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With the emerging trend of restructuring in the electric power industry, many transmission lines have been forced to operate at
almost their full capacities worldwide. Due to this, more incidents of voltage instability and collapse are being observed throughout
the world leading to major system breakdowns. To avoid these undesirable incidents, a fast and accurate estimation of voltage
stability margin is required. In this paper, genetic algorithm based back propagation neural network (GABPNN) has been proposed
for voltage stability margin estimation which is an indication of the power system’s proximity to voltage collapse. The proposed
approach utilizes a hybrid algorithm that integrates genetic algorithm and the back propagation neural network. The proposed
algorithm aims to combine the capacity of GAs in avoiding local minima and at the same time fast execution of the BP algorithm.
Input features for GABPNN are selected on the basis of angular distance-based clustering technique. The performance of the
proposed GABPNN approach has been compared with the most commonly used gradient based BP neural network by estimating
the voltage stability margin at different loading conditions in 6-bus and IEEE 30-bus system. GA based neural network learns
faster, at the same time it provides more accurate voltage stability margin estimation as compared to that based on BP algorithm.
It is found to be suitable for online applications in energy management systems.

1. Introduction

Voltage stability is concerned with the ability of the power
system to maintain acceptable voltages at all the system buses
under normal conditions as well as after being subjected to
a disturbance. Thus, the analysis of voltage stability deals
with finding the voltage levels at all buses in the system
under different loading conditions to ascertain the stability
limit and margin. A power system enters a state of voltage
instability when a disturbance, increase in load demand
or change in system conditions causes a progressive and
uncontrollable decline of bus voltages.

The main factor causing voltage instability is the inability
of the power system to meet the reactive power demand.
In most of the cases, voltage profiles show no abnormality
prior to undergoing voltage collapse because of the load
variation. Voltage stability margin (VSM) is a static voltage
stability index which is used to quantify how “close” a
particular operating point is to the point of voltage collapse
[1]. Thus, VSM may be used to estimate the steady-state

voltage stability limit of a power system. Knowledge of the
voltage stability margin is of vital importance to utilities in
order to operate their system with appropriate security and
reliability

During the last few years, several methodologies for
detecting the voltage collapse points (saddle-node bifurca-
tions) in power systems using steady-state analysis tech-
niques have been modified and applied for the determination
of analyzing voltage stability of power systems for example
PV and QV curves, sensitivity-based indices [2] and contin-
uation power flow methods [3, 4]. Other methods, such as
bifurcation theory [5], energy function [6], singular value
decomposition [7], and so forth, have been also reported in
the literature.

These analytical methods involve considerable compu-
tational effort and require significantly large computational
time and, hence, cannot be used directly for online monitor-
ing and initiation of preventive control actions to enhance
system voltage stability. For online applications, there is
a need for quick detection of the potentially dangerous
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situations of voltage instability so that necessary actions may
be taken to avoid the occurrence of voltage collapse in a
power system.

Recently, artificial neural networks (ANNs) have been
proposed for voltage stability evaluation [1, 8–16] as they
have the ability to properly classify a highly nonlinear
relationship, and, once trained, they can classify new data
much faster than it would be possible by solving the
model analytically. However, most of the published work
in the area of voltage stability employed either multi-
layer perceptron networks trained by back propagation
algorithm [8–14]. In reference [13], the energy function-
based voltage stability indicator is predicted using the multi-
layer perception (MLP) with a second-order learning rule
and the radial basis function (RBF) network. The input
to the neural network consists of real and reactive power
injections at all load buses in the system for a particular
loading condition, while the output of the network is the
energy margin. In [14], an approach based on artificial feed-
forward neural network (FFNN) is presented for assessing
power system voltage stability. The approach uses real and
reactive power, as well as voltage vectors for generators
and load buses to train the neural net (NN). The input
properties of the NN are generated from offline training
data with various simulated loading conditions using a con-
ventional voltage stability algorithm-based on the L-index.
In reference [1] parallel self-organizing hierarchical neural
network is developed for assessing power system voltage
stability while in [15, 16], Kohonen’s self-organizing feature
map (SOFM) has been proposed for quantifying stability
margins.

In typical power systems, there are voluminous amount
of input data. Then, the success of ANN applications also
depends on the systematic approach of selecting highly
important features which will result in a compact and effi-
cient ANN. Different feature reduction methods for voltage
stability assessment are compared in [17]. Feature reduction
is crucial for the success of ANN application, although
each has its own merit and demerit. Feature selection based
on clustering technique can identify important parameters
directly measurable from the power system.

Voltage instability is, in general, caused by either of
two types of system disturbances: increase in load demand
and contingencies. In the present paper, voltage instability
due to increase in load demand is considered. A genetic
algorithm-based back propagation neural network [18–23]
has been proposed for voltage stability margin estimation
which evaluates system stability from static viewpoint. Input
features for GABPNN are selected by applying angular
distance-based clustering technique in the real and reactive
loads [24, 25].

These conventional methods of voltage stability assess-
ment are computationally intensive and data sensitive. On
the other hand, artificial neural network-based approach is
fast and provides result even with partially missing/noisy
data. Back propagation (BP) searches on the error surface
by means of the gradient descent technique in order to
minimize the error. It is therefore likely to get struck in
a local minimum [18]. On the other hand in GABPNN,

there exist genetic algorithms (GA) which are adaptive search
and optimization algorithms that mimic the principles
of natural genetics. Genetic algorithms are quite different
from traditional search and optimization techniques used in
engineering design problems but at the same time exhibit
simplicity, ease of operation, minimal requirements, and
global perspective.

2. Genetic Algorithm-Based BP Neural Network

The idea to hybridize the two approaches, namely, GA and
BPN follows naturally. Rajasekaran and Pai [20] used GAs
to guide back propagation network in finding the necessary
connections instead of full connections in order to enhance
the speed of training. The general schematic of the genetic
algorithm (GA) is considered to be a stochastic heuristic (or
metaheuristic) method. Genetic algorithms are inspired by
adaptive and evolutionary mechanisms of live organisms.

Genetic algorithm is an adaptive search technique used
for solving mathematical problems and engineering opti-
mization problems that emulates Darwin’s evolutionary
theory that is fittest is likely to survive. Genetic algorithm
attempts to find a good (or best) solution to the problem
by genetically breeding a population of individuals over a
series of generations. In genetic algorithm, each individual
in the population represents a candidate solution to the
given problem. The GA transforms a population (set) of
individuals, each with an associated fitness value, into a new
generation of the population using reproduction, crossover
and mutation. Core of the GA is genetic recombination
of strings. Generally, a population of strings is randomly
generated at the beginning of the process.

An important characteristic of GA is that global feature
of search is related to the diversity of the initial population:
the more diverse the population, the more global the search.
From the initial population, selection strategy based on
fitness proportion is adopted to select individuals in current
population. Higher selective pressure often leads to the
loss of diversity in the population, which causes premature
convergence but at the same time improves convergence
speed. Therefore, a balance is required between population
diversity and convergence speed for obtaining the good
performance of GA. Then reproduction, cross-over, and
mutation operators are randomly applied to produce next
generation population until genetic stopping condition is
satisfied.

When the GA is correctly implemented for solving any
problem, the population evolves over successive iterations
with the fitness value increasing towards global optimum.
Several features of GAs like no dependency on gradient
information, less likely to be trapped in local minima,
ability to deal with the problems where no explicit/exact
objective function is available, ability to deal with the concave
objective function-based optimization problems, and make
them much more robust than many other search algo-
rithms. Moreover GAs are much superior to conventional
search and optimization techniques in high-dimensional
problem space due to their inherent parallelism and directed
stochastic search implemented by recombination operators.
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Table 1: Genetic algorithm operations.

(A) Generate randomly an initial population of individuals.

(B) Carry out the following substeps iteratively for each
generation until a termination condition is fulfilled.

(i) Evaluate fitness of each individual to check its ability to solve
the specific problem and save the best individual of all preceding
population.

(ii) Select pair of individuals to be parents for reproduction on
the basis of their fitness.

(iii) Generate offsprings from parents by implementing genetic
search operators such as cross-over/mutation. Add them to the
population.

GA operates[18] through a simple cycle of three stages, which
are described in Table 1.

As shown in Table 1, in substep (ii), selection is based
on fitness, that is, the fitter an individual the greater the
chance for this individual to get selected for reproduction
and contribute offspring for the next generation. Cross-over
operator takes two chromosomes and swaps part of their
genetic information to produce new chromosomes. Mutation
is implemented by occasionally altering a random bit in
a string before the offsprings are inserted into the new
population. The performance of GA is achieved by having
a balanced combination of three control parameters. These
control parameters are crossover probability, mutation prob-
ability, and population size. Some important observations
related to GA are the following:

(i) Increasing the crossover probability increases the re-
combination of building blocks. But it also increases
the disruption of good strings.

(ii) Increasing the mutation probability tends to trans-
form the genetic search into random search, but it
also helps reintroduce lost genetic material.

(iii) Increasing the population size increases the diversity
and reduces the probability of premature conver-
gence to a local optimum, but it also increases the
time required for the population to converge to the
optimal region in the search space.

2.1. Weight Optimization Using GA for ANN Training.
Artificial neural networks and genetic algorithms are both
abstractions of natural processes. They are formulated into
a computational model so that the learning power of neural
networks and adaptive capabilities of evolutionary processes
can be combined [18]. Genetic algorithms can help to deter-
mine optimized neural network interconnection weights, as
well as, to provide faster mechanism for training of the neural
network. Training a given neural network generally means
to determine an optimal set of connection weights. This
is formulated as the minimization of some network error
functions, over the training data set, by iteratively adjusting
the weights. The mean square error between the target and
actual output averaged over all output nodes serves as a
good estimate of the fitness of the network configuration
corresponding to the current input. Conventionally a back-
propagation neural network (BPNN) updates its weights

Table 2: General framework of GAs for neural network training.

(i) Decode each individual in the current population into a set of
connection weights and construct a corresponding ANN with the
weights.

(ii) Evaluate the ANN by computing its total mean square error
between actual and target outputs.

(iii) Determine fitness of individual as inverse of error. The
higher is the error, the lower is the fitness.

(iv) Store the weights for mating pool formation.

(v) Implement search operators such as cross-over/mutation to
parents to generate offsprings.

(vi) Calculate fitness for new population.

(vii) Repeat steps (iii) to (vi) until the solution converge.

(viii) Extract optimized weights.

through a gradient descent technique with backward error
propagation. This gradient search technique sometimes gets
stuck into local minima. Gas, on the other hand, though
not guaranteed to find global optimum solution, have been
found to be good at finding “acceptably good” solutions
“acceptably quickly” [18].

The GA-based weight optimization during training of an
ANN follows two steps. The first step is encoding strings
for the representation of connection weights. The second
step is the evolutionary process simulated by GA, in which
search operators have to be implemented in conjunction
with the representation scheme. The evolution stops when
the population has converged. A population is said to have
converged when 95% of the individuals constituting the
population share the same fitness value [20]. The whole
process for neural network training using a genetic algorithm
is shown in Table 2.

Obstacles to the success of GA in evolving the weights
for a fixed network structure include the manner in which
weights are encoded to the chromosomes and the defini-
tion of the “fitness function” that allows the preferential
reproduction of good offsprings and prevents premature
convergence to a poor solution [18, 20]. Although GA offers
an attractive way to optimize ANN weights, it is relatively
slow in local fine tuning in comparison to gradient methods.
A desirable approach in this case would be to integrate a local
gradient search with the GA.

2.2. Weight Extraction. To determine the fitness value for
each of the chromosomes, we extract weight from each of
chromosomes.

Let x1, x2, . . . , xd, . . . , xL represent a chromosome and
xkd+1, xkd+2, . . . , x(k+1)d represent the kth gene (k ≥ 0) in the
chromosome. The actual weight is given by

wk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

+
xkd+210d−2 + xkd+310d−3 + · · · x(k+1)d

10d−2
,

if 5 ≤ xkd+1 ≤ 9,

−xkd+210d−2 + xkd+310d−3 + · · · x(k+1)d

10d−2
,

if 0 ≤ xkd+1 ≤ 5.

(1)
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Figure 1: Vectors y shown in 3-dimensional space.

2.3. Feature Selection. In any neural network application,
if a large number of input variables are used, the number
of interconnection weights will increase and the training of
neural network will be extremely slow. To overcome this
problem, those variables are selected as input to a neural
network that has significant effect on its output, that is, on
voltage stability margin. Performance of any neural network
mainly depends upon the input features selected for its
training. It is essential to reduce the number of inputs to a
neural network and to select its optimum number.

To select the input features, angular distance base-
clustering method is used. The basic principle for clustering
is to group the total N system variables (S1, S2, . . . , SN ) into
G clusters such that the variables in a cluster have similar
characteristics and then pick out one representative variable
from a cluster as the feature for that cluster. This will reduce
the number of system variables from N to G. For the purpose
of feature selection using the clustering technique, let M
training patterns are created.

With the state vector X ′′ = [x′i1, x′i2, . . . , x′iN ] (i =
1, 2, . . . ,M) at hand, From the matrix X ′

X ′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x′11 x′12 ... x′1N
x′21 x′22 ... x′2N

...
... ...

...

x′M1 x′M2 ... x′MN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

←− operating point 1

←− operating point 2

...
...

...
...

←− operating point M

(2)

It is observed that row i of matrix X ′ contains the value
for N-system variables (S1, S2, . . . , SN ) at operating point i
while column j of matrix X ′ consists of the Sj variable in
the M training patterns. Define the column vector Yj =
[X ′l j , . . . ,X

′
Mj]

T = [Y ′l j , . . . ,Y
′
Mj]

T . Then the variables Sj can
be clustered based on these vectors Yj .

Those system variables with similar vector Y will be
grouped in a cluster. As shown in Figure 1, two vectors y1
and y2 which are similar to each other will have a small angle
between them. We can, therefore, put a group of these similar
vectors in a cluster. To do this, define the cosine value of the

angle θjk between two vector Yj and Yk as

cos
(

ϕjk

)

=
(

YjYk

)

(∣
∣
∣Yj

∣
∣
∣|Yk|

) . (3)

This cosine value can be used to evaluate the degree of
similarity between two vectors. If cos(θjk) is greater than a
specified threshold ρt , the two vectors Yj and Yk are regarded
as two similar vectors and are put in the same cluster. Details
of clustering algorithm are described as follows.

Step 1. Let the system variable Sl belong to cluster 1 and
the cluster vector for cluster 1 be equal to column Cl =
[cl1, . . . , cMl]

T vector Yl, that is,

cil = yil for l = 1, 2, . . . ,M. (4)

Set initial count j = 0, G = 1.

Step 2. Increase j by one.

Step 3. Compute the cosine value Dg between vector Yj and
Cg (g = 1, 2, . . . ,G)

Dg =
(∑M

i=1 yi jcig
)

(∑M
i=1 y

2
i j

∑M
i=1 c

2
ig

)1/2 , g = 1, 2, . . . ,G. (5)

Let Dgm = max(Dg).
If Dgm < ρt (a specified threshold), the present vector Yj

is far from any existing cluster vectors, and we have to create
a new cluster for system variable Sj .

Step 4. If Dgm > ρt, the present vector Yj is close to cluster
vector Cgm of cluster gm, and system variable Sj should be
assigned gm. Proceed to Step 4.

If vector Yj has not been presented before, let system
variable Sj be grouped in cluster gm, then update the cluster

vector Cgm = [c1gm, c2gm, . . . , cMgm]T as follows:

cigm = yil + cigmkgm i = 1, 2, . . . ,M, (6)

where kgm is the number of system variable in cluster gm.
Go to Step 6. If the vector Yj has been presented before and
variable Sj has been grouped in cluster gm, go to Step 6.

If vector Yj has been presented before and variable Sj has
been grouped in a different cluster gm′ , move system variable
Sj to cluster gm and execute the update formulae.

Cigm = yi j + Cigmkgm, i = 1, 2, . . . ,M,

Cigm′ = −yi j + Cigm′kgm′ , i = 1, 2, . . . ,M,
(7)

where kgm is the number of system variable in cluster vector
gm. In this case, this is a move in cluster elements. Go to
Step 6.

Step 5. Create a new cluster gn for system variable Sj with the
cluster vector

Cgm =
[

c1gm, c2gm, . . . , cMgm

]T
, (8)

where cigm = yi j , i = 1, 2, . . . ,M.
Increase G by one and go to Step 6.
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Step 6. If j = N , proceed to Step 7; otherwise, go to Step 2.

Step 7. If there is any move in cluster elements in the
preceding N iterations, reset j to zero and proceed to Step 2.
Otherwise, go to Step 8.

Step 8. For each cluster g, find a system variable Sg whose
column vector yg is closest to the cluster vector Cg , that is,

(∑M
i=1 yg jcig

)

(∑M
i=1 y

2
g j

∑M
i=1 c

2
ig

)1/2 ≥
(∑M

i=1 yi jcig
)

(∑M
i=1 y

2
i j

∑M
i=1 c

2
ig

)1/2 . (9)

For any Sj in cluster g, let system variable Sg be the feature
for cluster g. Store the system variables and feature variable
for each cluster and stop.

2.4. Data Normalization. During training of a neural net-
work, the higher valued input variables may tend to suppress
the influence of smaller ones. To overcome this problem,
the neural networks are trained with normalized input data,
leaving the network to learn weights associated with the
connections emanating from these inputs. The raw data are
scaled in the range 0.1–0.9 for use by neural networks to
minimize the effect of magnitude between input [18]. In case
of output variable, if it assumes values close to unity (≥1) or
(0), it causes difficulty in training as the value unity or zero
are practically never realized by the activation or threshold
function. A way to overcome this difficulty is to normalize
the variables (×) to keep its values between some suitable
range (say 0.1 and 0.9). In the present application, each input
parameter (×) is normalized as ×n before being applied to
the neural network according to the following equation:

xn = 0.8× (x − xmin)
xmax − xmin

+ 0.1, (10)

where xmax and xmin are the maximum and minimum value
of data parameter X . The input data are normalized between
0.9 and 0.1. Similarly, output data (VSM) are normalized
between 0.9 and 0.1. During testing phase, the output of the
neural network is demoralized to obtain the actual value of
voltage stability margin.

3. Solution Algorithm

Sequential steps (flowchart) for developing GABPNN pro-
posed for voltage stability margin estimation are illustrated
in Figure 2. The algorithm for VSM estimation has been
summarized as follows.

Step 1. Generate a large number of load patterns by perturb-
ing the loads at all the buses in wide range randomly.

Step 2. Normalize input data as selected from the angular
distance base-clustering method and the output, that is,
voltage stability margin λ0 to train the GABPNN.

Step 3. Set numbers of generations for genetic optimization
of weights.

Step 4. Initialize structure for the neural network, that is,
input-hidden-output nodes for determining the number of
weights.

Step 5. Set generation count as g = 0.

Step 6. Generate randomly the initial population pg of real
coded chromosomes CG

g , where G is population size.

Step 7. Extract weights for each of the population Pg .

Step 8. Calculate the fitness value for each individual in the
population as,

Fitness = 1
(RMS error)

. (11)

Step 9. Get the mating pool ready by replacing worst fit
individuals with high-fit individuals.

Step 10. Using cross-over mechanism, reproduce offsprings
from the parent chromosomes.

Step 11. Next generation population is achieved. Increase
generation count by 1, that is,

g = g + 1. (12)

Step 12. Check, if g < G, then go to Step 7, otherwise go to
next step.

Step 13. Training is complete. Extract optimized weights
from converged population PG.

Step 14. Test the developed GABPNN for unseen load
patterns.

In the proposed GABPNN, GA performs the weight
adaptation for acquiring the minimized error during the
training. Before executing certain task, GA requires several
parameters to be devised for its proper functioning. Some of
them are gene encoding, population initialization, selection,
reproduction, fitness evaluation, and so forth. The basic
computing elements in GAs are genes, which are joined
together to form a string of values referred to as a chro-
mosome. Genes encoding is required to represent weights.
To carry out efficient weight optimization in ANN, it is
important to have a proper encoding scheme.

There is no definite view in the literature about suitability
of encoding schemes for chromosomes. Too complicated
scheme provides high flexibility in problem representation
but may reduce GA’s efficiency due to complicated opera-
tions. On the other hand, too simple representation may
suffer from slow or premature convergence. This requires
a careful selection of an encoding scheme such that GA
operations are not compromised but still provides enough
flexibility to support dynamic weight adaptation. In the
present work, real value coding is adopted for gene encoding.

Size of the population of individuals (chromosomes) is
generated randomly to start the genetic search procedure.
The size of population depends upon number of weights
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Start

Generate load patterns

Run CPF to compute VSM
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Create network
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weights

Execute activation
function
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values
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(next generation population)

Training is complete. Test GABPNN

Figure 2: Flow chart for VSM estimation using GABPNN.

to be optimized multiplied by gene length. The number
of weights to be optimized is determined from neural
network configuration. In this work, artificial neural network
architecture is assumed to be fixed. If the artificial neural
network architecture is x-y-z, that is, x input neurons, y
hidden neurons and z output neurons, then

Number of weights
(
genes

) = (x + z)∗ y, (13)

Population size
(
chromosome length

) = (x + z)∗ y ∗ d,
(14)

where d = gene length. Choosing a population size of (x +
z) ∗ y ∗ d, an initial population of Pi chromosomes is to be
randomly generated.

Thus, population size depends upon the number of digits
to be used to represent each weight. An appropriate gene
length is required for an adequate population size. This
way selection of digits to represent a weight is of great
importance. Too few digits may result in poor convergence,
while a large number of digits per weight will lead to slow
convergence due to very long chromosomal string. In the
present work, each weight is encoded as a fixed 5-digit string

(i.e., d = 5), representing weights in the range [−5,5].
After deciding the encoding scheme and generating an initial
population of chromosomes, the program for GABPNN was
implemented, as explained above.

Convergence is the progress towards increasing uni-
formity in fitness values, as each time lowest fitness is
replaced with maximum fitness value. Fitness function is
taken as inverse of root mean square error (RMS) function.
For the converged population, that is, group of individuals
comprising minimum RMS, final optimized weights are
extracted and decoded. These optimized weights belong to
the trained GABPNN, which is ready for testing on unseen
load patterns.

4. System Studies

The GA-based back propagation neural network approach
has been implemented for voltage stability margin estimation
for standard 6-bus system [18] and IEEE 30-bus system
[26]. Though the GABPNN-based approach performed well
in both the test systems, but due to limited space, the
results of only one test system, that is, IEEE 30-bus system
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Table 3: Output and error during testing of GABPNN (10-4-1).

TP Voltage stability margin
Error (p.u.) Error (% age) TP

Voltage stability margin
Error (p.u.) Error (% age)

Actual By GABPNN Actual By GABPNN

1 1.45935 1.4304 0.029 1.9849 2 1.62284 1.6169 0.0059 0.3612

3 1.57712 1.5733 0.0038 0.2397 4 1.41375 1.3865 0.0272 1.9244

5 1.64237 1.6341 0.0083 0.5061 6 1.52868 1.5105 0.0182 1.1905

7 1.55574 1.5763 −0.0206 −1.3238 8 1.43946 1.4307 0.0088 0.6145

9 1.5849 1.584 0.0009 0.0561 10 1.47208 1.5002 −0.0281 −1.9118

11 1.41474 1.4116 0.0031 0.2221 12 1.52114 1.5229 −0.0018 −0.1206

13 1.48234 1.5262 −0.0439 −2.9627 14 1.49136 1.4847 0.0067 0.4479

15 1.51966 1.5246 −0.0049 −0.3213 16 1.52114 1.5486 −0.0275 −1.8086

17 1.71256 1.7131 −0.0006 −0.0356 18 1.58577 1.6148 −0.029 −1.8276

19 1.65003 1.6502 −0.0002 −0.011 20 1.59516 1.595 0.0001 0.0048

21 1.45626 1.4538 0.0025 0.1718 22 1.52262 1.5097 0.0129 0.8503

23 1.5655 1.5485 0.017 1.0834 24 1.47739 1.4733 0.0041 0.276

25 1.55784 1.5675 −0.0096 −0.6174 26 1.82254 1.8215 0.0011 0.0619

27 1.43748 1.4152 0.0223 1.5501 28 1.44526 1.4396 0.0057 0.394

29 1.61876 1.5927 0.0261 1.6113 30 1.68389 1.6946 −0.0107 −0.6365

TP: Testing Pattern.

are given in this paper. The IEEE 30-bus system consists
of 30 buses and 41 lines. The GABPNN is trained in
order to estimate the voltage stability margin λo under
changing load in normal system operation. For voltage
stability margin estimation, 250 load patterns were generated
by varying loads randomly at all the buses in the range
of 50 to 160% of their base case values and utilizing the
corresponding voltage stability margin value as obtained
from continuation power flow method (UWPFLOW) [27].
As voltage stability problem usually occurs due to loading
condition of a power system, the real and reactive power
injections are considered as possible inputs for the GA-based
neural network. Input features are selected by applying angu-
lar distance-based clustering technique. Using this feature
selection method, 8 no. of power injections (P2, P8, P9,
P11, P12, Q8, Q11, Q12) were selected with the threshold
ρt as 0.936. In addition to these features, total real and
reactive loads of the power system were selected as input
features making the total number of input variable equal
to 10.

Out of 250 patterns, 200 patterns are selected randomly
for training and the remaining 50 for testing the performance
of the trained GABPNN model. During training, it has been
found that the number of hidden nodes has affected the
convergence rate by increasing or decreasing the complexity
of the neural network architecture. Hence, hidden nodes
are selected on the “trial and error” basis for obtaining
fitness convergence in the minimum number of generations
with high convergence rate. In VSM estimation problem, the
optimum size of the GABPNN has been found to be 10-4-
1. The optimal training for GABPNN was achieved in 15
iterations only.

During testing phase, the 50 testing patterns were tested
for evaluating the performance of the trained GABPNN. The
testing results of all the 30 patterns are shown in Table 3 and
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Figure 3: Testing performance of the trained GABPNN and BPNN.

in Figure 3. As can be observed from the table and figure,
the trained GABPNN provided good results during testing
phase.

4.1. Comparison of GABPNN and BPNN. As the BP neural
network is the most popular ANN model and has been
implemented in almost every area of engineering, in this
paper the performance of GABPNN model has been com-
pared with BPNN model. To compare the effectiveness of
the proposed GABPNN approach, a BP model with the same
structure that is 10-4-1 was trained for 2500 iterations. The
testing results of the trained BPNN are given in Table 4. As
can be observed from Table 4, the testing performance of BP
model was not satisfactory. This model provided maximum
error as 15.71% with rms error of 0.113 pu. On the other
hand, the developed GABPNN provided the maximum error
of 3.51% and rms error 0.021 pu. However, the training time
for both the models was almost same (approximately 13.5
seconds).
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Table 4: Output and error during testing of BPNN (10-4-1).

TP
Voltage stability margin

Error (p.u.) Error (% age) TP
Voltage stability margin

Error (p.u.) Error (% age)
Actual By BPNN Actual By BPNN

1 1.45935 1.6012 −0.1419 9.72028 2 1.62284 1.60577 0.01707 1.05201

3 1.57712 1.6534 −0.0763 4.83691 4 1.41375 1.59554 −0.1818 12.8586

5 1.64237 1.6064 0.03596 2.18981 6 1.52868 1.60288 −0.0742 4.85421

7 1.55574 1.59965 −0.0439 2.82266 8 1.43946 1.59497 −0.1555 10.8038

9 1.5849 1.55658 0.02833 1.78727 10 1.47208 1.59467 −0.1226 8.32796

11 1.41474 1.595 −0.1803 12.7416 12 1.52114 1.56406 −0.0429 2.82164

13 1.48234 1.60372 −0.1214 8.18847 14 1.49136 1.54934 −0.058 3.88758

15 1.51966 1.55096 −0.0313 2.06016 16 1.52114 1.57032 −0.0492 3.23347

17 1.71256 1.60263 0.10993 6.41887 18 1.58577 1.59772 −0.012 0.75347

19 1.65003 1.58203 0.068 4.1212 20 1.59516 1.60209 −0.0069 0.43449

21 1.45626 1.59506 −0.1388 9.53137 22 1.52262 1.60296 −0.0803 5.27643

23 1.5655 1.54795 0.01755 1.12097 24 1.47739 1.60231 −0.1249 8.45509

25 1.55784 1.56032 −0.0025 0.15901 26 1.82254 1.54385 0.27869 15.2913

27 1.43748 1.60245 −0.165 11.4763 28 1.44526 1.58866 −0.1434 9.92211

29 1.61876 1.59693 0.02184 1.34888 30 1.68389 1.57389 0.11 6.53222

5. Conclusion

In this paper, a hybrid intelligent approach involving genetic
algorithm for artificial neural network development has been
proposed for voltage stability margin estimation in power
system. The fast and accurate estimation of VSM has been
considered as an effective way for assessing the stability of
a power system from viewpoint of voltage. Implementation
of GA makes it possible to achieve effective input-output
mapping in artificial neural network with considerable
speed-up in its training.

The proposed GABPNN approach sums up the goodness
of evolutionary computing and artificial neural networks
both. The value of this hybrid approach is that GA requires
no gradient information so less susceptible than back-
propagation to local variations in the error surface. Another
advantageous aspect is that they operate in a population of
possible solution candidates in parallel, instead of starting
with a single candidate and iteratively operate on it using
some sort of heuristics. The proposed approach provides
acceptably good generalization ability during testing and
found computationally efficient in VSM estimation. Suc-
cessful application of GABPNN establishes the suitability of
the proposed ANN model for online assessment of voltage
stability.
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