten as

ALS,T

(
�
)
= �

∫2π

0
R2
S

(
ϕ
)
h( 0 1

−1 0

)
T

(
PolS

(∇hS

(
x, y

))(
r, ϕ
))
dϕ. (2.33)

Definition 2.9. A star body S and a star disc T satisfy the rotated gradient condition if

h( 0 1
−1 0

)
T

(∇hS

(
x, y

)|(x,y)=PolS(r,ϕ)
)
= 1, a.e. (2.34)

Let us notice that at the point (x, y) from �S(�), the gradient∇hS(x, y) is normal to the
level set �S(�), � > 0 of hS. The following lemma is a consequence of the above consideration.

Lemma 2.10. For a star body S and a star disc S∗ satisfying the rotated gradient condition (2.34),
the positive directed S∗-arc-length of �S(�) allows the representation

ALS,S∗
(
�
)
= �

∫ 2π

0
R2
s

(
ϕ
)
dϕ. (2.35)
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We consider now the area function

AS

(
�
)
= �2AS(1) =

�2

2

∫2π

0
R2
S

(
ϕ
)
dϕ, (2.36)

where AS(1) denotes the area content of the unit disc KS(1). The derivative of the area
function satisfies obviously

d

d�
AS

(
�
)
= �

∫2π

0
R2
S

(
ϕ
)
dϕ. (2.37)

The following theorem has thus been proved.

Theorem 2.11. If the star body S and the star disc S∗ satisfy the rotated gradient condition (2.34),
then

�S

(
�
)
= ALS,S∗

(
�
)
, (2.38)

that is, the S-generalized circumference of S coincides with the positive directed S∗-circumference of
S.

If relation (2.38) holds, then

ALS,S∗(1) = 2AS(1). (2.39)

Consequently, the ratios AS(�)/�2 and ALS,S∗(�)/2� satisfy the relations

AS

(
�
)

�2
(a)
= AS(1)

(c)
=

ALS,S∗
(
�
)

2�
, ∀� > 0. (2.40)

In this sense, the geometry and the arc-length measure generated by S∗ fulfill our
expectations. The following definition is thus well motivated if a star body S and a star disc
S∗ are chosen in such a way that the limit in Definition 2.1 is uniquely determined, hT is
positively homogeneous, hS is a.e. differentiable, and the rotated gradient condition (2.34) is
satisfied.

Definition 2.12. (a) The properties of the star bodiesKS(�), � > 0, which are expressed by the
equations (a) and (c) in (2.40) are called the area content and the S-generalized circumference
properties of the discs, respectively.

(b) The quantity AS(1) =: π(S) is called the S-generalized circle number of the star
bodies KS(�), � > 0.

We may write now (2.40) as

ALS,S∗
(
�
)
= 2π(S)�, AS

(
�
)
= π(S)�2. (2.41)
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Notice that the circle number function S → π(S) assigns a generalized circle number to any
star body KS(�) satisfying assumption (2.34). The restrictions of this function to l2,p-balls or
axes aligned ellipses were considered in Richter [1–3].

Example 2.13. Here, we consider a first, rather general case, where the rotated gradient
condition (2.34) is satisfied. Let ‖ · ‖(p) and ‖ · ‖(d) denote a (primary) C1-norm in �

n and
the corresponding dual one, respectively. It is proved in Yang [10] that

∥∥∥∇‖�‖(p)
∥∥∥
(d)

= 1, ∀� ∈ �n . (2.42)

Hence, if S is a convex body, that is, hS(�) = ‖ � ‖(p) is a (primary) norm, and if

(
0 1

−1 0

)

T =
{
� ∈ �n : ‖ � ‖(d) ≤ 1

}
= S∗ (2.43)

is the unit ball with respect to the corresponding dual norm, then the condition (2.34) is
satisfied.

For determining the actual value of a generalized circle number π(S) = AS(1)
we may refer, for example, to Pisier [11], where volumes of convex bodies are dealt
with. Alternatively, one may use S-generalized polar coordinates for making the respective
calculations in given cases. The particular results for l2,p-circles with p ≥ 1 and of axes aligned
ellipses as well as the corresponding generalized circle numbers have been dealt with in
Richter [1, 3].

Example 2.14. We consider now the nonconvex l2,p-circles Cp = {(x, y) ∈ �
2 : |x|p + |y|p =

1} with 0 < p < 1. Such generalized circles correspond to antinorms. A suitable arc-length
measure for measuring Cp is based upon the star disc S(p∗∗) = {(x, y) ∈ �

2 : |x|p∗∗ + |y|p∗∗ ≥
1} with p∗∗ < 0 satisfying 1/p + 1/p∗∗ = 1. The star discs S(p∗∗) are closely related to spe-
cific semiantinorms with respect to the canonical fan. The corresponding generalized circle
numbers have been determined in Richter [2]. As because this was done without referring
explicitely to (2.34), we may state here the following problem.

Problem 1. Give a general description of sets T satisfying condition (2.34) for sets S being
generated by antinorms.

As was indicated in Richter [2], p-generalized circle numbers for 0 < p < 1 may occur,
for example, within certain combinatorial formulae. Notice further that the reciprocal values
of the coefficients of the binomial series expansion

1

4
√
1 − 4u

=
∞∑

n=0

1
π(1/n)

· un, u ∈
(
0,

1
4

)
, (2.44)

are just the generalized circle numbers corresponding to the nonconvex l2,1/n-circles. One
could also ask for a (possibly elementary geometric?) explanation of this fact.
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3. Unbounded Star Discs

In this section, we consider a class of (truncated) unbounded Orlicz discs. More generally
than in the preceding section, a star-shaped subset of IR2 is called a star disc if all its
intersections with balls centered at the origin are star bodies. The boundary of a star disc
is called a star circle. Notice that a star circle is not necessarily bounded. Special sets of this
type will be studied in this section. To be more specific, let us consider, for arbitrary p < 0, the
function

(
x, y

) −→ ∣
∣(x, y

)∣∣
p =

(|x|p +
∣
∣y
∣
∣p)1/p, x /= 0, y /= 0, (3.1)

which denotes a semi-antinorm, and the p-generalized circle

Cp =
{(

x, y
) ∈ �2 :

∣∣(x, y
)∣∣

p
= 1
}
. (3.2)

The pairs of straight lines |y| = 1 and |x| = 1 represent asymptotes for the circleCp as |x| → ∞
or |y| → ∞, respectively. The intersection point of the p-circle Cp with the line y = x is for
positive coordinates (x0, y0) = 2−1/p · (1, 1).

Let further Cp(r) = r ·Cp, r > 0 denote the p-generalized circle of p-generalized radius
r > 0. It is the boundary of the unbounded p-generalized disc of p-generalized radius r,

Kp(r) =
{(

x, y
) ∈ R2 :

∣
∣(x, y)

∣
∣
p
≤ r
}
= rKp, Kp = Kp(1). (3.3)

As because

∣
∣(x, y)

∣
∣
p
≤ r ⇐⇒ |x|p + ∣∣y∣∣p ≥ rp

⇐⇒ f(|x|) + f
(∣∣y
∣∣) ≥ f(r) for f(λ) = λp, λ ≥ 0,

(3.4)

one may call Kp(r) a two-dimensional Orlicz antiball corresponding to the Young function
f . The disc Kp is a star-shaped but noncompact set and, therefore, not a star body. For any
(x, y) ∈ Cp(r) one may think of r as the value of the Minkowski functional with respect to
the reference setKp. The area content and the Euclidean circumference of the unit p-circle are
obviously unbounded. That is why we consider from now on truncated p-circles. To this end,
let us introduce truncation cones

C(x1) :=

{
(
x, y

) ∈ �2 :
‖(x, y) −Π1

(
x, y

)‖
‖Π1

(
x, y

)‖ <
‖(x1, y1

) −Π1
(
x1, y1

)‖
‖Π1

(
x1, y1

)‖

}

=

{
(
x, y

) ∈ �2 :

∣∣x − y
∣∣

∣
∣x + y

∣
∣ <

∣∣x1 − y1
∣∣

∣
∣x1 + y1

∣
∣

}

,

(3.5)

where ‖ · ‖ denotes Euclidean norm, 1 = (1, 1), x1 is chosen according to x1 > x0 = 2−1/p and
|y1| = (1 − |x1|p)1/p < 1.
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The question of interest is nowwhether wemay define in a reasonable way circle numbers for
the truncated p-discs Kx1

p (r) = rKx1
p , the boundaries of which are the p-circles Cx1

p (r) = rCx1
p

of p-radius r, where

Kx1
p := Kp ∩ C(x1), Cx1

p := Cp ∩ C(x1). (3.6)

To this end, let �n = (z0, z1, . . . , zn) be an arbitrary successive anticlockwise-oriented partition
of the truncated circleCx1

p satisfying z0 = (x0, (1−xp

0)
1/p) and zn = (x1, (1−xp

1)
1/p). We consider

the sum

S(�n) =
n∑

j=1

∣
∣zj − zj−1

∣
∣
q
=

n∑

j=1

(∣∣xj − xj−1
∣
∣q +

∣
∣yj − yj−1

∣
∣q)1/q, q ∈ (0, 1), (3.7)

and observe that due to the reverse triangle inequality it decreases monotonously as

F(�n) := sup
1≤j≤n

∣
∣zj − zj−1

∣
∣
q
−→ 0. (3.8)

According to the symmetry of Cx1
p , the following remark is justified.

Remark 3.1. For q ∈ (0, 1), the l2,q-arc-length of the truncated circle Cx1
p is defined as

ALx1
p,q = 8 lim

F(�n)→ 0
S(�n). (3.9)

If x → y(x) denotes an arbitrary parameter representation of the truncated circle Cx1
p ,

then

1
8
ALx1

p,q = lim
F(�n)→ 0

n∑

j=1

(

1 +

∣
∣∣∣
∣
Δyj

Δxj

∣
∣∣∣
∣

q)1/q

Δxj =
∫x1

x0

(
1 +

∣
∣y′(x)

∣
∣q)1/qdx. (3.10)

Let us denote the usual Euclidean area content of the truncated circle disc Kx1
p by Ax1

p .

Lemma 3.2. Let for arbitrary p < 0 the number p∗ ∈ (0, 1) be uniquely defined by the equation
1/p + 1/p∗ = 1. Then,

Ax1
p =

1
2
ALx1

p,p∗ . (3.11)

Proof. With

y(x) =
(
1 − |x|p)1/p = (1 − xp)1/p, y′(x) = −(1 − xp)1/p−1xp−1, (3.12)

it follows from the above formulae that

ALx1
p,q = 8

∫x1

1/21/p

(
1 + (1 − xp)(1/p−1)qx(p−1)q

)1/q
dx. (3.13)
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Changing variables u = xp, dx = du/(pu(p−1)/p) causes a change of the limits of integration:

ALx1
p,q =

8
−p
∫1/2

x
p

1

(
1 + (1 − u)((1−p)/p)qu((p−1)/p)q

)1/q du

u(p−1)/p

=
8
∣∣p
∣∣

∫1/2

x
p

1

(
u((1−p)/p)q + (1 − u)((1−p)/p)q

)1/q
du.

(3.14)

Assuming now 1/p + 1/q = 1, or equivalently q = p/(p − 1) =: p∗, it follows that

ALx1
p,p∗ =

8
∣
∣p
∣
∣

∫1/2

x
p

1

(
u−1 + (1 − u)−1

)(p−1)/p
du =

8
∣
∣p
∣
∣

∫1/2

x
p

1

(
1 − u + u

u(1 − u)

)1−1/p
du. (3.15)

Hence,

ALx1
p,p∗ =

8
∣
∣p
∣
∣

∫1/2

x
p

1

u1/p−1(1 − u)1/p−1du. (3.16)

Now, what about the area content of the truncated circle Cx1
p ? The l2,p-generalized standard

triangle coordinate transformation Tr from Richter [4] is defined by

Trp
(
r, μ
)
=
(
x, y

)
with x = rμ, y = +(−)r(1 − ∣∣μ∣∣p)1/p. (3.17)

Because of

{(
x, y

)
: |x|p + ∣∣y∣∣p = 1, x0 ≤ x ≤ x1

}
= Trp({1} × [x0, x1]),

r
{(
x, y

)
: |x|p +

∣
∣y
∣
∣p = 1, x0 ≤ x ≤ x1

}

=
{(
rx, ry

)
: |x|p + ∣∣y∣∣p = 1, x0 ≤ x ≤ x1

}

=
{(

ξ, η
)
:
∣∣
∣∣
ξ

r

∣∣
∣∣

p

+
∣∣
∣∣
η

r

∣∣
∣∣

p

= 1, x0 ≤ ξ

r
≤ x1

}

=
{(

x, y
)
: |x|p + ∣∣y∣∣p = rp, x0 ≤ x

r

(
=: μ

) ≤ x1

}

= Trp({r} × [x0, x1]),

(3.18)

it follows

⋃

0≤r≤1
r
{(
x, y

)
: |x|p + ∣∣y∣∣p = 1, x0 ≤ x ≤ x1

}
= Trp([0, 1] × [x0, x1]) = Kx1

p . (3.19)

That is,

Kx1
p = Trp([0, 1] × [x0, x1]). (3.20)
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Changing Cartesian with standard triangle coordinates in the integral

Ax1
p =

∫

K
x1
p

d
(
x, y

)
, (3.21)

we get

Ax1
p = 8

∫1

r=0

(∫x1

μ=x0

r
(
1 − μp)(1−p)/pdμ

)

dr =
8
2

∫x1

2−1/p

(
1 − μp)1/p−1dμ. (3.22)

Substituting y = μp, dy/dμ = py(p−1)/p , it follows that

Ax1
p =

4
p

∫x
p

1

1/2

(
1 − y

)1/p−1
y1/p−1dy =

4
∣∣p
∣∣

∫1/2

x
p

1

y1/p−1(1 − y
)1/p−1

dy. (3.23)

Hence, the lemma is proved.

Remark 3.3. Because of p < 0,

Ax1
p −→ ∞ as x1 −→ ∞. (3.24)

The following corollary and definition are now quite obvious and well motivated.

Corollary 3.4. For arbitrary x1 > x0 = 2−1/p, the truncated star discs Kx1
p have the area content and

p-generalized circumference properties (a∗) and (c∗), respectively,

Ax1
p (r)

r2
(a∗)
= Ax1

p
(c∗)
=

ALx1
p,p∗(r)

2r
, (3.25)

from which it follows immediately

d

dr
Ax1

p (r) = ALx1
p,p∗(r). (3.26)

Remark 3.5. One may think of (3.26) as reflecting a generalized method of indivisibles for
each x1 > x0, where the truncated circles Cx1

p are the indivisibles and measuring them is
based upon the geometry generated by the disc Kp∗ .

Definition 3.6. For arbitrary x1 > 2−1/p, the quantity Ax1
p =: πx1(p) will be called the circle

number of the truncated circle Cx1
p .
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