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The diffraction of sound from a semi-infinite soft duct is investigated. The soft duct is
symmetrically located inside an acoustically lined but infinite duct. A closed-form solution is
obtained using integral transform and Jones’ method based on Wiener-Hopf technique. The
graphical results are presented, which show how effectively the unwanted noise can be reduced
by proper selection of different parameters. The kernel functions are factorized with different
approaches. The results may be used to design acoustic barriers and noise reduction devices.

1. Introduction

The analysis of the effects of unwanted noise has been an active area of research because
of its technological importance. This study is important in connection with exhaust system,
steam valves, internal combustion engines of aircraft and vehicles, turbofan engines, and
ducts and pipes. The analysis of wave scattering by such structures is an important area
of noise reduction and relevant for many applications. Continued interest in the problem
of noise reduction has attracted the attention of many scientists, physicists, and numerical
simulists.

Many interesting mathematical models for the reduction of noise are discussed by
several authors. In view of historical perspectives the story goes that Rawlins [1] was the
first to show that the duct with a thin acoustically absorbent lining is an effective method
which can be used to reduce the unwanted noise within a waveguide. As a sound attenuator,
the acoustic performance of a duct can be increased significantly by lining its walls with
an acoustically absorbent material [2]. Koch [3] discussed the problem of noise reduction
from the engineering point of view, namely, in rectangular chambers, circular and annular
geometries in the absence of mean flow situation. In another paper [4], Koch discussed
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Figure 1: Schematic diagram of the trifurcated waveguide.

the analytical solution of the problem of sound radiation from the open end of a semi-
infinite two-dimensional duct whose inner side walls are lined with a locally reacting sound
absorbing material of finite length. The problem was solved analytically with the help of
Wiener-Hopf technique. The obtained analytical results were also discussed numerically for
several parameters of interest.

Jones [5] discussed the problem of scattering of plane waves from three parallel soft
semi-infinite and equidistant plates and calculated the far field and the field within the
waveguide. Later on, Asghar et al. [6] extended Jones analysis [5] for the case of line source
and point source scattering in still air and as the medium is convective. Afterwards Hassan
and Rawlins [7] analyzed an acoustic diffraction problem considering a semi-infinite hard-
soft duct and obtained exact, closed-form solution valid for all plate spacings. Asghar and
Hayat [8] obtained an exact solution for the problem of scattering of sound within absorbing
parallel plates using Wiener-Hopf technique. In [9] the analytical solution of the sound
field of a semi-infinite acoustically soft cylindrical duct, accounting for diffraction at the
outlet, has been obtained applying Wiener-Hopf technique. In a similar context, Büyükaksoy
and Polat [10] studied diffraction phenomenon in a bifurcated waveguide by considering a
dominant mode wave incident on a soft-hard half-plane centered inside an infinite parallel
plate waveguide with hard boundaries.

Related work regarding the diffraction of dominant acoustic wave modes from the
trifurcated waveguide having the same geometric design but with different combinations
of the boundary conditions (soft, hard, mixed (Robin type)) in the case of still air and for
convective flow may be found in [11–14]. Keeping in view of the importance of the above-
mentioned configuration, in this paper we have attempted to solve the problem of diffraction
of a dominant acoustic mode propagation out of the mouth of a semi-infinite soft duct
which is symmetrically located within an infinite lined duct on which general third-type
mixed boundary conditions of the Robin type are satisfied. The boundary value problem
is solved analytically with the help of standard Wiener-Hopf procedure based on Jones’
method, more mechanical and straightforward, rather than by using the cumbersome integral
equation apparatus. This method has applications in almost all modern branches of science,
engineering, and technology. For more details one is referred to [15, 16]. The geometry of the
trifurcated waveguide problem under consideration is shown in Figure 1, and the paper is
organized as follows.
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The problem statement is presented in Section 2. The Wiener-Hopf (WH) equation
is formed in Section 3. The problem is further solved in Section 4. The solution procedure
involves the complex contour integrals. These integrals are evaluated in Section 5 by an
application of Cauchy residue theorem [17]. The explicit factorization of the Wiener-Hopf
kernel function is accomplished in the appendix. Numerical and graphical results are also
presented.

2. Problem Statement

The physical situation considered is that of the diffraction of first mode of the inside
waveguide (which is the only propagative mode) as incident mode that propagates out of
the end of a semi-infinite soft duct. The wave mode is propagating in the positive x-direction
parallel to x-axis. The semi-infinite soft duct is placed inside the absorbingly lined duct. If
φ(x, y, t) is a scalar potential, then the velocity u and acoustic pressure p can be written as

u = gradφ,

p = −ρo
∂φ

∂t
,

(2.1)

respectively, where grad is the gradient operator, ρo is the density, and t is the time. Writing

φ
(
x, y, t

)
= e−iωtΦ

(
x, y

)
(2.2)

and omitting e−iωt throughout, we have to solve the following Helmholtz equation:

∂2Φ
∂x2 +

∂2Φ
∂y2 + k2Φ = 0, (2.3)

where k = ω/c (ω is the angular frequency and c is the speed of sound) is the wave number.
The boundary conditions and continuity conditions associated with the problem are

of the form

Φ +
(
iζ

k

)
∂Φ
∂y

= 0, y = b, −∞ < x < ∞, (2.4)

Φ = 0, y = a, −∞ < x < 0, (2.5)

Φ = 0, y = −a, −∞ < x < 0, (2.6)

Φ −
(
iζ

k

)
∂Φ
∂y

= 0, y = −b, −∞ < x < ∞, (2.7)

∂

∂y
Φ(x,−a+) =

∂

∂y
Φ
(
x,−a−), x > 0, (2.8)

∂

∂y
Φ(x, a+) =

∂

∂y
Φ
(
x, a−), x > 0, (2.9)
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where it is assumed that b > a. In (2.4) and (2.7), ζ represents the specific impedance of the
infinite duct lining and it is necessary that for an absorbent surface Re ζ > 0.

Besides the conditions prescribed in (2.4)–(2.9), we require those conditions at infinity
which are relevant to the nature of the lowest propagating modes in various duct regions.
The radiation conditions at infinity suggest the following [14].

For the region (−a ≤ y ≤ a, x < 0), one may write

Φ
(
x, y

)
= eiχ1x sin

[
π
(
y − a

)

2a

]

+
∞∑

n=1

Rne
−iχnx sin

[
nπ

(
y − a

)

2a

]

, (2.10)

where χn = (k2 − α2
n)

1/2, (n = 1, 2, 3, . . . , ) and αn satisfy

sin 2(αna) = 0, (2.11)

αn = nπ/2a with 0 < Imχ1 < Imχ2 < Imχ3 . . .. The lowest-order plane wave mode can
propagate only when π/2 < ka < π .

The value of Φ(x, y) for (−b ≤ y ≤ b, x > 0) is

Φ
(
x, y

)
=

∞∑

n=1

Tne
iσnx

[
− sin βn

(
y − b

)
+
iζ

k
βn cos βn

(
y − b

)]
, (2.12)

where σn = (k2 − β2
n)

1/2 (n = 1, 2, 3, . . .) and βn satisfy the equation

sin 2
(
bβn

)
+ 2iβn

ζ

k
cos 2

(
bβn

)
+ β2

n

ζ2

k2 sin 2
(
bβn

)
= 0, (2.13)

with 0 < Imσ1 < Im σ2 < Imσ3 . . ..
For (a ≤ y ≤ b, x < 0) one has

Φ
(
x, y

)
=

∞∑

n=1

T̃ne
−iα̃nx

[
− sin δn

(
y − b

)
+
iζ

k
δn cos δn

(
y − b

)
]
, (2.14)

where α̃n = (k2 − δ2
n)

1/2 (n = 1, 2, 3, . . .) and δn represent the roots of the equation

sinδn(b − a) +
iς

k
δn cos δn(b − a) = 0, (2.15)

with 0 < Im α̃1 < Im α̃2 < Im α̃3 . . ..
When (−b ≤ y ≤ −a, x < 0), we have

Φ
(
x, y

)
=

∞∑

n=1

T̂ne
−iα̂nx

[
sin δn

(
y + b

)
+
iζ

k
δn cos δn

(
y + b

)]
. (2.16)
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In region (−a ≤ y ≤ a, x < 0) the acoustic wave shows incident and reflected behavior while
in the regions (−b ≤ y ≤ −a, x < 0) and (a ≤ y ≤ b, x < 0) transmission behavior is observed.
In the text Rn and Tn represent reflection and transmission coefficients, respectively. To arrive
at a unique solution, we also require the “edge conditions” [18]

Φ(x,±a) = O(1), Φy(x,±a) = O
(
x−1/2

)
as x −→ 0. (2.17)

3. The Wiener-Hopf (WH) Equations

For analytic convenience, we will assume that k = k1 + ik2 (k1 > 0, k2 ≥ 0) since the time
dependence is taken to be of the form e−iωt [15]. Let us define Fourier transform and its
inverse by

Φ̂
(
α, y

)
=
∫∞

−∞
Φ
(
x, y

)
eiαxdx = Φ̂+

(
α, y

)
+ Φ̂−

(
α, y

)
, (3.1)

Φ
(
x, y

)
=

1
2π

∫∞

−∞
Φ̂
(
α, y

)
e−iαxdα. (3.2)

In (3.1),

Φ̂+
(
α, y

)
=
∫∞

0
Φ
(
x, y

)
eiαxdx,

Φ̂−
(
α, y

)
=
∫0

−∞
Φ
(
x, y

)
eiαxdx,

(3.3)

where α is a complex variable with

α = σ + iτ. (3.4)

Use of (3.1) to (2.3) gives

d2Φ̂
dy2 + κ2Φ̂ = 0, (3.5)

where

κ(α) =
√
k2 − α2. (3.6)

The suitable solutions of (3.5) in the trifurcated regions are

Φ̂
(
α, y

)
= A1(α) cos κy + B1(α) sinκy

(
−b ≤ y ≤ −a

)
, (3.7)

Φ̂
(
α, y

)
=

−i
α + χ1

sin

[
π
(
y − a

)

2a

]

+A2(α) cosκy + B2(α) sinκy
(
−a ≤ y ≤ a

)
, (3.8)

Φ̂
(
α, y

)
= A3(α) cosκy + B3(α) sin κy

(
a ≤ y ≤ b

)
, (3.9)
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where the first term on the right-hand side of (3.8) comes from the incident field. On taking
Fourier transform, (2.4)–(2.9) become

Φ̂(α, b) +
(
iζ

k

)
Φ̂′(α, b) = 0, (3.10)

Φ̂−(α, a) = 0, (3.11)

Φ̂−(α,−a) = 0, (3.12)

Φ̂(α,−b) −
(
iζ

k

)
Φ̂′(α,−b) = 0, (3.13)

Φ̂′
+(α,−a+) = Φ̂′

+
(
α,−a−), (3.14)

Φ̂′
+(α, a

+) = Φ̂′
+
(
α, a−), (3.15)

where prime denotes the differentiation with respect to y. In order to determine the
unknowns Aj(α) and Bj(α) (j = 1, 2 and 3), we proceed to satisfy boundary conditions
(3.10)–(3.13). Thus, by invoking (3.12) and (3.13) in (3.7), we may write

A1(α) cosκa − B1(α) sinκa = Φ+
1(α),

A1(α)
(

cosκb −
(
iζ

k

)
κ sin κb

)
− B1(α)

(
sinκb +

(
iζ

k

)
κ cosκb

)
= 0,

(3.16)

where Φ+
1(α) = Φ̂+(α,−a) is analytic in Imα > − Imk. Solving, above equations for A1(α) and

B1(α) we obtain

A1(α) =
sinκb + (iζ/k)κ cos κb

sin κ(b − a) + (iζ/k)κ cos κ(b − a)
Φ+

1(α),

B1(α) =
cosκb − (iζ/k)κ sin κb

sinκ(b − a) + (iζ/k)κ cosκ(b − a)
Φ+

1(α).

(3.17)

Again, using (3.11) and (3.12) in (3.8), we may write

A2(α) cosκa + B2(α) sinκa = Φ+
2(α),

A2(α) cosκa − B2(α) sinκa = Φ+
1(α),

(3.18)

where Φ+
2(α) = Φ̂+(α, a) is analytic in Imα > − Imk. Solving (3.18) for A2(α) and B2(α), we

obtain

A2(α) =
sin κa

(
Φ+

1(α) + Φ+
2(α)

)

sin 2κa
,

B2(α) =
cosκa

(
Φ+

2(α) −Φ+
1(α)

)

sin 2κa
.

(3.19)
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With the use of (3.10) and (3.11) in (3.9), we may write

A3(α)
(

cosκb −
(
iζ

k

)
κ sin κb

)
+ B3(α)

(
sinκb +

(
iζ

k

)
κ cosκb

)
= 0,

A3(α) cosκa + B3(α) sinκa = Φ+
2(α).

(3.20)

Solving for A3(α) and B3(α), we obtain

A3(α) =
sinκb + (iζ/k)κ cos κb

sin κ(b − a) + (iζ/k)κ cos κ(b − a)
Φ+

2(α),

B3(α) = − cosκb − (iζ/k)κ sinκb

sin κ(b − a) + (iζ/k)κ cosκ(b − a)
Φ+

2(α).

(3.21)

By substituting the above values of Aj(α) and Bj(α) (j = 1, 2 and 3) in (3.7)–(3.9) we get

Φ̂
(
α, y

)
=

sin κ
(
y + b

)
+ (iζ/k)κ cosκ

(
y + b

)

sinκ(b − a) + (iζ/k)κ cosκ(b − a)
Φ+

1(α)
(
−b ≤ y ≤ −a

)
,

Φ̂
(
α, y

)
=

−i
α + χ1

sin

[
π
(
y − a

)

2a

]

+
1

sin 2κa
(
Φ+

2(α) sinκ
(
y + a

)
−Φ+

1(α) sin κ
(
y − a

)) (
−a ≤ y ≤ a

)
,

Φ̂
(
α, y

)
=

sin κ
(
b − y

)
+ (iζ/k)κ cosκ

(
y − b

)

sinκ(b − a) + (iζ/k)κ cosκ(b − a)
Φ+

2(α)
(
a ≤ y ≤ b

)
.

(3.22)

Invoking (3.22) in (3.14) and (3.15), we arrive at

−κ(sinκ(b + a) + (iζ/k)κ cosκ(b + a))Φ+
1(α)

sin 2κa(sin κ(b − a) + (iζ/k)κ cos κ(b − a))
+
κΦ+

2 (α)
sin 2κa

− λ1

α + χ1
= Φ−

1(α),

κ(sin κ(b + a) + (iζ/k)κ cos κ(b + a))Φ+
2(α)

sin 2κa(sin κ(b − a) + (iζ/k)κ cos κ(b − a))
−
κΦ+

1(α)
sin 2κa

+
λ1

α + χ1
= Φ−

2(α),

(3.23)

where

λ1 =
−iπ
2a

,

Φ−
1(α) = Φ̂′

−
(
α,−a−) − Φ̂′

−(α,−a+),

Φ−
2(α) = Φ̂′

−
(
α, a−) − Φ̂′

−(α, a
+).

(3.24)
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The functions Φ−
1(α) and Φ−

2(α) are analytic in the region Imα < Imk. Addition and
subtraction of (3.23) will give

W(α)D+(α) = S−(α),

K(α)S+(α) +
2λ1

α + χ1
= D−(α),

(3.25)

where

Φ±
2(α) −Φ±

1(α) = D±(α), (3.26)

Φ±
2(α) + Φ±

1(α) = S±(α), (3.27)

K(α) =
κ(cosκb − (iζ/k)κ sinκb)

cos κa(sinκ(b − a) + (iζ/k)κ cos κ(b − a))
, (3.28)

W(α) =
κ(sinκb + (iζ/k)κ cos κb)

sinκa(sin κ(b − a) + (iζ/k)κ cosκ(b − a))
. (3.29)

4. Solution of the Problem

Writing (see the appendix)

W(α) = W+(α)W−(α), K(α) = K+(α)K−(α), (4.1)

where (+) is the subscript assigned to the function regular in the upper half plane Imα >
− Im k and the subscript (−) represents the function regular in the lower half plane Imα <
Im k. Now from (3.25), we have

W+(α)D+(α) =
S−(α)
W−(α)

,

K+(α)S+(α) +
2λ1(

α + χ1
)
K−

(
−χ1

) =
D−(α)
K−(α)

− 2λ1

α + χ1

[
1

K−(α)
− 1
K−

(
−χ1

)

]

.

(4.2)

Note that the left-hand side of both equations is analytic in Imα > − Imk and the right-hand
side is analytic in Imα < Imk. Also, when |α| → ∞,

K±(α) = O
(
|α|1/2

)
,

W±(α) = O
(
|α|1/2

)
,

(4.3)
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and Fourier transform of edge conditions (2.17) helps us to determine the asymptotic
behavior of D±(α) and S±(α). For |α| → ∞,

D−(α) = O
(
|α|−1

)
, S−(α) = O

(
α−1

)
for Imα < Imk,

D+(α) = O
(
|α|−1

)
, S+(α) = O

(
α−1/2

)
for Imα > − Imk.

(4.4)

Now the use of (4.3)–(4.4) and standard Wiener-Hopf procedure [15] on (4.2) give

D+(α) = 0,

K+(α)S+(α) +
2λ1(

α + χ1
)
K+

(
χ1

) = 0,
(4.5)

where K−(−χ1) = K+(χ1). Using (3.26) and (3.27) in (4.5), we get

Φ+
1(α) = − λ1(

α + χ1
)
K+(α)K+

(
χ1

) ,

Φ+
2(α) = − λ1(

α + χ1
)
K+(α)K+

(
χ1

) .

(4.6)

From (3.22) and (4.6), we obtain the field representations for the different regions as follows.
When (−b ≤ y ≤ −a),

Φ̂
(
α, y

)
= − λ1

sinκ(b − a) + (iζ/k)κ cosκ(b − a)

{
sin κ

(
y + b

)
+ (iζ/k)κ cosκ

(
y + b

)

(
α + χ1

)
K+(α)K+

(
χ1

)

}

.

(4.7)

For (−a ≤ y ≤ a), one obtains

Φ̂
(
α, y

)
=

−i
α + χ1

sin

[
π
(
y − a

)

2a

]

− λ1

cosκa

{
cosκy

(
α + χ1

)
K+(α)K+

(
χ1

)

}

. (4.8)

For (a ≤ y ≤ b), one has

Φ̂
(
α, y

)
= − λ1

sinκ(b − a) + (iζ/k)κ cosκ(b − a)

{
sin κ

(
b − y

)
+ (iζ/k)κ cosκ

(
y − b

)

(
α + χ1

)
K+(α)K+

(
χ1

)

}

.

(4.9)

Taking inverse Fourier transform of (4.7)–(4.9), we obtain the following.
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For the region (−b ≤ y ≤ −a, x < 0), one may write

Φ
(
x, y

)
= − λ1

2π

∫∞+iτ

−∞+iτ

e−iαx

sin κ(b − a) + (iζ/k)κ cos κ(b − a)

×
{

sin κ
(
y + b

)
+ (iζ/k)κ cosκ

(
y + b

)

(
α + χ1

)
K+(α)K+

(
χ1

)

}

dα.

(4.10)

When (−a ≤ y ≤ a, x < 0), we have

Φ
(
x, y

)
= eiχ1x sin

[
π
(
y − a

)

2a

]

− λ1

2π

∫∞+iτ

−∞+iτ

e−iαx

cos κa

{
cos κy

(
α + χ1

)
K+(α)K+

(
χ1

)

}

dα. (4.11)

For (a ≤ y ≤ b, x < 0), we arrive at

Φ
(
x, y

)
=

λ1

2π

∫∞+iτ

−∞+iτ

e−iαx

sin κ(b − a) + (iζ/k)κ cos κ(b − a)

×
{

sinκ
(
y − b

)
− (iζ/k)κ cosκ

(
y − b

)

(
α + χ1

)
K+(α)K+

(
χ1

)

}

dα.

(4.12)

For (−b ≤ y ≤ b, x > 0), one may write

Φ
(
x, y

)
=

λ1

2π

∫∞+iτ

−∞+iτ

e−iαx

cosκb − (iζ/k)κ sinκb

×
{(

sinκ
(
y − b

)
− (iζ/k)κ cosκ

(
y − b

))
cosκaK−(α)

κ
(
α + χ1

)
K+

(
χ1

)

}

dα.

(4.13)

In (4.10)–(4.13), τ is the imaginary part of α, κ(α) =
√
k2 − α2 and branch cuts are taken

to be from k to i∞ and −k to −i∞, and 0 ≤ argκ ≤ π (Figure 2). Note that the integrands
have no singularities which lie on the contour of integration. To evaluate the integrals in
(4.10)–(4.13), it is noted that the contour of integration in these equations lies in the strip
− Im k < Im α < Imk.

In expressions (4.10)–(4.13), the pole α = −χ1 lies below the contour of integration.
One can also note that the terms in the curly brackets { } of (4.10)–(4.12) have no branch
points in Imα > − Im k and those in (4.13) have no branch points in Imα < Imk. Thus the
only singularities in the integrands of (4.10) and (4.12) occur at the zeros of

sinκ(b − a) +
(
iζ

k

)
κ cosκ(b − a) = 0, (4.14)
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Im α = τ
Cut line

Branch point

k

−k

(0, 0)
Re α = σ

Cut line

Branch point

Figure 2: Strip of analyticity and branch cuts in the complex α-plane.

that is, at

α = α̃n =
(
k2 − δ2

n

)1/2
(n = 1, 2, 3, . . .). (4.15)

The only singularities of (4.11) occur at the zeros of cosκa = 0, that is at

α = χ̃2n−1 =

(

k2 − (2n − 1)2π2

4a2

)1/2

(n = 1, 2, 3, . . .). (4.16)

The only singularities in the integrands in (4.13) occur at the zeros of

cosκb −
(
iζ

k

)
κ sinκb = 0, (4.17)

that is at

α = −σn = −
(
k2 − β2

n

)1/2
(n = 1, 2, 3, . . .). (4.18)

5. Modal Field Representation

Invoking Cauchy residue theorem [17] to the integrals in (4.10)–(4.13), we obtain the
following.

When (−b ≤ y ≤ −a, x < 0),

Φ
(
x, y

)
= −

∞∑

n=1

e−iα̃nx

q′1(α̃n)

{(
sinδn

(
y + b

)
+ (iζ/k)δn cos δn

(
y + b

))
π

2a
(
α̃n + χ1

)
K+(α̃n)K+

(
χ1

)

}

, (5.1)
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where

q1(α) = sinκ(b − a) +
(
iζ

k

)
κ cosκ(b − a),

α̃n =
(
k2 − δ2

n

)1/2
(n = 1, 2, 3, . . .).

(5.2)

For (−a ≤ y ≤ a, x < 0), we have

Φ
(
x, y

)
= eiχ1x sin

[
π
(
y − a

)

2a

]

−
∞∑

n=1

πα2n−1(−1)n+1e−iχ2n−1x cos
(
α2n−1y

)

2a2χ2n−1
(
χ2n−1 + χ1

)
K+

(
χ2n−1

)
K+

(
χ1

) . (5.3)

For (a ≤ y ≤ b, x < 0), we arrive at

Φ
(
x, y

)
=

∞∑

n=1

e−iα̃nx

q′1(α̃n)

{(
sinδn

(
y − b

)
− (iζ/k)δn cos δn

(
y − b

))
π

2a
(
α̃n + χ1

)
K+(α̃n)K+

(
χ1

)

}

. (5.4)

When (−b ≤ y ≤ b, x > 0), we have

Φ
(
x, y

)
=

∞∑

n=1

eiσnx
(
sin βn

(
y − b

)
− (iζ/k)βn cos βn

(
b − y

))
π cos βna

2am′(−σn)K+
(
χ1

)(
χ1 − σn

)
βn

K−(−σn), (5.5)

where

m(α) = cosκb −
(
iζ

k

)
κ sinκb,

α = −σn = −
(
k2 − β2

n

)1/2
(n = 1, 2, 3, . . .).

(5.6)

6. Reflection Coefficient

Inside the waveguide field intensity is superposition of reflected and transmitted waves.
Hence, it is relevant to deal with reflection or transmission coefficients which are related to
relative energy. We will consider reflection coefficient for the first mode n = 1 given by (5.3)
as

R1 =
π2

8a3χ2
1

(
K+

(
χ1

))2 . (6.1)

7. Numerical and Graphical Results

The expression of field intensity involves infinite sums/products for which we have used
numerical technique and obtained the results using truncation approach [19]. We have
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Table 1: Field intensity |Φ| versus the truncation number n for different boundary conditions of the semi-
infinite duct.

n
a = 0.5, b = 3a, k = 0.5, y = 1, ξ = 1.5, η = 1 and x = −0.1

|Φ| for hard boundary conditions |Φ| for soft boundary conditions
10 1.809170 0.824323
20 1.853300 0.878547
30 1.883790 0.899716
40 1.905980 0.911027
50 1.922750 0.918070
60 1.935870 0.922877
70 1.946400 0.926369
80 1.955050 0.929019
90 1.962260 0.931100
100 1.968380 0.932777
110 1.973630 0.934157
120 1.978180 0.935313
130 1.982170 0.936295
140 1.985700 0.937140
150 1.988830 0.937874

computed the results of variation of field intensity for different boundary conditions of the
semi-infinite duct at n from 10 to 150 by step 10 given in Table 1. From this table, it is evident
that the presence of soft boundary condition induces a good noise reduction as compared
with hard boundary conditions.

The values of specific impedance ζ = ξ + iη (= z/ρ0c) for an absorbing sheet which
seem to have practical importance are [13]

fibrous sheet: ξ = 0.5, −1 < η < 3,

perforated sheet: 0 < ξ < 3, −1 < η < 3.

The convergence of the field can be checked through the relative error for which the
suitable definition would be

En = max
x,y

∣∣Φn

(
x, y

)
−ΦN

(
x, y

)∣∣
∣
∣ΦN

(
x, y

)∣∣ , (7.1)

where Φn(x, y) is the solution obtained using the truncation number n and N is suitably large
truncation number (N = 150).

For a comprehensive numerical study, we need a considerable number of graphs
because of the number of parameters which determine the diffracted field. The computer
programme “MATHEMATICA 5.2” is used for the numerical evaluation and graphical
representation of the functions given by (6.1) and (7.1).

In Figures 3 and 4, the field intensity is plotted against the wave number k for different
values of noise reduction parameters, that is, ξ (real part of ζ ) and η (the imaginary part of
ζ).

In Figure 5, the reflected field is plotted against wave number k for different values of
b (separation distance between the infinite plates). In Figure 6, variation of relative error En

against truncation number n is plotted.
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Figure 3: Variation of field intensity |R1| with wave number k for several values of ξ corresponding to
η = 0.5, a = 1, and b = 3a.
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Figure 4: Variation of field intensity |R1| with wave number k for several values of η corresponding to
ξ = 1, a = 1, and b = 3a.

The main findings from the analysis are summarized in the following points.

(i) Global speaking, it is noted that the reflected field is a decreasing function of the real
and imaginary parts of the absorbing parameter but with relative or local maxima
and minima.

(ii) Gradually increase in the separation distance between the infinite plates yields a
decrease in the value of reflected field intensity.

(iii) The absolute values of the reflection coefficient are in accordance with the
conservation of energy rules.
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Figure 5: Variation of |R1| with k for several values of b corresponding to η = 1, ξ = 2.50, and a = b/2.
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Figure 6: Variation of relative error En with truncation number n corresponding to a = 0.5, b = 3a, x = −0.1,
k = 0.7, y = 1, ξ = 0.5, and η = 1.

(iv) The findings confirm that the relative error reduces by increasing the truncation
number n.

(v) The established results clearly show the contribution that arises because of the soft
surfaces.

8. Final Remarks

Computation of acoustic diffraction is very important in the analysis of acoustic waveguide
systems. In this study the Wiener-Hopf method has been used for diffraction of acoustic
waves in a trifurcated waveguide. The problem consists of absorbing and soft surfaces. A
sound wave of first mode propagating out of the mouth of the semi-infinite soft duct is taken
into account. The problem is formulated first and then solved analytically. For the quality of
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the computation, the comparison of the hard [13] with the soft boundary conditions of the
semi-infinite duct is discussed in detail. To enhance the quality of the results some graphs
are plotted for sundry parameters of interest using wave number versus reflection coefficient
of first mode in absolute value. It is observed that soft surfaces show good noise reduction
effects on the noise transmitted through the waveguide as compared with hard surfaces
[13]. This is a canonical problem of mathematical interest. The reported results are shown
conclusively and present a comprehensive introduction on the current state of art within the
field of guide acoustics.

Appendix

The main purpose of this appendix is to give the complete factorization of the kernel functions
K(α) and W(α) and to show their asymptotic behavior as |α| → ∞. The factorization of these
functions K(α) and W(α) is of the form

K(α) = K+(α)K−(α), W(α) = W+(α)W−(α), (A.1)

where K+(α) and W+(α) denote certain functions which are regular and free of zeros in upper
half plane Imα > − Imk and K−(α) and W−(α) denote certain functions which are regular and
free of zeros in lower half plane Im α < Imk.

We may note that the functions K(α) and W(α) are even in Fourier transform
parameter α and more precisely their respective derivatives are zero at α = 0. So these
functions can be factorized by applying the infinite product expansion of an integral function
with infinitely many zeros [15, 20]. For given K(α) by (3.28), we have

K(α) =
κ(cosκb − (iζ/k)κ sinκb)

cos κa(sinκ(b − a) + (iζ/k)κ cos κ(b − a))
. (A.2)

It is evident that the product factorization of K(α) depends upon the factorization of

L(α) = cosκb −
(
iζ

k

)
κ sin κb,

N(α) =
sin κ(b − a)

κ
+
(
iζ

k

)
cosκ(b − a),

P(α) = cosκa.

(A.3)

By employing the procedure outlined by Mittra and Lee [21], we have

L+(α) =
√

cos kb − iζ sin kb exp
{
iαb

π

[
1 − C − ln

( |α|b
π

)
+
iπ

2

]} ∞∏

n=1

(
1 +

α

σn

)
exp

(
iαb

nπ

)
,
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N+(α) =

√
sin k(b − a)

k
+
(
iζ

k

)
cos k(b − a) exp

{
iα(b − a)

π

[
1 − C − ln

( |α|(b − a)
π

)
+
iπ

2

]}

×
∞∏

n=1

(
1 +

α

α̃n

)
exp

(
iα(b − a)

nπ

)
,

P+(α) =
√

cos ka exp
{
i2αa
π

[
1 −C − ln

( |α|2a
π

)
+
iπ

2

]} ∞∏

n=1

(
1 +

α

χ̃2n−1

)
exp

(
i2αa

(2n − 1)π

)
,

(A.4)

with

K+(α) =
L+(α)

N+(α)P+(α)
. (A.5)

Thus

K(α) = K+(α)K−(α), (A.6)

where

K+(α) =

√
k(cos kb − iζ sinkb)

cos ka(sink(b − a) + iζ cos k(b − a))

×
exp{(iαb/π)[1 − C − ln(|α|b/π) + iπ/2]}

exp{(i2αa/π)[1 − C − ln(|α|2a/π) + iπ/2]}

× 1
exp{(iα(b − a)/π)[1 −C − ln(|α|(b − a)/π) + iπ/2]}

×
∞∏

n=1

(1 + α/σn) exp(iαb/nπ)
(
1 + α/χ̃2n−1

)
exp(i2αa/((2n − 1)π))(1 + α/α̃n) exp(iα(b − a)/nπ)

.

(A.7)

Here σ,
ns, α̃

,
ns and χ̃,

2n−1s are the roots of the functions L(α), N(α), and P(α), respectively,

L(σn) = 0, N(α̃n) = 0, P
(
χ̃2n−1

)
= 0, n = 1, 2, 3, . . . . (A.8)

with

L−(α) = L+(−α), N−(α) = N+(−α), P−(α) = P+(−α) (A.9)

and C being Euler’s constant given by C = 0.57721 . . . and K+(α) = K−(−α). In the respective
region of analyticity, when |α| → ∞,

K±(α) = O
(
|α|1/2

)
. (A.10)



18 ISRN Applied Mathematics

Similarly, for W(α) given by (3.29),

W(α) =
κ(sinκb + (iζ/k)κ cosκb)

sinκa(sin κ(b − a) + (iζ/k)κ cosκ(b − a))
. (A.11)

By following the above procedure [21], we can write

W+(α) =

√
k(sinkb + iζ cos kb)

sinka(sin k(b − a) + iζ cos k(b − a))

×
exp{(iαb/π)[1 − C − ln(|α|b/π) + iπ/2]}
exp{(iαa/π)[1 − C − ln(|α|a/π) + iπ/2]}

× 1
exp{(iα(b − a)/π)[1 −C − ln(|α|(b − a)/π) + iπ/2]}

×
∞∏

n=1

(1 + α/σ̃n) exp(iαb/nπ)
(1 + α/σ̂n) exp(iαa/nπ)(1 + α/α̃n) exp(iα(b − a)/nπ)

,

(A.12)

with

W+(α) = W−(−α). (A.13)

Also, when |α| → ∞, in the respective region of analyticity,

W±(α) = O
(
|α|1/2

)
. (A.14)
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