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Let L be a complete lattice. We introduce and investigate the L-total graph of an L-module over an
L-commutative ring. The main purpose of this paper is to extend the definition and results given
in (Anderson and Badawi, 2008) to more generalize the L-total graph of an L-module case.

1. Introduction

It was Beck (see [1])who first introduced the notion of a zero-divisor graph for commutative
rings. This notionwas later redefined byAnderson and Livingston in [2]. Since then, there has
been a lot of interest in this subject, and various papers were published establishing different
properties of these graphs as well as relations between graphs of various extensions (see [2–
5]). Let R be a commutative ring with Z(R)being its set of zero-divisors elements. The total
graph of R, denoted by T(Γ(R)), is the (undirected) graph with all elements of R as vertices,
and, for distinct x, y ∈ R, the vertices x and y are adjacent if and only if x + y ∈ Z(R). The
total graph of a commutative ring has been introduced and studied by Anderson and Badawi
in [3]. In [6], the notion of the total torsion element graph of a module over a commutative
ring is introduced.

In [7], Zadeh introduced the concept of fuzzy set, which is a very useful tool to
describe the situation in which the data is imprecise or vague. Many researchers used this
concept to generalize some notions of algebra. Goguen in [8] generalized the notion of fuzzy
subset of X to that of an L-subset, namely, a function from X to a lattice L. In [9], Rosenfeld
considered the fuzzification of algebraic structures. Liu [10] introduced and examined the
notion of a fuzzy ideal of a ring. Since then several authors have obtained interesting results
on L-ideals of a ring R and L-modules (see [11, 12]). Also, L-zero-divisor graph of an L-
commutative ring has been introduced and studied in [13].
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In the present paper we introduce a new class of graphs, called the L-total torsion
element graph of a L-module (see Definition 2.2), and we completely characterize the
structure of this graph. The total torsion element graph of a module over a commutative ring
and the L-total torsion element graph of a L-module over a L-commutative ring are different
concepts. Some of our results are analogous to the results given in [6]. The corresponding
results are obtained by modification, and here we give a complete description of the L-total
torsion element graph of an L-module.

For the sake of completeness, we state some definitions and notation used throughout.
For a graph Γ, by E(Γ) and V (Γ), we denote the set of all edges and vertices, respectively. We
recall that a graph is connected if there exists a path connecting any two distinct vertices. The
distance between two distinct vertices a and b, denoted by d(a, b), is the length of the shortest
path connecting them (if such a path does not exist, then d(a, a) = 0 and d(a, b) = ∞). The
diameter of a graph Γ, denoted by diam(Γ), is equal to sup{d(a, b) : a, b ∈ V (Γ)}. A graph
is complete if it is connected with diameter less than or equal to one. The girth of a graph Γ,
denoted gr(Γ), is the length of the shortest cycle in Γ, provided Γ contains a cycle; otherwise,
gr(Γ) = ∞. We denote the complete graph on n vertices by Kn and the complete bipartite
graph on m and n vertices by Km,n (we allow m and n to be infinite cardinals). We will
sometimes call a K1,m a star graph. We say that two (induced) subgraphs Γ1 and Γ2 of Γ are
disjoint if Γ1 and Γ2 have no common vertices and no vertex of Γ1 (resp., Γ2) is adjacent (in Γ)
to any vertex not in Γ1 (resp., Γ2).

Let R be a commutative ring, and L stands for a complete lattice with least element 0
and greatest element 1. By an L-subset μ of a nonempty set X, we mean a function μ from X
to L. If L = [0, 1], then μ is called a fuzzy subset of X. LX denotes the set of all L-subsets of X.
We recall some definitions and lemmas from the book [12], which we need for development
of our paper.

Definition 1.1. An L-ring is a function μ : R → L, where (R, +, .) is a ring, which satisfies the
following.

(1) μ/= 0.

(2) μ(x − y) ≥ μ(x) ∧ μ(y) for every x, y in R.

(3) μ(xy) ≥ μ(x) ∨ μ(y) for every x, y in R.

Definition 1.2. Let μ ∈ LR. Then μ is called an L-ideal of R if for every x, y ∈ R the following
conditions are satisfied.

(1) μ(x − y) ≥ μ(x) ∧ μ(y).

(2) μ(xy) ≥ μ(x) ∨ μ(y).

The set of all L-ideals of R is denoted by LI(R).

Definition 1.3. Assume that M is an R-module, and let μ ∈ LM. Then μ is called an L-fuzzy
R-module of M if for all x, y ∈ M and for all r ∈ R the following conditions are satisfied.

(1) μ(x − y) ≥ μ(x) ∧ μ(y).

(2) μ(rx) ≥ μ(x).

(3) μ(0M) = μ(1).

The set of all L-fuzzy R-modules of M is denoted by L(M).
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Lemma 1.4. Let M be a module over a ring R, and μ ∈ L(M). Then μ(m) ≤ μ(0M) for every
m ∈ M.

2. T(μ) Is a Submodule of M

LetM be a module over a commutative ring R, and let μ ∈ L(M). The structure of the L-total
torsion element graph T(Γ(μ)) may be completely described in those cases when μ-torsion
elements form a submodule ofM. We begin with the key definition of this paper.

Definition 2.1. Let M be a module over a commutative ring R, and let μ ∈ L(M). A μ-torsion
element is an element m ∈ M with μ(m)/=μ(0M) for which there exists a nonzero element r
of R such that μ(rm) = μ(0M).

The set of μ-torsion elements in M will be denoted by T(μ).

Definition 2.2. Let M be a module over a ring R, and let μ ∈ L(M). We define the L-total
torsion element graph of an L-module T(Γ(μ)) as follows: V (T(Γ(μ))) = M, E(T(Γ(μ))) =
{{x, y} : x + y ∈ T(μ)}.

Notation 1. For the μ-torsion element graph T(Γ(μ)), we denote the diameter, the girth,
and the distance between two distinct vertices a and b, by diam(T(Γ(μ))), gr(T(Γ(μ))), and
dμ(a, b), respectively.

Remark 2.3. LetM be a module over a ring R, and let μ ∈ L(M). Clearly, if μ is a nonzero constant,
then T(Γ(μ)) = ∅. So throughout this paper, we will assume, unless otherwise stated, that μ is not a
nonzero constant. Thus, there is a nonzero element y of M such that μ(y)/=μ(0M).

We will use Tof(μ) to denote the set of elements of M that are not μ-torsion elements.
Let Tof(Γ(μ)) be the (induced) subgraph of T(Γ(μ))with vertices Tof(μ), and let Tor(Γ(μ)) be
the (induced) subgraph of T(Γ(μ))with vertices T(μ).

Definition 2.4. Let M be a module over a ring R, and μ ∈ L(M). One defines the set annμ(M)
by annμ(M) = {r ∈ R : μ(rM) = {μ(0M)}}, the μ-annihilator of M.

Lemma 2.5. LetM be a module over a ring R, and let μ ∈ L(M). Then annμ(M) is an L-ideal of R.

Proof. Let r, s ∈ annμ(M) and t ∈ R. Ifm ∈ M, then we have μ((r − s)m) ≥ μ(rm) ∧ μ(−sm) =
μ(0M) ∧ μ(0M) = μ(0M) and μ(trm) = μ(t(rm)) ≥ μ(rm) = μ(0M). It then follows from
Lemma 1.4 that μ((r − s)m) = μ(0M); hence r − s ∈ annμ(M). Similarly, rt ∈ annμ(M).

Theorem 2.6. LetM be a module over a ring R and let μ ∈ L(M). Then the L-torsion element graph
T(Γ(μ)) is complete if and only if T(μ) = M.

Proof. If T(μ) = M, then for any vertices m,m′ ∈ M, one has m + m′ ∈ T(μ); hence they are
adjacent in T(Γ(μ)). On the other hand, if T(Γ(μ)) is complete, then every vertex is adjacent
to 0. Thus,m = m + 0 ∈ T(μ) for every m ∈ M. This completes the proof.
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Theorem 2.7. LetM be a module over a ring R, and let μ ∈ L(M) such that T(μ) is a submodule of
M. Then one has the following.

(i) Tor(Γ(μ)) is a complete (induced) subgraph of T(Γ(μ)) and Tor(Γ(μ)) is disjoint from
Tof(Γ(μ)).

(ii) If annμ (M)/= 0, then T(Γ(μ)) is a complete graph.

Proof. (i) Tor(Γ(μ)) is complete directly from the definition. Finally, if m ∈ T(μ) and m′ ∈
Tof(μ) were adjacent, then m + m′ ∈ T(μ); so this, since T(μ) is a submodule, would lead to
the contradiction m′ ∈ T(μ).

(ii) Let m ∈ M. we may assume that μ(m)/=μ(0M). By assumption, there exists 0/= s ∈
R with μ(sM) = μ(0M), so μ(sm) = μ(0M). Thus m ∈ T(μ), and; therefore, T(Γ(μ)) is a
complete graph by Theorem 2.6.

Theorem 2.8. Let M be a module over a ring R, and let μ ∈ L(M). Then T(Γ(μ)) is totally
disconnected if and only if R has characteristic 2 and T(μ) = {0M}.

Proof. If T(μ) = {0M}, then the vertices m1 and m2 are adjacent if and only if m1 = −m2. Then
T(Γ(μ)) is a disconnected graph, and its only edges are those that connect vertices mi and
−mi (we do not need a priori assumption that R has characteristic 2). Conversely, assume
that T(Γ(μ)) is totally disconnected. Then 0 + m /∈ T(μ) for every nonzero element m of M.
Thus, T(μ) = {0M}. Further, since m + (−m) = 0, we have m = −m (so μ(2m) = μ(0M))
for every m ∈ M with μ(m)/=μ(0M) by the total disconnectedness of the graph T(Γ(μ)). As
T(μ) = {0M}, it follows that 2 = 1R + 1R = 0. Thus, char(R) = 2.

Proposition 2.9. LetM be a module over a ring R, and let μ ∈ L(M) such that T(μ) is a submodule
of M. Ifm ∈ Tof(μ), then 2m ∈ T(μ) if and only if 2 ∈ Z(R).

Proof. First suppose that 2m ∈ T(μ). Since m /∈ T(μ), we get that μ(m)/=μ(0M), and, for all
r ∈ R, μ(rm) = μ(0M) implies that r = 0. Since 2m ∈ T(μ), there is a nonzero element c ∈ R
such that μ(c(2m)) = μ((2c)m) = μ(0M), and, since m /∈ T(μ), one must have 2c = 0; hence,
2 ∈ Z(R). Conversely, assume that 2 ∈ Z(R). Then there exists 0/=d ∈ R with 2d = 0. Since
μ(0M) = μ((2d)m) = μ(d(2m)), we have 2m ∈ T(μ).

Theorem 2.10. Let M be a module over a ring R, and let μ ∈ L(M) such that T(μ) is a proper
submodule of M. Then T(Γ(μ)) is disconnected.

Proof. If T(μ) = {0M}, then T(Γ(μ)) is disconnected by Theorem 2.8. If T(μ)/= {0M}, then the
subgraphs of Tor(Γ(μ)) and Tof(Γ(μ)) are disjoint by Theorem 2.7 (i), as required.

Theorem 2.11. Let M be a module over a ring R, and let μ ∈ L(M) such that T(μ) is a proper
submodule of M. Suppose |T(μ)| = α and |M/T(μ)| = β. Then one has the following.

(i) If 2 ∈ Z(R), then T(Γ(μ)) is a union of β disjoint complete graphs Kα.

(ii) If 2 /∈ Z(R), then T(Γ(μ)) is a union of (β − 1)/2 disjoint bipartite graphs Kα,α and one
complete graph Kα.

Proof. (i) Assume that 2 ∈ Z(R) and let m,m′ ∈ Tof(μ) be such that m + T(μ)/=m′ + T(μ). The
elements m + t, m + t′ from the same coset m + T(μ) are adjacent if and only if 2m ∈ T(μ), so
2 ∈ Z(R), according to the Proposition 2.9. Thenm + t andm′ + t′ are not adjacent (otherwise,
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we would have m − m′ = m + m′ − 2m′ ∈ T(μ)), and; therefore, m + T(μ) = m′ + T(μ). Since
every coset has cardinality α, we conclude that T(Γ(μ)) is the disjoint union of β complete
graph Kα.

(ii) If 2 /∈ Z(R), then the elementsm+t,m+t′ fromm+T(μ) are obviously not adjacent.
The elements m + t, m′ + t′ from different cosets are adjacent if and only if m + m′ ∈ T(μ) or
m+T(μ) = (−m)+T(μ). In this way we obtain that the subgraph spanned by the vertices from
Tof(μ) is a disjoint union of (β − 1)/2 (= β if β is infinite) disjoint bipartite graph Kα,α.

Proposition 2.12. Let M be a module over a ring R, and let μ ∈ L(M) such that T(μ) is a proper
submodule of M. Then one has the following.

(i) Tof(Γ(μ)) is complete if and only if either |M/T(μ)| = 2 or |M/T(μ)| = |M| = 3.

(ii) Tof(Γ(μ)) is connected if and only if either |M/T(μ)| = 2 or |M/T(μ)| = 3.

(iii) Tof(Γ(μ)) and, hence; (Tor(Γ(μ)) and T(Γ(μ))) is totally disconnected if and only if
T(μ) = {0M} and 2 ∈ Z(R).

Proof. Let |M/T(μ)| = β and |T(μ)| = α.

(i) Let Tof(Γ(μ)) be complete. Then, by Theorem 2.11, Tof(Γ(μ)) is complete if and only
if Tof(Γ(μ)) is a singleKα orK1,1. If 2 ∈ Z(R), then β − 1 = 1. Thus, β = 2, and hence
|M/T(μ)| = 2. If 2 /∈ Z(R), then α = 1 and (β − 1)/2 = 1. Thus, T(μ) = {0} and β = 3;
hence, |M| = |M/T(μ)| = 3. The reverse implication may be proved in a similar way
as in [6, Theorem 2.6 (1)].

(ii) By theorem 2.11, Tof(Γ(μ)) is connected if and only if Tof(Γ(μ)) is a single Kα or
Kα,α. Thus, either β − 1 = 1 if 2 ∈ Z(R) or (β − 1)/2 = 1 if 2 /∈ Z(R); hence, β = 2 or
β = 3, respectively, as needed. The reverse implication may be proved in a similar
way as in [3, Theorem 2.6 (2)].

(iii) Tof(Γ(μ)) is totally disconnected if and only if it is a disjoint union of K1’s. So by
Theorem 2.11, |T(μ)| = 1 and |M/T(μ)| = 1, and the proof is complete.

By the proof of the Proposition 2.12, the next theorem gives a more explicit description
of the diameter of Tof(Γ(μ)).

Theorem 2.13. Let M be a module over a ring R, and let μ ∈ L(M) such that T(μ) is a proper
submodule of M. Then one has the following.

(i) diam(Tof(Γ(μ))) = 0 if and only if T(μ) = {0} and |M| = 2.

(ii) diam(Tof(Γ(μ))) = 1 if and only if either T(μ)/= {0M} and |M/T(μ)| = 2 or T(μ) = {0}
and |M| = 3.

(iii) diam(Tof(Γ(μ))) = 2 if and only if T(μ)/= {0M} and |M/T(μ)| = 3.

(iv) Otherwise, diam(Tof(Γ(μ))) = ∞.

Proposition 2.14. Let M be a module over a ring R, and let μ ∈ L(M) such that T(μ) is a proper
submodule of M. Then gr(Tof(Γ(μ))) = 3, 4 or ∞. In particular, gr(Tof(Γ(μ))) ≤ 4 if Tof(Γ(μ))
contains a cycle.

Proof. Let Tof(Γ(μ)) contain a cycle. Then since Tof(Γ(μ)) is disjoint union of either complete
or complete bipartite graphs by Theorem 2.11, it must contain either a 3 cycles or a 4 cycles.
Thus gr(Tof(Γ(μ))) ≤ 4.
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Theorem 2.15. Let M be a module over a ring R, and let μ ∈ L(M) such that T(μ) is a proper
submodule of M. Then one has the following.

(i) (a) gr(Tof(Γ(μ))) = 3 if and only if 2 ∈ Z(R) and |T(μ)| ≥ 3.

(b) gr(Tof(Γ(μ))) = 4 if and only if 2 /∈ Z(R) and |T(μ)| ≥ 2.

(c) Otherwise, gr(Tof(Γ(μ))) = ∞.

(ii) (a) gr(T(Γ(μ))) = 3 if and only if |T(μ)| ≥ 3.

(b) gr(T(Γ(μ))) = 4 if and only if 2 /∈ Z(R) and |T(μ)| = 2.

(c) Otherwise, gr(T(Γ(μ))) = ∞.

Proof. Apply Theorem 2.11, Proposition 2.14, and Theorem 2.7 (i).

The previous theorems give a complete description of the structure of the L-total
torsion element graph of an L-module M when T(μ) is a submodule. The question under
what conditions T(μ) is a submodule ofM and how is this related to the condition that Z(R)
is an ideal in R naturally arises. We prove that the following results holds.

Theorem 2.16. Let M be a module over a ring R, and let μ ∈ L(M). Then one has the following.

(i) If Z(R) = {0R}, then T(μ) is a submodule of M.

(ii) If Z(R) = Rc is a principal ideal of R with c a nilpotent element of R, then T(μ) is a
submodule of M.

Proof. (i) Let m,m′ ∈ T(μ) and r ∈ R. There are nonzero elements a, b ∈ R such that
μ(m)/=μ(0M), μ(m′)/=μ(0M), and μ(am) = μ(bm′) = μ(0M) with ab /= 0 (since R is an integral
domain). It follows that μ(ab(m +m′)) ≥ μ(abm) ∧ μ(abm′) = μ(0M) ∧ μ(0M) = μ(0M); hence,
μ(ab(m + m′)) = μ(0M) by Lemma 1.4. Thus, m + m′ ∈ T(μ). Similarly, rm ∈ T(μ), and this
completes the proof.

(ii) Assume that T(μ) is not a submodule of M. Then there are elements m,m′ ∈ T(μ)
such that m + m′ /∈ T(μ). By assumption, there exist nonzero elements r, s ∈ R such that
μ(rm) = μ(0M) = μ(sm′) = μ(0M), where μ(m)/=μ(0M) and μ(m′)/=μ(0M). Then μ(rs(m +
m′)) = μ(0M) and m + m′ /∈ T(μ), so we must have rs = 0, and; thus, r, s ∈ Z(R). Since c is
nilpotent, we have r = r1c

t and s = s1c
u, for some r1, s1 /∈ Z(R). We may assume that t ≥ u.

Then for the nonzero element s1r of R we have μ(s1r(m +m′)) = μ(0M) which is contrary to
the assumption that m +m′ /∈ T(μ).

Example 2.17. Assume that R = Z is the ring integers, and let M = R. We define the mapping
μ : M → [0, 1] by

μ(m) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2

if x ∈ 2Z,

1
5

otherwise.
(2.1)

Then μ ∈ L(M) and T(μ) = M. Thus, T(Γ(μ)) is a complete graph by Theorem 2.6.
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Example 2.18. Let M1 = R1 = Z8 denote the ring of integers modulo 8 and M2 = R2 = Z25 the
ring of integers modulo 25. We define the mappings μ1 : M1 → [0, 1] by

μ1(x) =

⎧
⎪⎨

⎪⎩

1 if x = 0,

1
2

otherwise
(2.2)

and μ2 : M2 → [0, 1] by

μ2(m) =

⎧
⎪⎨

⎪⎩

1 if x = 0,

1
3

otherwise.
(2.3)

Then, for each i (1 ≤ i ≤ 2), μi ∈ L(Mi), T(μ1) = {0, 2, 4, 6}, and T(μ2) = {0, 5, 10, 15, 20}.
An inspection will show that T(μ1) and T(μ2) are submodules of M1 and M2, respectively.
Therefore, by Theorem 2.11, we have the following results.

(1) Since 2 ∈ Z(R1), we conclude that T(Γ(μ1)) is a union of 2 disjoint K4.

(2) Since 2 /∈ Z(R2), we conclude that T(Γ(μ2)) is a disjoint union of 2 complete graph
K5 and 5 bipartite K5,5.

3. T(μ) Is Not a Submodule of M

We continue to use the notation already established, so M is a module over a commutative
ring R and μ ∈ L(M). In this section, we study the L-torsion element graph T(Γ(μ)) when
T(μ) is not a submodule ofM.

Lemma 3.1. Let M be a module over a ring R, and let μ ∈ L(M) such that T(μ) is not a submodule
of M. Then there are distinctm,m′ ∈ T(μ)∗ such that m +m′ ∈ Tof(μ).

Proof. It suffices to show that T(μ) is always closed under scalar multiplication of its elements
by elements of R. Let m ∈ T(μ) and r ∈ R. There is a nonzero element s ∈ R with μ(sm) =
μ(0M) such that μ(m)/=μ(0M), so μ(s(rm)) = μ(r(sm)) ≥ μ(sm) = μ(0M); hence, μ(s(rm)) =
μ(0M) by Lemma 1.4, as required.

Theorem 3.2. LetM be a module over a ring R, and let μ ∈ L(M) such that T(μ) is not a submodule
of M. Then one has the following.

(i) Tor(Γ(μ)) is connected with diam(Tor(Γ(μ))) = 2.

(ii) Some vertex of Tor(Γ(μ)) is adjacent to a vertex of Tof(Γ(μ)). In particular, the subgraphs
Tor(Γ(μ)) and Tof(Γ(μ)) of T(Γ(μ)) are not disjoint.

(iii) If Tof(Γ(μ)) is connected, then T(Γ(μ)) is connected.

Proof. (i) Let x ∈ T(μ)∗. Then x is adjacent to 0. Thus, x − 0 − y is a path in Tor(Γ(μ)) of length
two between any two distinct x, y ∈ T(μ)∗. Moreover, there exist nonadjacent x, y ∈ T(μ)∗ by
Lemma 3.1; thus, diam(Tor(Γ(μ))) = 2.
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(ii) By Lemma 3.1, there exist distinct x, y ∈ T(μ)∗ such that x + y ∈ Tof(μ). Then
−x ∈ T(μ) and x + y ∈ Tof(μ) are adjacent vertices in T(Γ(μ)) since −x + (x + y) = y ∈ T(μ).
Finally, the “in particular” statement follows from Lemma 3.1.

(iii) By part (i) above, it suffices to show that there is a path from x to y in T(Γ(μ))
for any x ∈ T(μ) and y ∈ Tof(μ). By part (ii) above, there exist adjacent vertices c and d in
Tor(Γ(μ)) and Tof(Γ(μ)), respectively. Since Tor(Γ(μ)) is connected, there is a path from x to c
in Tor(Γ(μ)), and, since Tof(Γ(μ)) is connected, there is a path from d to y in Tof(Γ(μ)). Then
there is a path from x to y in T(Γ(μ)) since c and d are adjacent in T(Γ(μ)). Thus, T(Γ(μ)) is
connected.

Proposition 3.3. Let M be a module over a ring R, and let μ ∈ L(M) such that T(μ) is not a
submodule of M. If the identity of the ring R is a sum of n zero divisors, then every element of the M
is the sum of at most n μ-torsion elements.

Proof. Let x ∈ M and r ∈ Z(R). We may assume that μ(x)/=μ(0M). Then there is a nonzero
element b ∈ R such that rb = 0, so μ(b(rx)) = μ((rb)x) = μ(0M) with μ(rx)/=μ(0M).
Therefore, if x ∈ M and r ∈ R, then rx ∈ T(μ), so, for all x ∈ M, 1 = c1 + · · · + cn implies that
x = c1x + · · · + cnx, as needed.

Theorem 3.4. LetM be a module over a ring R, and let μ ∈ L(M) such that T(μ) is not a submodule
of M. Then T(Γ(μ)) is connected if and only ifM is generated by its μ-torsion elements.

Proof. Let us first prove that the connectedness of the graph T(Γ(μ)) implies that the module
M is generated by its μ-torsion elements. Suppose that this is not true. Then there exists
x ∈ M which does not have a representation of the form x = x1 + · · · + xn, where xi ∈ T(μ).
Moreover, x /= 0 since 0 ∈ T(μ). We show that there does not exist a path from 0 to x in
T(Γ(μ)). If 0 − y1 − y2 − · · · − ym − x is a path in T(Γ(μ)), y1, y1 + y2, . . . , ym−1 + ym, ym + x are
μ-torsion elements and xmay be represented as x = (ym +x)− (ym−1 +ym) + · · ·+ (−1)m−1(y1 +
y2) + (−1)my1. This contradicts the assumption that x is not a sum of μ-torsion elements. The
reverse implication may be proved in a similar way as in [6, Theorem 3.2].

We give here with an interesting result linking the L-torsion element graph T(Γ(μ)) to
the total graph of a commutative ring T(Γ(R)).

Theorem 3.5. Let M be a module over a ring R, and let μ ∈ L(M). If T(Γ(R)) is connected, then
T(Γ(μ)) is a connected graph. In particular, dμ(0, x) ≤ d(0, 1) for every x ∈ M.

Proof. Note that, if x ∈ M and r ∈ Z(R), then rm ∈ T(μ) (see Proposition 3.3). Now suppose
that T(Γ(R)) is connected, and let x ∈ M. Let 0 − s1 − s2 − · · · − sn − 1 be a path from 0 to 1 in
T(Γ(R)). Then s1, s1 + s2, . . . , sn + 1 ∈ Z(R); hence, 0M − s1x − · · · − snx − x is a path from 0M
to x. As all vertices may be connected via 0M, T(Γ(μ)) is connected.

Theorem 3.6. LetM be a module over a ring R, and let μ ∈ L(M) such that T(μ) is not a submodule
of M. If every element of M is a sum of at most n μ-torsion elements, then diam(T(Γ(μ))) ≤ n. If n
is the smallest such number, then diam(T(Γ(μ))) = n.

Proof. We first show that, by assumption, dμ(0, x) ≤ n for every nonzero element x of M.
Assume that x = x1 + · · · + xn, where xi ∈ T(μ). Set yi = (−1)n+i(x1 + · · · + xn) for i = 1, . . . , n.
Then 0 − y1 − y2 − · · · − yn = x is a path from 0 to x of length n in T(Γ(μ)). Let u and w be
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distinct elements in M. We show that dμ(u,w) ≤ n. If (u − w) − z1 − z2 − · · · − zn−1 is a path
from 0 to u−w and u+w− s1 − s2 − · · · − sn−1 is a path from 0 to u+w, then, from the previous
discussion, the lengths of both paths are at most n. Depending on the fact whether n is even
or odd, we obtain the paths

u − (z1 −w) − (z2 +w) − · · · − (zn−1 −w) −w (3.1)

or u−(s1+w)−(s2−w)−· · ·−(sn−1−w)−w from u tow of length n. Assume that n is the smallest
such number, and let a = a1 +a2 + · · ·+an be the shortest representation of the elements x as a
sum of μ-torsion elements. From the previous discussion, we have dμ(0, x) ≤ n. Suppose that
dμ(0, x) = k ≤ n, and let 0 − t1 − t2 − · · · − tk−1 − x be a path in T(Γ(μ)). It means, a presentation
of the element x as a sum of k < n μ-torsion elements (see the proof of Theorem 3.4), which
is a contradiction. This completes the proof.

Corollary 3.7. LetM be a module over a ring R, and let μ ∈ L(M) such that Z(R) is not an ideal of
R and < Z(R) >= R. If diam T((Γ(R))) = n, then diam T((Γ(μ))) ≤ n. In particular, if R is finite,
then diam T((Γ(μ))) ≤ 2.

Proof. This follows from Proposition 3.3 and Theorem 3.6. Finally, if R is a finite ring such that
Z(R) is not an ideal of R, then diam T((Γ(R))) = 2 by [3, Theorem 3.4], as required.

By Lemma 3.1, the following theorem may be proved in a similar way as in [6,
Theorem 3.5].

Theorem 3.8. LetM be a module over a ring R, and let μ ∈ L(M) such that T(μ) is not a submodule
of M. Then one has the following.

(i) Either gr(Tor(Γ(μ))) = 3 or gr(Tor(Γ(μ))) = ∞.

(ii) gr(T(Γ(μ))) = 3 if and only if gr(Tor(Γ(μ))) = 3.

(iii) If gr(T(Γ(μ))) = 4, then gr(Tor(Γ(μ))) = ∞.

(iv) If Char(R)/= 2, then gr(Tof(Γ(μ))) = 3, 4 or ∞.

Example 3.9. Let M = R = Z6 denote the ring of integers modulo 6. We define the mapping
μ : M → [0, 1] by

μ(x) =

⎧
⎪⎨

⎪⎩

1 if x = 0,

1
4

otherwise.
(3.2)

Then μ ∈ L(M) and T(μ) = {0, 2, 3, 4}. Now one can easily show that T(μ) is not a submodule
ofM and Tof(μ) = {1, 5}. Clearly, Tor(Γ(μ)) is connectedwith diam(Tor(Γ(μ))) = 2.Moreover,
since 1+ 3 ∈ T(μ), we conclude that the subgraphs Tof(Γ(μ)) and Tor(Γ(μ)) of T(Γ(μ)) are not
disjoint. Furthermore, T(Γ(μ)) is connected since Tof(Γ(μ)) is connected.
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