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Stiffness estimates of unloaded isotropic particulates are made by a new analytical model, when reinforcements are either compact
or hollow spheres. A statistical extension of this model is described when stiffness predictions involve loading of syntactic
composites. A simple experimental routine is also proposed for monitoring the microballoons fracture upon brittle syntactic
metal-matrix composites tensile loading.

1. Introduction

Composite materials have managed to stand in the forefront
of engineering materials, mainly because of their structural
abilities. Among composite materials rank the particle
composites (“particulates”) as the cheapest of them all.
The spherical particulates emergence has been dictated by
the spherical reinforcements surface ability to avoid stress
concentrations, thus minimizing the cracking likelihood of
the surrounding matrices. More recently, the replacement
of compact spherical reinforcements by hollow ones (“bal-
loons”) led to a novel class of foam-like materials, the so-
called “syntactic composites.” The hollow spheres homo-
geneous morphology as well as their distribution modes
once embedded in various matrices, impart to the overall
composite structure some relevant properties—for example,
low density, good energy absorption, and enhanced fracture
toughness over their compact reinforcements composite
counterparts. Among other current techniques, dispersions
of ceramic balloons in metal matrices may be achieved
by infiltrating molten metal around a preform of uniform
hollow spheres, whose packing modes may eventually range
from a random distribution to an ordered pattern. In accor-
dance with the balloons extreme packing modes, a random

balloons distribution will imply a fully isotropic syntactic
composite whereas an hexagonal close-packed array will
determine an extreme anisotropic composite behaviour. In
practice, an anisotropy-free composite can be obtained as
long as its balloon concentration does not surpass a certain
upper bound value. Such condition ensures no significant
balloon clusters formation, thus preventing “crystal-like
patterns” to occur within the composite. This preventive
measure implies to disqualify for design purposes any
empirical formula or approach where the concentration
restriction may not be accounted for (as in the conventional
rule of mixtures).

Experimental data on syntactic composites [1] currently
span from basic mechanical to other nonstructural proper-
ties. The former case may include elastic stiffness, specific
tensile/compressive strength, and static fracture toughness,
whereas the latter may refer to dielectric behaviour, thermal
conductivity, and absorption of acoustic noise/resonance.
Some of the experimental results pertaining to the above
topics may anyhow be affected by poor reliability as they
were treated as isotropic despite being investigated at high
volume fraction ranges or assessed by simulation or testing
methods in disregard of the materials surface flaws. These
shortcomings are further aggravated by the notorious lack
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of widespread modelling of syntactic composites properties,
which often leaves experimental research without reference
predictions from a theoretical framework. So, in order to
overcome some of the above drawbacks, this work will resort
to micromechanical concepts to produce elastic stiffness
estimates for an ensemble of uniformly sized elastic balloons
randomly embedded into an isotropic elastic matrix. Inter-
faces between matrix and balloons shall not be accounted for
by this model, which therefore suits actual composites whose
processing involves only moderate temperatures and/or slug-
gish interdiffusion rates (i.e., balloon reinforced composites,
whose interfaces thickness is either small or negligible).

In this form, the present work derives from an early
micromechanics model [2] and is the end result of some
publications devoted to the stiffness of spherical particulates.
The basic model, hereafter termed Paul’s model, was selected
for its sensitiveness towards reinforcement morphologies
and simple formulation to achieve the Young modulus of a
particulate. This early model was subsequently reformulated
so as to predict the stiffness of solid sphere particulates [3] as
well as that of hollow sphere particulates [4].

The modified model also enables density forecasts for
either compact or hollow sphere particulates, and its capa-
bility was extended so as to predict the unsteady stiffness of
fragile hollow sphere particulates when subjected to uniaxial
tensile loading. Since the ceramic balloon composites and
the balloons themselves can be regarded as brittle solids,
their failure at a particular applied tensile stress depends
on the statistical existence of surface flaws or cracks. The
proposed model for the stiffness of loaded syntactic com-
posites is therefore a statistical model. Gathering mechanical
information adequate enough for predicting the elastic
stiffness of an isotropic solid is just a part of a broader
theoretical frame aiming at determining the two independent
elastic constants which define that solid elastic behaviour.
As regards the isotropic composites, that search requires a
statistically isotropic (random) distribution of their (also
elastic isotropic) constitutive reinforcements—which are
assumed in the present analysis to be an ensemble of
uniform spheres, embedded in a continuous and isotropic
elastic matrix. Some current advanced approaches aiming at
computing the isotropic composite independent constants
span from analytical models [5–9] to numerical methods
[10, 11], which are to be briefly described next. A more
detailed account of these models can be found in the last
section of this paper, where conclusions are drawn.

The earliest of the above referred analytical models
is the Mori-Tanaka mean-field approximation [5], later
applied to isotropic composites by Benveniste [6] by using
the same principles yet accounting for different elastic
interactions between the inclusions. Analytical expressions
are provided by these models from which the independent
elastic constants can be obtained. An alternative analytical
model was later developed by Christensen and Lo [7], the so-
called generalized self-consistent approach, where the elastic
constants are obtained by solving some differential equations
under appropriate boundary conditions. A more recent
analysis is the Torquato’s third-order approximation [8, 9],
where the independent constants can be derived from two

statistical correlation parameters, plus the first three terms of
a truncated series of the effective stiffness tensor serial expan-
sion. As for the numerical “exact” solution, the required
two independent elastic constants are usually computed by
the finite element method as applied to a representative
volume element (commonly, a cubic cell) under periodic
boundary conditions. Such a volume element contains a
random dispersion of (spherical) isotropic reinforcements
so as all directions within the unit cell to be statistically
equivalent; a requirement made easier to comply with once
Drugan and Willis [10] and Drugan [11] demonstrated that
an arrangement of some dozen spheres was good enough to
secure the volume element statistical representativeness.

2. The Paul Model

This model assumes that the states of macroscopic stress
and strain imposed on a particulate by an external ten-
sile stress can be reproduced in a typical unit volume,
which consists of a single particle embedded in a unit
cube of matrix. Additional approximations regarding the
particulate constituents further assume both matrix and
particles are subjected to the same strain and have the same
Poisson’s ratios—a mechanical condition which best suits
metal/ceramic combinations. Adhesion is also assumed to be
maintained at the particle/matrix interface, when the unit
cube of matrix becomes strained by an internal tensile force
along the x direction.

The above conditions yield the elastic modulus E of the
composite material

1
E
=
∫ 1

0

dx

Em +
(
Ep − Em

)
· A(x)

≡
∫ 1

0

dx

Ep +
(
Em − Ep

)
· B(x)

,

(1)

where Em and Ep are the “matrix” and the “particle” moduli
and A(x) and B(x) are the “particle. . .” and the “matrix”
morphology distribution functions along the x direction,
which comply with the {A(x) + B(x) = 1} condition at
any integration stage. The first equality is usually preferred
because it is easier to describe a particle morphology within
the unit volume element rather than that of the surrounding
matrix.

In predicting just a single composite stiffness value
regardless the stiffness values arising from other material
directions, this early model implicitly acknowledges that the
particulates under assessment are to be isotropic composites.
From which follows that the above stiffness predictions are
valid providing the composites reinforcement content lies
in a safe concentration range, where nucleation of particle
patterns does not occur significantly.

Equation (1) integration was carried out for a cubic-
shaped particle within the matrix cubic cell, yielding the
cubic-particles composite stiffness (Ec) for a cermet material

Ec = Em

⎧⎨
⎩

1 +
(
ϕ− 1

)
V 2/3

p

1 +
(
ϕ− 1

)(
V 2/3

p −Vp

)
⎫⎬
⎭, (2)
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where Vp is the volume fraction of the cubic particle (of
tungsten carbide) in the cermet, and ϕ ≡ (Ep/Em) is the
modulus ratio of the particle to the matrix.

3. The Modified Paul Model

Paul’s analysis approached an actual particles composite as
if its overall properties matched those of a representative
volume element. Such volume element was a cubic matrix
cell enclosing a solid cubic-shaped virtual particle, whose
size was adjusted by the actual particles volume fraction.
This reasoning is maintained in the modified model [3, 4],
which deals with random dispersions of minute ceramic
spherical particles embedded in a metal matrix. Such
spheres may either be compact (“microspheres”) or hollow
(“microballoons”). The “modified” model representative
volume element differs from that of the original model
in the spherical shape (rather than cubic) of the virtual
particle enclosed by the cubic matrix unit cell. Moreover,
the modified model enables a theoretical provision for a
safe concentration range within which the spherical particles
dispersion can remain isotropic (theoretical volume fraction
upper bound = 0.52).

When metal matrices become reinforced by ceramic
microspheres, so that ϕ ≡ (Es/Em) > 1, where Es is
the microspheres Young modulus, this model predicts a
composite stiffness ES as indicated below

ES = Em

⎧⎪⎨
⎪⎩(1− 2R)− 1

β
√
R2 + 1/β

ln

∣∣∣∣∣∣
R−

√
R2 + 1/β

R +
√
R2 + 1/β

∣∣∣∣∣∣

⎫⎪⎬
⎪⎭
−1

,

(3)

where R = 0.62V 1/3
s is the virtual particle radius, Vs is the

microspheres volume fraction within the unit cell, and β =
[π(ϕ− 1)] is a material constant.

However, when metal matrices become reinforced by
ceramic thin-walled microballoons so that ϕ ≡ (Eb/Em) < 1,
where Eb is the microballoons Young modulus, the elastic
modulus EB of the syntactic composite is predicted by the
modified model as follows:

EB = Em

{
(1− 2R) +

2c√
c − R2

arc tan
[

R√
c − R2

]}−1

, (4)

where R = 0.62V 1/3
b , Vb is the microballoons volume fraction

within the unit cell, c = [π(1− ϕ)]−1 is a material constant,
and the microballoons elastic modulus Eb (as required by
the constant c evaluation) can be derived from a constitutive
equation concerning low-density foams

Eb = Emon

[
1−

(
d

D

)3
]k

. (5)

In the above, Emon is the Young modulus of the balloons
monolithic material, d and D are the inner and outer
diameters of the actual balloons, and k is a “porosity factor”
(=2 for open-cell foams; =3 for closed-cell foams; and
between these values for quasi-closed cell foams) whose
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Figure 1: The stiffness of spherical particulates, as predicted by (3)
(compact particles) and (4) (hollow particles) of this model with
k = 2.5.

former value [4] was 2.5 but should rather be taken within
the 2.7–2.9 range so as to approach closer some recent
experimental data [12].

The fundamental equations of this modified model (i.e.,
(3), (4), (5)) account for the stiffness of particulate metal-
matrix composites as long as the reinforcement volume
fraction is not greater than 52% and remains constant
throughout uniaxial tensile loading. If so, the particles
dispersion remains isotropic, and the reinforcement volume
fraction remains invariant because the particles population is
not destroyed while the composites are subjected to external
stresses. Providing these conditions are met, a “modified
model” application can be illustrated by an example, where
a single balloon morphology (D = 50μm, d = 45μm;
thus shell thickness = 2.5μm, and Eb = 3.82 × 10−2 Emon

after (5) with a cell-porosity exponent = 2.5) is utilized for
three distinct microballoon materials embedded in the same
light-(Al)alloy matrix (Em = 71 GPa). The balloon materials
are either a “ceramic” (alumina, Emon = 382 GPa), a “glass
ceramic” (silceram, Emon = 121 GPa), or a “metal” (mild
steel, Emon = 210 GPa), and the material constants further
required by (3) and (4) are respectively {β = 13.76 and
c = 0.46}, {β = 2.21 and c = 0.35}, and {β = 6.15
and c = 0.38}. The ensuing Figure 1 shows the composite
stiffness simulation outputs for all the above materials, when
the spherical reinforcements are “compact spheres” (upper
diagrams) or “hollow spheres” (lower diagrams) of the same
size (D = 50μm).

The stiffness trends displayed in the above plot by all
microsphere-reinforced composites seem to be in general
agreement with experimental observations, whereas the
microballoon-reinforced (syntactic) composites trends show
instead a severe stiffness decay as an increasing number of
hollow spheres is added to the matrix material.
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Figure 2: Syntactic composites stiffness as predicted by this model
(4) and Toda’s model (6), when the same microballoons moduli Eb

are used in either model and 0 ≤ Vb ≤ 0.52.

In order to further investigate this peculiar stiffness
behaviour, predictions from the “modified model”/(4) were
next compared with those obtained by a model (hereafter
termed Toda’s model [1]) derived from Bruggeman’s rule of
mixtures for particulate composites. Such model is consistent
with experiments [13] for silica balloons reinforced epoxy
composites and further described by

EB = Em

{
1 + 3Vb

(Eb/Em)− 1
(Eb/Em) + 2

}
. (6)

For sake of a correct comparison, the same balloon
moduli Eb were adopted in both models for all simulated
composites, in accordance with two alternative cell-porosity
exponents (k = 2.7 and k = 2.9). The outcome is plotted in
Figure 2.

As shown above, either model defines similar stiffness
decay trends and both are sensitive to cell-porosity exponents
(i.e., larger porosity-exponents lead to smaller composites
stiffness). Yet Toda’s model anticipates larger stiffness decay
rates than this model and predicts, unlike (4), enhanced
decays even beyond the isotropy upper bound since the
balloons volume fraction in (6) is free to range from “zero”
to “one” without concentration restrictions.

As previously referred, a complementary feature of this
modified model is the assessment of composites density
(ρS and ρB, for sphere-reinforced and balloon-reinforced
composites, resp.). These forecasts can be coupled to the
composites stiffness (or any other mechanical property) in
order to derive theoretical values of specific properties.

The theoretical density of microspheres-reinforced com-
posites (ρS) can be achieved by equating both the mass
and volume of the cubic volume element: the spherical
particle mass {(4π/3)R3 × ρcer}; the surrounding matrix

mass {[1− (4π/3)R3]× ρm}; the virtual particle size {R =
0.62V 1/3

s }; the cell volume {1× 1× 1}. This yields

ρS =
[
(0.998Vs)ρcer + (1− 0.998Vs)ρm

]

∼ [
Vsρcer + (1−Vs)ρm

]
,

(7)

where ρcer is the ceramic material density and Vs is the
spherical particles volume fraction.

As for the microballoons-reinforced (syntactic) compos-
ites, a similar reasoning leads to

ρB = ρS − f (n) · ρcer, (8)

where ρB is the balloons composite overall density, and
f (n) = (NVO/n) is a function of the number n of fractured
microballoons at a given stage of a composite loading test, N
is the total number of sound microballoons in the composite
at the beginning of the test, and VO is the composite void
volume fraction arising from pore formation within the
matrix as n microballoons become wide open upon fracture.

4. Syntactic Composites—The “Effective”
Variables

Since the microstructures of most syntactic composites
incorporate balloon-size distributions rather than single-size
balloon dispersions, and the ceramic microballoons strength
becomes adversely affected by large balloon diameters, the
weakest microballoons become prone to fracture as the
composites are subjected to increasing external loading (as
in tensile or fracture toughness testing). Once fractured
at a given applied stress level, these particles cease to act
as “reinforcing units” and rather behave as nonreinforcing
“inclusions”, so they ought not to be taken into account
in further reinforcement volume fraction evaluations. The
fracture of reinforcing balloons within a loaded syntactic
composite modifies this material anticipated performance,
because composition-dependent mechanical properties may
be impaired while some other properties may be damaged by
the growing void volume fraction.

Since the fracture of microsphere-reinforced composites
is mainly due to “matrix cracking” operating mechanisms,
whereas the fracture of microballoon-reinforced composites
is rather ascribed to extensive “particle cracking” [1], the
concentration correction required by the surviving balloons
will only aim at (4) for syntactic composites.

Such a correction implies to define an “effective rein-
forcement volume fraction” (Veff) which can be related to
the nominal volume fraction (Vb) prevailing at the stage
where no applied forces existed, by means of a relationship
involving the ratio of the estimated number of fractured
balloons (n) to the total population of original balloons (N)
such as

Veff = Vb

(
1− n

N

)
. (9)

In the above, n will be estimated in due course by fitting
to its evolution an adequate statistical distribution (e.g.,
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Figure 3: Linear dependence of Veff on the fraction (n/N) of
fractured balloons upon each composite specimen (tensile) loading.

Weibull distribution, for brittle solids) to assess the number
of surviving balloons at each applied stress level. And N
is an experimental parameter related to the composites
controlled manufacturing eventually made available from
routine gravimetric analysis.

The correction (9) is an obvious generalization of the
balloons original volume fraction, as Veff ≡ Vb when no
reinforcing balloon has been destroyed yet (n = 0). At any
other subsequent stage of balloons fracture, 0 < (n/N) < 1
and therefore Veff < Vb. This “effective” variable dependence
on the (n/N) ratio is illustrated by Figure 3.

The reinforcement concentration correction, by means
of which the nominal balloons volume fraction is replaced
by an “effective” value, also implies a similar correction of
the virtual particle radius R = 0.62V 1/3

b . This is so because
the fewer reinforcing particles exist within the composite
as external loading increases, the smaller must also be the
virtual sphere size. Hence

Reff = 0.62V 1/3
eff = 0.62

[
Vb

(
1− n

N

)]1/3

. (10)

As before, this “effective” variable dependence on the (n/N)
ratio is depicted in Figure 4.

As both “effective” variables Veff and Reff are related in
Figures 3 and 4 to the same (n/N) variable, they can also be
related to one another as illustrated in Figure 5.

The above diagram seemingly comprises three distinct
particle growth regimes: a first high-curvature segment (up
to Veff ∼ 0.2) is followed by a second low-curvature segment
(up to Veff ∼ 0.52), where the particle growth proceeds at
nearly constant rate, and beyond which a third (not shown)
regime extends up to a maximum volume fraction.

The combined first and second stages spread over a
concentration range, where a balloon’s dispersion remains
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isotropic, as certified by a simulation study [14], where
the packing of uniform-sized spheres could reach a volume
fraction range [0.5–0.6] without traces of lattice formation
(in the form of preferential directions) inside the “particle”
arrangements. Conversely, the third (not depicted) stage is
likely to be an anisotropic domain as its [0.52] lower bound
is the volume fraction for a “simple cubic lattice” extending
throughout a syntactic composite.

Figures 3, 4, and 5 can be assembled all together so as
to display the mutual relationships between the “effective”
variables and the fractured (nonreinforcing) balloons ratio,
leading to the following Figure 6 summary diagram.
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Following the “effective” variables definition, the for-
merly derived (4) for unloaded syntactic composites can now
be rewritten for the loaded composites case, as below

EB(n)=Em

⎧⎨
⎩(1− 2Reff) +

2c√
c − R2

eff

× arc tan

⎛
⎝ Reff√

c − R2
eff

⎞
⎠
⎫⎬
⎭
−1

,

(11)

where Reff = 0.62[Vb((N − n(σb))/N)]1/3 is now a function
of n, which becomes itself a function of the applied balloon
stress σb, and the material constant c = [π(1− (Eb/Em))]−1

is evaluated as before.
From the above, it is clear that (11) stiffness estimates

become impossible unless a prior n input is provided. This
requirement can be met by a statistical distribution which
will assess the number of surviving balloons [N − n(σb)] at
each applied stress level, to be further described.

5. Syntactic Composites—The Statistical
Distributions

The ensuing treatment will resort to the Weibull statistics as
such a distribution was formerly designed to suit the fracture
of brittle solids (e.g., ceramic microballoons, and derived
composites). The Weibull’s approach aims at predicting
brittle solids tensile strengths, based on (widely scattered)
tensile strengths gathered from a batch of ∼20–30 nominally
identical composite samples. Once these experimental tensile
strengths are arranged in order of increasing failure stresses
and a failure stress probability is assigned to each failure by an
adequate estimator [15], a relationship between “composite
strength” and “composite failure probability” can be derived
from a straight line regression fitting [16].

The sole relevant information for the present modelling
analysis would, in principle, just be the tensile strength data
provided by the composite specimens batch. Nevertheless,

it may be referred for sake of completeness that a certain
“probabilistic strength” can be assigned to the whole lot of
brittle composites following after a {ln[ln(1/(1− Pf ))]} plot
versus {lnσB}, where Pf is the failure probability of each
tensile specimen and σB is the corresponding composite frac-
ture (σ) stress. The outlined procedure enables a graphical
measurement of two “Weibull distribution” parameters: the
Weibull modulus m of tensile-tested samples material, and
the scale factor σO. These two parameters are respectively
identified with the slope and the vertical axis interception of
the following statistical (oblique) straight line:

{
ln

[
ln

1
1− Pf

]}
= m{lnσB} − {m · ln σO}. (12)

Once m and σO are assigned some numerical values, the
probabilistic strength of a particular composites batch is then
expressed by a “two-parameters” Weibull distribution

{
1− Pf

}
= exp

{
−
(
σB
σO

)m}
, (13)

where (1− Pf ) is the fraction of identical composite samples
which survive loading to a tensile stress σB (In this notation,
σB is a continuous variable ranging from zero upwards,
whereas σB is a discrete variable).

The above mentioned composite specimens tensile
strengths must now be related to the corresponding balloon
applied tensile stresses. Should the tensile tests be conducted
on a batch of continuous fibre composites, whose elastic
fibres are loaded along their axes (as assumed by Voigt
“constant strain” model) and whose matrices are also elastic,
the stress acting on each fibre would be calculated from
theoretical stress ratios as per σ f = (Ef /Ec)σc, where
subscripts “ f ” and “c” stand respectively for “fibre” and
“composite” materials. A resembling situation occurs in
unidirectional discontinuous short fibre composites, where
a similar term remains as an “upper estimate” (σ f )MAX =
(Ef /Ec)σc of the fibre stress profile imposed on each of the
parallel fibres array, while the composite itself is subjected to
a tensile stress σc. As for syntactic composites tensile tests,
a similar reasoning is to be adopted, such that any uniaxial
“normal (tensile) stress” along a balloon equator may also
be regarded as an “upper estimate” (σb)MAX = (Eb/EB)σB of
the balloon applied tensile stresses. The mechanical validity
of such an assumption becomes progressively more accurate
as the balloons diametral cross-sections mimic more closely
the short fibres transverse sections, as the balloons grow
smaller and thicker. Even though the surface of an individual
balloon may be simultaneously subjected to a variety of
uniaxial tensile stresses, none of these is to be larger than
the maximum interfacial normal stress applied along an
equator under uniaxial tensile loading. Such a stress is thus
the most plausible source of balloons cracking, so that the
above (σb)MAX estimate will be regarded in this analysis as the
balloon loading σb held responsible for balloons suppression
within tensile loaded syntactic composites

σb =
(
Eb
EB

)
σB. (14)
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In the above, Eb is the balloon modulus as per (5), EB is the
unloaded syntactic composite stiffness as per (4), and σB is
any of the monitored experimental uniaxial tensile stresses
applied to the syntactic composite during the specimen
tensile test. As σB is progressively increased during the testing,
σb is proportionally increased as well, due to the growing
strength of the remaining stronger balloons.

The ceramic balloons are brittle solids, so their strength
must comply with a two-parameters Weibull distribution
similar to that described by (13). Hence

{
1− n

N + 1

}
= exp

{
−
(
σb
σ̂0

)m̂
}

, (15)

where n/(N +1) is the statistical estimate [15] of the balloons
probability of failure at σb stress; m̂ and σ̂0 are the balloons
Weibull distribution constants. These constants are obtained
by applying (12) to the balloons strengths, which were
estimated from the composites experimental fracture stresses
by means of (14). And N is an experimental constant related
to the composites nominal volume fraction Vb.

Since N is a huge number (so that N + 1 ∼ N), and (1−
n/N) = (Veff/Vb), the above equation then yields

σb = σ̂0 · m̂

√
ln
(
Vb

Veff

)
, (16)

a central relationship whose parametric variables are all
assigned concrete values at this stage but Veff, as the required
n input has not been established yet.

6. Syntactic Composites—The Stiffness
Statistical Model

The statistical model for stiffness of loaded syntactic com-
posites arises from EB(n) evaluations as per (11), coupled to
the n input values as defined by the (14) and (16) simulta-
neous system. If this system is solved for the experimental
uniaxial tensile stress σB applied to each syntactic composite
specimen, the following relationship is derived:

σB =
{(

EB
Eb

)
· σ̂0 · m̂

√
ln
(
Vb

Veff

)}
(17)

and the missing n input becomes then established (through
Veff values) at any stage of the tensile test.

Equation (17) can be read as per the “straight direction”
if σB is either arbitrary or experimental, in order a compatible
n value to be obtained. But this equation can also be read as
per the “reverse direction”, to the purpose of estimating the
tensile stress required for fracturing an arbitrary number n of
reinforcing balloons. This particular simulation may be an
useful tool for damage assessment of fabricated composites
(e.g., by establishing quality control charts). Combined
tables of experimental tensile stress σB coupled to “loaded”
syntactic composites stiffness EB(n) predictions (as per (11))
can also be built up, aiming at checking whether a common
linear-elastic relationship may exist between them—in which
case a composite proportional limit elongation can further be
set up.

Equation (17) also satisfies an “initial” boundary condi-
tion at a stage where no balloon has collapsed (if n = 0 then
Veff ≡ Vb, so σB = 0); yet the “final” boundary condition
at a stage where a massive number of balloons has failed
(if n → N then Veff → 0, so that |σB| → ∞) is only
approached asymptotically, meaning that full destruction of
all reinforcing microballoons in the composite can never be
achieved for all practical purposes because (0 ≤)n < N .

7. Conclusions

A theoretical analysis has been conducted on the elastic
stiffness of spherical-particles reinforced composites. Com-
posites were assumed to have thin particle-matrix interfaces;
both particle and matrix constituents were further supposed
to have identical Poisson’s ratios and to be subjected to the
same strain upon composite loading. While spherical (either
compact or hollow) reinforcements were not significantly
cracked by external tensile stresses, the composites predicted
stiffness was simply derived from the states of macroscopic
stress and strain within a representative unit volume element.
This was not the loaded syntactic composites case, whose
stiffness predictions might otherwise be affected by severe
microballoons destruction due to moderate-to-high applied
tensile stresses. A complementary approach was therefore
devised for this specific case, which involved the definition
of some parametric variables related to the number of
surviving balloons at a given stress level, as well as assigning
brittle solids strength statistics to ceramic microballoons
and their syntactic composite materials. The overall output
of the above contributions is a statistical stiffness model
for microballoons-reinforced tensile loaded composites. This
model reliability can seemingly be confirmed from theoreti-
cal predictions (e.g., (7) forecasts) anticipated by established
models and composite materials fundamentals and also from
the agreement (in Figure 2) between experimental predic-
tions made by two utterly distinct approaches (this model
(4)/Toda’s model (6)) before a given set of experimental
results [13]. It is nevertheless worthy to compare this model
foundations against those from other classical analytical
models [5–9] already quoted in this paper.

The two independent elastic constants of an isotropic
random ensemble of elastic spherical inclusions embedded
in a continuous, isotropic, and elastic matrix can be provided
by numerical (finite element) methods as well as by three cur-
rent analytical models: the Mori-Tanaka mean-field analysis
[5] (further extended to isotropic dispersions by Benveniste
[6]); the Christensen and Lo generalized self-consistent
method [7]; and Torquato third-order approximation [8].
Yet numerical solutions can only be obtained if a composite
representative volume element is first of all established
so as the enclosed particles dispersion to be statistically
isotropic (thereby rendering all directions equivalent inside
that volume), and the cubic cell is last assigned some periodic
boundary conditions before computing the volume element
elastic constants. As for [5, 6], this approximation requires
the stress and strain fields in the matrix and in the inclu-
sion to be adequately represented by their volume-average
values, which are to account for the elastic interactions
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between the inclusions. The analysis [7] assumes a matrix-
coated spherical inclusion to be embedded into an effective
medium, in such a way the whole ensemble behaves as a
three-phase composite whose properties are related to a dif-
ferential equations set. The composite elastic constants can
then be obtained by integrating the differential equations set
for appropriate boundary conditions. Finally, the approach
[8] resorts to an exact series of expansion for the effective
stiffness tensor, which is truncated after third-order terms
while the first series terms are explicitly given as a function
of two statistical correlation parameters (whose values can
be found in [9] for a three-dimensional random distribution
of identical, impenetrable hard spheres as a function of
the sphere volume fraction). These analytical models also
require some additional information on the upper and
lower bounds for the elastic properties of isotropic, two-
phase composites. Such information is currently gathered by
variational principles, which may certify how the inclusions
are distributed throughout the matrix.

Much like the previous analytical models, this microme-
chanics model [3, 4] also assumes some of the physical
approximations described above: strain fields in the matrix
and in the inclusion are to be identical as well as the respec-
tive Poisson’s ratios (a best suited condition to metal/ceramic
combination); and both the stress and strain fields imposed
on a composite by external stresses can be reproduced in
a representative cubic unit cell. Unlike the above models,
however, this micromechanics model includes two additional
distinctive features: a mandatory balloons volume fraction
replacement by an “effective” value (which only takes into
account the sound balloons prevailing up to a given com-
posite stress level) and the Weibull statistics incorporation
into this model, so as to account for the balloons surface
defects on the composites ultimate mechanical properties.
All these separate contributions merge into this analytical
model so as to make more obvious its main characteristics:
it is handy, it allows easy modelling of reinforcement
morphologies, it embodies a self-evaluation criterion for
composite (an)isotropy, and it only requires the same tensile
tests methodology that is used by the Weibull’s approach to
assess brittle solids tensile strengths.

Designing with syntactic composites depends on these
materials performance when tested for a particular property,
while balloons enhanced annihilation is imposed by growing
applied loads. The “elastic stiffness” property behaviour, for
example, is described in Figure 2—where its rise becomes
noticeable as the balloons effective volume fraction is
decreased. Such trend is sustained up to a limit value
compatible with the balloons full destruction. As for the
composite “mechanical strength,” an opposite trend may be
expected, since the progressive balloons annihilation scales
down the available sites where matrix/reinforcement load-
transfer processes might occur. Loaded syntactic composites
strength is thus expected to fall, as the (sound) balloons effec-
tive volume fraction is reduced. A similar reasoning holds
for the “fracture toughness” of loaded syntactic composites,
because the growing number of minute cavities within
the matrix provides numerous sites for cracks nucleation,
whose subsequent propagation ultimately leads to composite

fracture. Syntactic composites fracture toughness is therefore
likely to decrease as the reinforcing balloons volume fraction
is also reduced.

As a final remark, all the engineering properties cited
above (and stiffness in particular) are to behave as “variable
parameters” for as long a period as the loading test duration.
Hence, such variability also applies to any other elastic
constant eventually bound to stiffness by any conceivable
fundamental mechanical relationship, providing it is valid
for isotropic composites.
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