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The purpose of this study was to analyze the stresses on the intervertebral disc between vertebrae L4 and L5 when a compressive
load is applied on vertebra L4 using the photoelasticity transmission technique and the finite element method. Nine photoelastic
models were used and were divided into three groups. Each group was formed by three models, according to the localization
of the sagittal cut on vertebrae L4-L5. Simulation was carried out using a load of 23 N. The fringe orders were assessed by
points close to the edge of the intervertebral disc using the Tardy compensation method. The analyses using the photoelasticity
technique and the model of the finite elements showed that the stress generated by the vertebrae on the intervertebral
disc was higher in the posterolateral region. Thus, this region is more susceptible to pathologies such as hernia and disc
degeneration.

1. Introduction

The vertebral disc is capable of transmitting and absorbing
loads, and various experimental studies have shown that
mechanical stimulation is important for the performance
of the intervertebral disc, and its homeostasy Compressive
loads are assumed to affect the disc cell metabolism depend-
ing on the frequency and magnitude of the load (MacLean
et al. [1]; Walsh and Lotz [2]). However, excessive loads on
the disc may be an important factor in degeneration and the
appearance of discal hernia (Adams et al. [3], Kelsey et al. [4],
Lotz [5], and Wang et al. [6]).

According to Lotz [5], when the intervertebral disc is
compressed, the pulpous nucleus is initially pressurized and
the fibrose annulus is tensioned. If the load is continuous

with a high tension of expansion/dilation, the nuclear vol-
ume diminishes. Loss of nuclear volume leads to a redistribu-
tion of the compression to the internal annulus causing a loss
of collagen, and these fibers go through a selective denat-
uration. Stress loads may also activate proteolytic enzymes
which may contribute to the disorganization of the matrix
(Hsieh and Lotz [7]). With an excessive load on the spine,
the increase in nuclear compaction causes degeneration and
death of the cells (Hsieh et al. [8], Palmer and Lotz [9]).

Farah et al. [10] compared the photoelasticity method
with the finite element method and concluded that these
two techniques allow for a better understanding of the
distribution of the stresses. Photoelasticity is an experimental
technique that uses light to study the physical effects resulting
from the action of stresses or deformations in transparent
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Figure 1: Schematic drawing of the three sagittal unilateral slices (A, B, and C) in the L4-L5 vertebrate bodies with the respective geometries
of the models.
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Figure 2: Diagram of the points selected following the contours of the three vertebrae slices.

elastic bodies and is used in studies of structures with com-
plicated forms, complex load distributions, or both (Doyle
and Phillips [11], Wang and Tsai [12]). This technique has
been widely applied for qualitative and quantitative stress
analysis in the engineering and medical field (Hirokawa et al.
[13]). Thus, the purpose of this study was to analyze, by
means of the transmission photoelasticity technique and the
finite element method, the stresses generated by the L4 and

L5 vertebrae on the intervertebral disc when subjected to
a compressive load.

2. Materials and Methods

Three unilateral sagittal cuts were performed in vertebrae L4
and L5, where the distance between the slices was 16.0 mm
(Figure 1). Using these slices, the geometry of vertebrae L4
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Figure 3: Numerical model developed in ANSYS showing the vol-
ume knots and elements of the whole slice C model.

and L5 was obtained. The gap between L4 and L5 was
10.0 mm in the anterior portion for slice A, while in slices
B and C the gaps were of 8.5 mm and 7.0 mm, respectively.

The geometry of the vertebrae enabled the construction
of photoelastic models, and a numerical model for analysis
of the finite elements was developed.

2.1. Photoelastic Method. Three polytetrafluoroethylene
Teflon molds were used for making the vertebral bodies
(slice A, slice B, and slice C). After preparation of the
vertebral bodies, the vertebral disc gap was filled with
flexible photoelastic epoxy resin (Polipox). This resin has a
Young’s Modulus of 4.51 MPa and a Poisson’s Ratio of 0.4.

For each slice, three identical models were made (total of
nine models) and the width of the model was different for
each slice: slice A was 40 mm, slice B was 35 mm, and slice
C was 27 mm. For all the models, the height was 60 mm and
the thickness was 8 mm.

These models were first assessed to determine the pres-
ence of residual stress, called the “boundary effect”, before
the compressive load was applied to the L4 vertebral body.
The photoelastic resin used was calibrated and had an optical
constant of 0.375 N/mm fringe.

The photoelastic analysis was carried out using a Trans-
mission Polariscope with a compressive load applied to the
center of the L4 vertebral body of the photoelastic model. A
spring with an initial length of 12 mm and a spring constant
of 0.5674 was used for the application of the load.

The inner stress produced between the L4 and L5 verte-
brae in the three sagittal cuts was analyzed in a qualitative
and quantitative manner. For the qualitative analysis, the
initial point and the point of higher stress concentration
were observed. In the quantitative analysis, the spring was
compressed to a relative load of 23 N and registered in
a Kratos load cell with a capacity for 100 N. The shear
stress was calculated according to a standard pattern, using
points following the contour of the vertebrae. For slice A, we
selected 13 points, while 18 points in slice B and 16 points in
slice C were used (Figure 2). For calculating the shear stress
(τ), the Tardy compensation method was used (Dally and
Riley [14]).

2.2. Finite Elements Model. Three tridimension models of
finite elements (slice A, slice B, and slice C) were made in

a geometric configuration similar to that of the experimental
model (photoelastic model). The models were developed
in the Solid Edge environment (SIEMENS AG, Berlin,
Germany) and later exported to the ANSYS software (ANSYS
Inc., Canonsburg, Pennsylvania, USA).

The finite element mesh was obtained using a solid
element of eight isoparametric knots of the ANSYS software
(SOLID 185). The L4-L5 vertebrate bodies were considered
glued to the interfaces of the intervertebral disc. Figure 3
shows the volume and the refined mesh in one of the slices
of the finite element model and displays the conditions of
the contour. The number of knots and elements used in the
whole slice A model was 3,578 and 17,331, respectively. In the
slice B model, there were 7,791 knots and 39,817 elements,
while in the slice C model there were 4,450 knots and 21,840
elements.

The values for the Young’s Modulus and the Poisson’s
Ratio for the photoelastic resin were 4.50 MPa and 0.34,
respectively. On the other hand, for the acrylic resin T208,
the Young’s Modulus was 1000 MPa and the Poisson’s Ratio
was 0.33.

Analysis of the stress gradient in the finite element mod-
els was carried out in a similar manner to the photoelastic
model, in principle using a compressive load of 23 N in the
centre of the L4 vertebral body. The purpose of this analysis
was to fit the finite element model to the experimental model.
In this case, the fit of the numerical model was carried out by
varying the size of the mesh and modifying the conditions
of the contour, level, and load position. Thus, after this
adjustment of the numerical model, the comparison of the
stress gradient was carried out at similar points to those in
the experimental model by comparing the intensity of the
stresses.

3. Results

The photoelastic analysis and the finite element method were
used to assess and compare the distribution of stress in the
gap between L4 and L5 vertebrae. In the two analyses, the
stress gradient was characterized by the intensity of the shear
stress (τ). Figure 4 shows the distribution of the stresses in
the three slices obtained by the two methods.

In order to demonstrate the similarity of the values
obtained in the experimental and numerical techniques,
a comparison of the average values of the shear stress for the
slices A, B, and C was carried out, according to the points
analyzed (Figure 5). The points verified in the photoelastic
analysis represent the mean of the shear stress.

The mean values of the shear stress (τ) obtained from
the photoelasticity and the finite element method are
represented in Table 1.

4. Discussion

The intervertebral disc may suffer degeneration and cell
death when subjected to excessive load (Hsieh et al. [8],
Palmer and Lotz [9], Saal [15]). Under normal mechanical
conditions, the pulpous nucleus can absorb compressive
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Figure 4: Distribution of the stresses in A, B, and C by means of the application of a compressive load of 23 N. (a) Photoelasticity. (b) Finite
elements.

Table 1: Mean + standard deviation of the shear stress (τ) determined by photoelastic analysis and by the finite elements method in three
different regions of each vertebrae slice.

Region
Slice A Slice B Slice C

Ph F.E. Ph F.E. Ph F.E.

Anterior (KPa) 26.12± 11.47 40.41± 2.31 35.78± 5.23 33.95± 4.12 25.40± 6.10 35.88± 1.10

Medial (KPa) 32.84± 3.72 36.12± 4.24 26.71± 6.73 31.88± 3.86 35.95± 3.96 40.61± 4.99

Posterior (KPa) 58.61± 18.75 44.82± 6.34 38.66± 15.49 41.46± 11.50 59.00± 6.14 58.51± 4.93

Ph = Photoelastic, F.E. = Finite elements.

loads (Li and Wang [16]). The fibrose annulus is significantly
affected by the amplitude and frequency of stress when a
compressive load is applied (Iatridis et al. [17], McNally, and
Adams [18]).

Due to this fact, research has been focused on studying
the biomechanics of the intervertebral disc, using cadavers
(McNally et al. [19], Adams et al. [20], and Adams et al.
[21]), animal models (Lotz et al. [22], Lotz [5], Lotz et al.
[23], Larson et al. [24]), and in vivo (Nachemson and Morris
[25], Nachemson and Elfström [26]), applying different
techniques, such as the finite element method (Edwards et al.
[27], Lee et al. [28], Martinez et al. [29], Schroeder et al.
[30], Teo et al. [31], and Yin and Elliott [32]). Authors
have shown different potentials on the overload that may
cause disc protrusion (Adams and Hutton [33], McNally
et al. [34], Gordon et al. [35]). However, analysis of the
distribution of stress using the photoelasticity technique of
plane transmission has been overlooked in studies of the
intervertebral disc.

Using this technique, as well as the finite element meth-
od, it was possible to evaluate the points of higher shear stress
generated by the L4 and L5 vertebrae under a compressive
force. The force applied was 23 N, which did not cause a per-
manent deformation of the models, while the photoelastic

epoxy resin had a high optic sensibility and a low Young’s
Modulus.

The lumbar segments evaluated were L4-L5 because they
more often overloaded and have an increased incidence
of hernia and disc degeneration (Holodny et al., [36]
Vergauwen et al. [37]). Due to the fact that the vertebrae
have symmetry, the cuts in the vertebrate bodies were done
unilaterally. The analysis of the distribution of stress carried
out in the three slices showed that the posterior region of the
intervertebral disc, especially in slice C, was the most critical
region. This suggests that this point is more susceptible
to pathologies, a fact also observed by Adams, McNally,
and Dolan [38]. These results are in accordance with the
findings of some authors who also mentioned this region
as being one of highest disc stress regions (Adams et al.
[21], Adams et al. [38], Edwards et al. [27], Li and Wang
[16] Schmidt et al. [39], Steffen et al. [40], and Vernon-
Roberts et al. [41]). However, the scarcity of references in the
field of experimental techniques makes comparison of results
difficult.

It is emphasized that in this research, the analyses were
carried out with a vertical load (compressive) perpendicular
to the vertebral body, simulating the vertebral body in an
upright posture. Authors such as Nachemson and Morris
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Figure 5: Shear stress mean obtained from the photoelasticity and
finite element method in the slices A, B and C.

(Nachemson and Morris [25], Nachemson and Elfström
[26]) have noted that the intradiscal pressure as well as the
compressive load can increase when there is a change in the
position of the vertebral body, as occurs in inclinations of the
spine.

5. Conclusion

Using the photoelastic transmission technique and the finite
element method, this study shows that the posterolateral
region of the intervertebral disc experiences higher levels of
shear stress; therefore, it is the most critical, according to
the dimensions and geometry used in the study. Thus, these
results confirm that the high predisposition of this region to

pathologies, such as hernia and disc degeneration, may be
due to the higher concentration of stress.
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