Hindawi Publishing Corporation
Advances in Artificial Neural Systems
Volume 2011, Article ID 523094, 11 pages
doi:10.1155/2011/523094

Research Article

Navigation Behaviors Based on Fuzzy ArtMap Neural Networks
for Intelligent Autonomous Vehicles

Amine Chohra! and Ouahiba Azouaoui?

!Tmages, Signals, and Intelligent Systems Laboratory (LISSI/EA 3956), Paris-East University (UPEC), avenue Pierre Point,
g g g ) y y

77127 Lieusaint, France

2 Autonomous Robotic Systems (ARS), Development Center of Advanced Technologies (CDTA), Cité 20 Aotit 1956, BP 17 Baba Hassen,

16303 Algiers, Algeria

Correspondence should be addressed to Amine Chohra, chohra@u-pec.fr

Received 11 January 2011; Accepted 8 September 2011

Academic Editor: Songcan Chen

Copyright © 2011 A. Chohra and O. Azouaoui. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The use of hybrid intelligent systems (HISs) is necessary to bring the behavior of intelligent autonomous vehicles (IAVs) near the
human one in recognition, learning, adaptation, generalization, decision making, and action. First, the necessity of HIS and some
navigation approaches based on fuzzy ArtMap neural networks (FAMNNSs) are discussed. Indeed, such approaches can provide
TAV with more autonomy, intelligence, and real-time processing capabilities. Second, an FAMNN-based navigation approach is
suggested. Indeed, this approach must provide vehicles with capability, after supervised fast stable learning: simplified fuzzy
ArtMap (SFAM), to recognize both target-location and obstacle-avoidance situations using FAMNN1 and FAMNN?, respectively.
Afterwards, the decision making and action consist of two association stages, carried out by reinforcement trial and error learning,
and their coordination using NN3. Then, NN3 allows to decide among the five (05) actions to move towards 30°, 60°, 90°, 120°,
and 150°. Third, simulation results display the ability of the FAMNN-based approach to provide IAV with intelligent behaviors
allowing to intelligently navigate in partially structured environments. Finally, a discussion, dealing with the suggested approach

and how its robustness would be if implemented on real vehicle, is given.

1. Introduction

The recent developments in autonomy requirements, intelli-
gent components, multirobot systems, computational tools,
and massively parallel computers have made intelligent
autonomous vehicles (IAVs) very used in many terrestrial,
underwater, and spatial applications [1-6]. In fact, IAV
designers search to create dynamic systems able to navigate
and achieve intelligent behaviors like human in real dynamic
environments, where conditions are laborious.

To reach their targets while avoiding possibly encoun-
tered obstacles, in dynamic environments, IAV must have
particularly the capability to achieve target-localization,
obstacle-avoidance, decision-making, and action behaviors.
More, current IAV requirements with regard to these
behaviors are real time, autonomy, and intelligence. Thus, to
acquire these behaviors while answering IAV requirements,
IAV must be endowed with recognition, learning, adapta-

tion, generalization, decision making, and action with real-
time processing capabilities. To achieve this goal, classical
approaches have been replaced by current ones on the basis
of new computational tools which are far more effective in
the design and development of intelligent dynamic systems
than the predicate-logic-based methods of traditional arti-
ficial intelligence. These tools derive from a collection of
methodologies known as soft computing which can deal with
uncertain, imprecise, and inexact data. These technologies
have been experiencing extremely rapid growth in the
spatial, underwater, and terrestrial applications, where they
have been shown to be very effective in solving real-world
problems [6-9]. In fact, the essence of soft computing is
aimed at an accomodation with the imprecision of the
real world. Thus, the guiding principle of soft computing is
to exploit the tolerance for imprecision, uncertainty, and
partial truth in order to achieve tractability, robustness, low



solution cost, and better rapport with reality. These capa-
bilities are required for IAV to adapt to dynamic environ-
ments and then to accomplish a wide variety of intelli-
gent behaviors under environmental constraints particularly
the target-localization, obstacle-avoidance, decision-making,
and action behaviors.

Thus, several navigation approaches for IAV have been
developed using soft computing to achieve intelligent behav-
iors. Particularly, the fuzzy logic (FL), neural networks
(NNs), and adaptive resonance theory (ART) have been used
separately or in different combinations as hybrid intelligent
systems (HISs) [1, 10-22].

This paper deals with the planning and intelligent control
of IAV in partially structured environments. The aim of this
work is to suggest an HIS-based navigation approach able
to provide these vehicles with more autonomy, intelligence,
and real-time processing capabilities. First, the necessity of
HIS for IAV and some navigation approaches based on fuzzy
ArtMap neural networks (FAMNNSs) are discussed. Second,
an FAMNN-based navigation approach is suggested. This
approach has been developed in [20] for only three (03) pos-
sible movements of vehicles, while in the suggested approach,
this number is increased to five (05) possible movements.
Third, simulation results of IAV navigation based on the
FAMNN approach are presented and discussed. Finally, a
discussion, dealing with the suggested approach and how
its robustness would be if implemented on real vehicle, is
given.

2. HIS- and FAMNN-Based Navigation

Recent research on IAV has pointed out a promising direc-
tion for future research in mobile robotics where real time,
autonomy, and intelligence have received considerably more
attention than, for instance, optimality and completeness.
Many navigation approaches have dropped the assumption
that perfect environment knowledge is available. They have
also dropped the explicit knowledge representation for
an implicit one on the basis of acquisition of intelligent
behaviors that enable the vehicle to interact effectively with its
environment [2]. Consequently, IAV are facing with less pre-
dictable and more complex environments; they have to ori-
ent themselves, explore their environments autonomously,
recover from failures, and perform whole families of tasks
in real time. More, if vehicles lack initial knowledge about
themselves and their environments, learning and adaptation
become then inevitable to replace missing or incorrect envi-
ronment knowledge by experimentation, observation, and
generalization. Thus, in order to reach a goal, learning and
adaptation of vehicles rely on the interaction with their
environment to extract information [3].

Thus, the most of the navigation approaches currently
developed are based on the acquisition, by learning and
adaptation, of different behaviors necessary for an intelligent
navigation (i.e., navigation with intelligent behaviors) such
as target localization, target tracking, obstacle avoidance,
and object recognition. One of the more recent trends in
the intelligent control research for IAV leading to intelligent
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behaviors is the use of different combinations of soft com-
puting technologies in HIS [7-9, 23].

Werbos [7] asserted that the relation between NN and
FL is basically complementary rather than equivalent or
competitive. In addition, HIS have been recently recognized
to improve the learning, adaptation, and generalization
capabilities related to variations in environments, where
information is qualitative, inaccurate, uncertain, or incom-
plete [23]. Thus, many attempts have been made to combine
FL and NN in order to achieve better performance in the
learning, adaptation, generalization, decision-making, and
action capabilities. Such a fusion into an integrated system
will have the advantages of both NN (e.g., learning and
optimization abilities) and FL (e.g., adaptation abilities and
capability to cope with uncertainty). Two main combinations
result from this fusion: the fuzzy neural networks (FNNs)
(14, 22, 24, 25] and FAMNN [12, 17, 19, 20, 26-29]. In
classification problems, FAMNN take advantage over FNN
by their fast and stable learning, while the FNN trained
with the gradient back-propagation learning is less faster and
presents the well-known convergence problem to get stuck in
local minima.

Several FAMNN-based navigation approaches have been
developed. The navigation approach developed in [12] uses
FAMNN to perform a perceptual space classification for the
obstacle-avoidance behavior. FAMNN have been also used in
a motion planning controller for path following to recognize
camera images [17] and to learn a qualitative positioning
of an indoor mobile robot equipped with ultrasonic sensors
[19]. In these approaches, FAMNN have been used for their
generalization capability, robustness, and fast and stable
learning. FAMNN architecture achieves a synthesis of FL and
ART-NN by exploiting a close formal similarity between the
computations of fuzzy subsethood and ART category choice,
resonance, and learning. This architecture performs a min-
max learning rule that conjointly minimizes predictive error
and maximizes code compression or generalization. This is
achieved by a match traking process that increases the ART
vigilance parameter p by the minimum amount needed to
correct a predictive error.

By another way, ultrasonic sensors, infrared sensors, and
camera images are very used for IAV obstacle-avoidance
behavior, but their signals are often noisy giving incorrect
data. FAMNN approaches with their inherent features of
adaptivity and high fault and noise tolerance handle this
problem making these approaches robust.

Thus, the use of HIS combining NN, FL, and ART in
FAMNN is necessary to bring IAV behavior near the human
one in recognition, learning, adaptation, generalization,
decision making, and action.

3. FAMNN-Based Navigation Approach

To navigate in partially structured environments, IAV must
reach their targets without collisions with possibly encoun-
tered obstacles; that is, they must have the capability to achive
target-localization and obstacle-avoidance behaviors. In this
approach, these two behaviors are acquired by the supervised
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fast stable learning: the simplified fuzzy ArtMap (SFAM)
using FAMNN pattern classifiers. Target localization is based
on FAMNNI1 classifier which must recognize six (06) target-
location situations, after learning, from data obtained by
computing distance and orientation of vehicle-target using
a temperature field strategy. Obstacle avoidance is based
on FAMNN2 classifier which must recognize thirty (30)
obstacle-avoidance situations, after learning, from ultrasonic
sensor data giving vehicle-obstacle distances. Afterwards, the
decision making and action consist of two association stages,
carried out by reinforcement trial and error learning, and
their coordination using an NN3 allowing then to decide the
appropriate action.

3.1. Vehicles and Sensors. The vehicle movements are pos-
sible in five (05) directions; that is, five (05) possible
actions A; (i = 1,...,5) are defined as actions to move
towards 30°, 60°, 90°, 120°, and 150°, respectively, as
shown in Figure 1. They are expressed by the action vector
A = [Ay,...,A;...,As]. To detect possibly encountered
obstacles, five (05) ultrasonic sensors (US) are necessary to
get distances (vehicle obstacle) covering the area from 15° to
165°: US; from 15° to 45°, US; from 45° to 75°, US; from
75° to 105°, US4 from 105° to 135°, and US; from 135° to
165°, as shown in Figure 1.

3.2. Partially Structured Environments

3.2.1. Target-Location Situations. To localize and reach tar-
gets, the temperature field strategy defined in [21, 30] is used
leading to model the vehicle environment in six (06) areas
corresponding to all target locations called target location
situations as shown in Figure 2. These situations are defined
with six (06) classes T1,..., Tji,. .., Ts, where (j1 = 1,...,6).

3.2.2. Obstacle-Avoidance Situations. Currently, most obsta-
cle-avoidance approaches, in mobile robotics, are inspired
from observations of human navigation behavior. Indeed,
human navigators do not need to calculate the exact
coordinates of their positions while navigating in environ-
ments (roads, hallways, etc.). The road-following or the
hallway-following behavior exhibited by humans is a reactive
behavior that is learned through experience. Given a goal,
human navigators can focus attention on particular stimuli
in their visual input and extract meaningful information very
quickly. Extra information may be extracted from the scene
during reactive behavior; this information (e.g., approaching
an intersection) will usually be stored away and may be
retrieved subsequently for higher level reasoning.

In partially structured environments, these observations
have led to obstacle-avoidance approaches on the basis of
the learning and adaptation. Such environments could be
factories, passenger stations, harbors, and airports with static
and dynamic obstacles. In fact, human perceives the spa-
tial situations in such environments as topological situa-
tions: rooms, corridors, right turns, left turn, junctions,
and so forth. Consequently, trying to capture the human
obstacle-avoidance behavior in such environments, several

15°
Vehicle
F1GURE 1: Vehicle and its sensors.
105°
135° Ty 45°
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T 15°

Lo TS SN /

Vehicle
Te
F1GURE 2: Target-location situations T = [Ti,...,Tji,..., Ts].

approaches based on a recognition of topological situations
have been developed [10, 21, 30-33].

Thus, IAV should have the capability of recognizing spa-
tial obstacle-avoidance situations of partially structured envi-
ronments and maneuvering through these situations on the
basis of their own judgement to enable themselves to navigate
from one point of space to a destination without collision
with static obstacles. Such obstacle-avoidance behavior is
acquired using soft computing-based pattern classifiers under
supervised learning and adaptation paradigms which allow
to recognize topological situations from sensor data giving
vehicle-obstacle distances.

(a) Description of Possibly Encountered Obstacles. Partially
structured environments are dynamic with static, intelli-
gent dynamic, and nonintelligent dynamic obstacles. In
reality, static obstacles for example, Obsl,..., and Obs4
in Figure 3(a), where Veh: vehicle, Obs: obstacle, and Tar:
target, of different shapes represent walls, pillars, machines,
desks, tables, chairs, and so forth. The intelligent dynamic
obstacles (e.g., Vehl with regard to Veh2 and conversely in
Figure 3(a)) represent in reality IAV controlled by the same
suggested FAMNN-based navigation approach, where each
one considers the others as obstacles. The nonintelligent
dynamic obstacles, oscillating horizontally (e.g., Obs5 in
Figure 3(a)), or vertically (e.g., Obs6 in Figure 3(a)) between



two fixed points, represent in reality preprogrammed,
teleguided, or guided vehicles.

(b) Possibly Encountered Obstacles Structured in Topological
Situations. The possible vehicle movements lead us to struc-
ture possibly encountered obstacles in thirty (30) topological
situations called obstacle-avoidance situations as shown in
Figure 3(b), where the directions shown correspond to those
where obstacles exist. These situations are defined with thirty
(30) classes Oy,..., Ojas..., O3, where (j2 = 1,...,30).

3.3. FAMNN-Based Navigation System

During the navigation, each vehicle must built an implicit
internal map (i.e., target, obstacles, and free spaces), allow-
ing the recognition of both-target location and obstacle-
avoidance situations. Then, it decides the appropriate action
from two association stages and their coordination [20, 21,
30]. To achieve this, the FAMNN-based navigation system
presented below is used where the only known data are the
initial and final (i.e., target) positions of the vehicle.

3.3.1. System Structure. The system structure allowing to
develop the suggested approach is built of three phases as
shown in Figure 4. During the Phase 1, the vehicle learns
to recognize target-location situations Tj; using FAMNN1
classifier, while it learns to recognize obstacle-avoidance
situations Oj, using FAMNN2 classifier during the Phase 2.
The Phase 3 decides the appropriate action A; from two
association stages and their coordination using NN3.

3.3.2. FAMNN Classifiers. They are networks which decide
if one or several output nodes are required to represent a
particular category. Indeed, these networks grow to represent
the problem as it sees fit instead of being told by the
network designer to function within the confines of some
static architectures. In this paper, SFAM learning, which is
a supervised fast stable learning, is used as detailed in [34].
It is specialized for pattern classification which can learn
every single training pattern in only a handful of training
iterations, starts with no connection weights but grows in
size to suit the problem and contains only one user-selectable
parameter.

Phase 1 (Target Localization). It is based on FAMNNI1
classifier which must recognize, after learning, each target-
location situation T;j;. FAMNNTI is trained (see Section 4.1)
from data obtained by computing distance and orientation
of the vehicle-target using a temperature field strategy [21,
30]. In each step, this temperature field is defined in the
vehicle environment, and the vehicle task is therefore to
localize its target corresponding to the unique maximum
temperature of this field that is, the situation T;; where the
target is localized. Temperatures in the neighborhood of the
vehicle are defined with a temperature field vector Xr =
[£30 t605 t90> £1205 t150], Where 30, L0, too, t120, and ts are the
temperatures in the directions 30°, 60°, 90°, 120°, and 150°,
respectively. These temperatures are computed using sine
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and cosine functions as detailed in [21]. These components,
normalized within the range 0 and 1, constitute the input
vector X of FAMNNI1 shown in Figure 5.

After learning, for each input vector Xt, FAMNNI1 pro-
vides the vehicle with capability to decide its target localiza-
tion, recognizing the target location-situation T}, expressed
by the highly activated output T};.

Phase 2 (Obstacle Avoidance). It is based on FAMNN2
Classifier which must recognize, after learning, each
obstacle-avoidance situation Oj,. FAMNNR2 is trained (see
Section 4.1) from ultrasonic sensor data obtained from
the environment giving vehicle-obstacle distances. These
distances are defined, in each step, in the vehicle neighbor-
hood with a distance vector Xo = [d30, deo, doo, d120, diso],
where d3, dso, dog, d120, and dyso are the distances in the
directions 30°, 60°, 90°, 120°, and 150°, respectively. These
components, normalized within the range 0 and 1, constitute
the input vector Xo of FAMNN?2 shown in Figure 6.

After learning, for each input vector Xo, FAMNN2
provides the vehicle with capability to decide its obstacle
avoidance, recognizing the obstacle-avoidance situation O,
expressed by the highly activated output Ojs.

Note that for both FAMNN1 and FAMNNZ2, the category
proliferation is prevented by the normalization of the input
vectors at the preprocessing stage and the choice of the
baseline of the vigilance parameter p.

Phase 3 (Decision Making and Action). In this phase, two
association stages between each behavior and the favorable
actions and their coordination are carried out by a multilayer
feedforward network NN3. Then, NN3, allowing to decide
the appropriate action among the five (05) possible actions, is
built of two layers as shown in Figure 7. The five (05) outputs
of the output layer are obtained by (1), where N; is a random
distribution variable over [0, ] and j3 is a constant

A; :g(ZleUijl +Zoj2Vij2)Ni: (1)

j1 j2
with
x ifx>0,
gx) = ) (2)
0 otherwise.

(a) Association Stages. Both situations T;; and Oj; are asso-
ciated separately in two independent stages, by reinforcement
trial and error learning, with the favorable actions. The asso-
ciation between a situation and an action is usually carried
out with the use of a signal provided by an outside process
(e.g., a supervisor), giving the desired response. To achieve
the correct association, the desired response is acquired
through reinforcement trial and error learning. Learning, in
this case, is guided only by a feedback process, that is, guided
by a signal P provided by the supervisor. This signal causes a
reinforcement of the association between a given situation
and a favorable action if this latter leads to a favorable
consequence to the vehicle; if not, the signal P provokes
a dissociation. For this learning, the updating of weights Uj;,
and Vjjs, in the two association stages, is achieved by (3)
given for weights M;; [21, 30] with T time constant and «
constant (a > 0)

M;j(t) = — ae” WG/t 4 (o — P), (3)

(i) Target-Localization Association: Target-location sit-
uations are associated with favorable actions in
an obstacle-free environment (i.e., O = 0), (see
Section 4.1). Favorable actions are defined, for each
situation Tj;, by the human expert (supervisor
providing P;) which has traduced this fact with
the vector Z = [Z1,2,,73,74,75], where each
Z; component is determined with regard to each
possible action A;. If Z; = 1, then A; is a favorable
action, while if Z; = 0, then A; is an unfavorable
action. For each situation T}, only favorable actions
are represented in Figure 8.



(i) Obstacle-Avoidance Association: Obstacle-avoidance
situations are associated with favorable actions with-
out considering the temperature field (ie, T =
0), (see Section 4.1). Favorable actions are defined,
for each situation Oj;, by data sensors from the
environment (supervisor providing P,). In each situ-
ation Oj,, favorable actions are those corresponding
to directions where no obstacle is detected (no
collision), while unfavorable actions are those corre-
sponding to directions where an obstacle is detected
(collision). For instance, in situation O3 shown
in Figure 3(b): only A; and As; are considered as
favorable actions while A,, A4, and A5 are considered
as unfavorable actions.

(b) Coordination. This coordination must provide the vehi-
cle with the capability to fulfill, in the same time, the
two intelligent behaviors (target localization and obstacle
avoidance) giving the appropriate action. To ensure the coor-
dination of two association stages (see Section 4.1), actions
A; are computed by (1).

After learning of the two association stages and their
coordination, NN3 provides the vehicle with capability to
decide the appropriate action expressed by the highly acti-
vated output A;.

4. Simulation Results

In this section, at first, the simulated learning (training) envi-
ronments and training processes of FAMNNI1, FAMNN?2,
and NN3 are described. Second, the simulated FAMNN-
based navigation approach is described and simulation
results are presented. Thus, the vehicles, ultrasonic sensors,
and partially structured environments are simulated.

4.1. Training of FAMNNI, FAMNN2, and NN3

4.1.1. Training of FAMNNI. This training is achieved in the
learning (training) environment shown in Figure 9(a). The
vehicle moves along the paths (1,...,10) in an obstacle-
free environment, where the target is positioned in the
environment center. This allows the vehicle to be in different
positions and orientations, and consequently, the target will
be in different locations with regard to the vehicle. Then,
each particular position and orientation corresponds to one
training example for a particular target-location situation
Tj1. Thus, training examples are defined by randomly select-
ing twenty four (24) positions and orientations (patterns).
After only one (01) epoch, FAMNNI sprouted n; = 6 output
nodes shown in Figure 5, to arrive at the desired result, with
learning rate n; = 1.0, &; = 0.0000001, the baseline of the
vigilance p; = 0.4, and ¢; = 0.0001. Note that during the
training, FAMNN learn every training example presented,
either by incorporating it into an existing output node or
creating a new output node for it.

4.1.2. Training of FAMNN?2. The vehicle is simulated in a
given position and orientation in the learning (training)
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FIGURE 9: Learning (training) environments: (a) Target-location
situations Tj,—the vehicle moves along the paths (1,...,10)
represented by arrows where the target is located in the environment
center, and (b) obstacle-avoidance situations Oj,—the vehicle is
simulated in a given position and orientation, where the simulated
configuration of obstacles corresponds to one training example
for an obstacle-avoidance situation e.g., the obstacle-avoidance
situation O,3.

environment, where a configuration of obstacles is simulated
corresponding to one training example of a particular
obstacle-avoidance situation Oj, (e.g., the situation Ops
shown in Figure 9(b)). Thus, training examples are defined
by randomly selecting one hundred fifty (150) positions (pat-
terns). After only one (01) epoch, FAMNN?2 sprouted #n, =
30 output nodes shown in Figure 6, to arrive at the desired
result, with learning rate 7, = 1.0, @x = 0.0000001, the
baseline of the vigilance p, = 0.25, and &, = 0.0001.

4.1.3. Training of NN3. This training is achieved with the
training of two association stages and their coordination; see
[21] for more details.

(a) Target-Localization Association. In this stage, the updat-
ing weights is achieved by (3), where M;; = U;;;,C; =
Tj1, and (j1 = 1,...,6) and P defined in (4). The training to

obtain Uj;; is achieved in an obstacle-free environment (i.e.,
O = 0). Thus, the training set consists of six (06) examples
using FAMNNI1 outputs as NN3 inputs; see Figure 7

b
P =

0
(b) Obstacle-Avoidance Association. The updating weights is
achieved by (3), where M;; = V;j5,C; = Oj, and (j2 =
1,...,30) and P defined in (5). The training to obtain Vjj,
is achieved without considering the temperature field (i.e.,

T = 0). Thus, the training set consists of thirty (30) examples
using FAMNNZ2 outputs as NN3 inputs; see Figure 7.

1P2 if collision,

if Z; =0,
with P; > «, (4)
if Z; = 1.

P = with P, > a, (5)

0 ifno collision.

Thus, Ujj1 and Vjj; are adjusted to obtain the reinforced
actions among favorable actions shown in Figure 10(a)
and Figure 10(b), respectively. Solid circles correspond to
positive weights which represent favorable actions, indicating
reinforced association, where values are proportional to the
area of circles and the most reinforced action is the one
having the great positive weight. Hollow circles correspond
to negative weights which represent dissociated actions.

(¢) Coordination. The detection of the maximum tempera-
ture must be interpreted as the vehicle goal, while the gener-
ated actions by the presence of obstacles must be interpreted
as the vehicle reflex. Then, actions generated by obstacle
avoidance must have precedence over those generated by
target localization; that is, P; and P, constants must be
defined such as P, > Py, while § and & must be coupled such
as 0 < B < a. Thus, the used values of different constants
are: § = l,a =5,Py =7,and P, = 9.

4.2. FAMNN-Based Navigation Approach

To reflect the vehicle behaviors acquired by learning and
to demonstrate the learning, adaptation, and generaliza-
tion capabilities of the suggested FAMNN-based navigation
approach, the vehicle navigation is simulated in different
static and dynamic partially structured environments.

Each simulated vehicle has only two known data: its
initial and final (i.e., target) positions. From these data, it
must reach its target while avoiding possibly encountered
obstacles using the suggested FAMNN-based navigation
approach. In this simulation, the vehicle controls only its
heading, and consequently, when obstacles are detected, in
the same time, in its five (05) movement directions, it must
be stopped. Also, each nonintelligent dynamic obstacle is
assumed to have a velocity inferior or equal to the vehicle
one.

4.2.1. Static Obstacles. Tested in an environment containing
static obstacles, as illustrated in Figure 11 (where Veh: vehicle
and Tar: target), the vehicle succeeds to avoid the static
obstacles and reach its target.
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the area of circles and the most reinforced action is the one having
the great positive weight; hollow circles correspond to negative
weights which represent actions leading to a dissociation. (b)
Matrix of obstacle-avoidance association—solid circles represent
reinforced actions (with different reinforcement degrees) and
hollow circles represent dissociated actions.

4.2.2. Intelligent Dynamic Obstacles. In the case illustrated in
Figure 12, the four vehicles Veh1, Veh2, Veh3, and Veh4 try
to reach their respective targets, while each one avoids the
others.

4.2.3. Nonintelligent Dynamic Obstacles. In the case of
two nonintelligent dynamic obstacles, oscillating vertically
and horizontally between two fixed points, illustrated in
Figure 13, the vehicle avoids them and reaches its target
successfully.

4.2.4. Complex Environments. In the case illustrated in
Figure 14, the three vehicles reach their targets without
collisions with static and dynamic obstacles.
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FiGure 11: Case of static obstacles.

Tar2 *j&h Veh1
!
Veh3 Tar3
0 L L ﬂ&r.
Tarl
Veh2

FIGURE 12: Case of intelligent dynamic obstacles.

5. Discussion and Conclusion

In this paper, the intelligent behaviors, acquired by learning
and adaptation, of the target localization, obstacle avoidance,
decision making, and action necessary to the navigation
of TIAV in partially structured environments have been
suggested. Indeed, the HIS, namely, FAMNNI1 and FAMNN?2
under supervised fast stable SFAM learning have been devel-
oped to recognize the target-location situations and obstacle-
avoidance situations, respectively, while the NN3 under
reinforcement trial and error learning has been developed
for the decision making and action. The simulation results
illustrate not only the learning, adaptation, and generalization
capabilities of both FAMNN1 and FAMNN2 classifiers, but
also the decision-making and action capability of NN3. Nev-
ertheless, there are a number of issues that need to be further
investigation in perspective of an implementation on a real
vehicle. At first, vehicle must be endowed with one or several
actions to come back and a smooth trajectory generation
system controlling its velocity. Also, it must be endowed
also with specific sensors to detect dynamic obstacles and
specific processing of data given from them.

The suggested approach in this paper presents two main
advantages. The first is related to the obstacle-avoidance
behavior which is deduced from the observation of the
human one resulting in the principle to perceive partially
structured environments as topological situations. The sec-
ond is related to the performances of the FAMNN approach
such as fastness and stability of learning, adaptation and
generalization capabilities, fault and noise tolerance, and
robustness.

The signals of sensors are often noisy, or they are defec-
tive giving incorrect data. This problem is efficiently handled
by FAMNN with their inherent features of adaptivity and
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FIGURE 14: Case of a complex environment.

high fault and noise tolerance making them robust. Indeed,
malfunctioning of one of the sensors or one of the neurons
do not strongly impair the target-localization and obstacle-
avoidance behaviors. This is possible because the knowledge
stored in an FAMNN is distributed over many neurons and
interconnections, not just a single or a few units. Conse-
quently, concepts or mappings stored in an FAMNN have
some degree of redundancy built in through this distribution
of knowledge.

By another way, the incremental fuzzy ArtMap learning
has proven to be fast and stable surpassing the performances
of other techniques, as gradient back-propagation. In fact, a
neural navigation approach has been suggested in [21]. In
this neural approach, NN classifiers under gradient back-
propagation learning are developed to recognize the same
target-location situations and obstacle-avoidance situations
presented in Figure 2 and Figure 3(b), respectively. In com-
parison with this neural approach, the suggested FAMNN
approach presents several advantages.

One Selectable Parameter. For FAMNN, the only parameter
to tune is the baseline of the vigilance p, while for NN,
several parameters have to be tuned such as the learning
rate 7, number of nodes in the hidden layer, number of
hidden layers, the choice of the weight initialization, and the
momentum factor if used.

Fast Learning. Both FAMNNI1 and FAMNN?2 arrive under
supervised SFAM learning to the desired result in only one
(01) epoch, while in [21], NN1 and NN2 arrive under super-
vised gradient back-propagation learning to the desired
result in fourty three (43) epochs and fifty (50) epochs,
respectively.

Stable Learning. SFAM learning is stable [34, 35], while
gradient back-propagation presents the well-known conver-
gence problem to get stuck in local minima.

Number of Weights. For FAMNNI1 and FAMNN2, the num-
ber of weights is (5%2)%6 = 60 and (5%2)%30 = 300,
respectively; while for NN _1 and NN_2 developed in [21],
the number of weights is (5%5) + (5%6) = 55 and (5%15)
+ (15%30) = 525. From these results, the NN take a small
advantage (55 over 60) over FAMNN for a small number of
classes, while the FAMNN take a great advantage (300 over
525) over NN for a great number of classes.

FPGA Implementation. An interesting alternative is to imple-
ment FAMNN1, FAMNN2, and NN3 on Xilinx’s FPGA. In
that case, the FPGA architectures of FAMNN1 and FAMNN?2
will be simpler and will use less hardware than the NN1 and
NN2 developed in [21].

Once implemented on FPGA, the suggested FAMNN-
based navigation approach provides IAV with more autono-
my, intelligence, and real-time processing capabilities making
them more robust and reliable. Thus, they bring their target-
localization, obstacle-avoidance, decision-making, and ac-
tion behaviors near to that of humans in the recognition,
learning, adaptation, generalization, decision making, and
action.

Elsewhere, the developed simulation is simple aiming
to estimate and validate the resulting quality, first of the
learned target-localization and obstacle-avoidance behaviors
from FAMNNI1 and FAMNN?2 and second of the suggested
decision-making and action behavior, target-localization
and obstacle-avoidance association stages acquired through
reinforcement trial and error learning and learned by NN3.
Of course, the final target, in future, is to implement the sug-
gested approach on a real autonomous vehicle which could
have other various sensors or complicated environments and
consequently necessitate probably a refining of the number
of possible actions, target-location situations, or obstacle-
avoidance situations. In such case, the number of the inputs
of each FAMNN will change in consequence implying a new
learning of different target-location or obstacle-avoidance
situations and a new learning of their associations for the
decision making and action.

Concerning the repeatability of the experimental results,
it is guaranteed by the capability of the learning and general-
ization of FAMNN1, FAMNN?2, and NN3. In addition, in this
simulation, the learning stability (FAMNN1 and FAMNN?2)
is guaranteed by the SFAM learning and by reinforcement
trial and error learning for NN3, which are known to be
stable (compared for instance to gradient back-propagation).

Note, finally, that the suggested approach demonstrate its
ability in partially structured environments, with successful
obstacle avoidance only face to dynamic obstacles (vehicles
or nonintelligent dynamic obstacles as shown in Figure 12
and Figure 13, resp.) having the same velocity or less than the
current vehicle. Thus, in the perspective of the navigation in
dynamic environments with unknown or different velocities,
vehicles need to be endowed with specific moving obstacle
sensors, and a new dynamic obstacle classifier is needed.

An interesting alternative for future research is to extend
the solutions of autonomous navigation to a set, not to just
one option, and the more movement directions will bring
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more flexible movement capability for the vehicle. More, as
the final decision part is in fact a compromise between the
results of the target-localization behavior and those of the
obstacle-avoidance behavior, it should be interesting to
develop such decision part using an optimization method or
strategy.

Another interesting alternative for future research is the
lifelong vehicle learning which opens the opportunity for
the transfer of learned knowledge. This knowledge could be
enhanced by introducing comprehensive knowledge bases
and fuzzy associative memories making IAV more robust and
reliable.
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