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We consider an agent who wants to liquidate an asset with unknown drift. The agent believes that
the drift takes one of two given values and has initially an estimate for the probability of either
of them. As time goes by, the agent observes the asset price and can therefore update his beliefs
about the probabilities for the drift distribution. We formulate an optimal stopping problem that
describes the liquidation problem, and we demonstrate that the optimal strategy is to liquidate the
first time the asset price falls below a certain time-dependent boundary. Moreover, this boundary
is shown to be monotonically increasing, continuous and to satisfy a nonlinear integral equation.

1. Introduction

This paper treats the problem of optimal timing for an irreversible sale of an indivisible asset
under incomplete information about its drift. The asset price is assumed to follow a geometric
Brownian motion X with unknown drift, and an agent who decides to sell at time t receives
at this time the amountXt. The objective of the agent is to choose a liquidation time for which
the expected value of the (discounted) asset price is maximised. Such problems are important
for all types of investors with insufficient knowledge of the future trend of an asset.

In the case with complete information about the model parameters of X, the corres-
ponding optimal liquidation problem is trivial. Indeed, if the drift is larger than the interest
rate, then on average the asset price grows faster than money in a risk-free bank account, and
the agent should keep the asset as long as possible. Similarly, a drift smaller than the interest
rate implies that the agent should liquidate the asset immediately, and instead deposit the
money in the bank. However, we remark that the assumption of complete information about
the parameters ofX is quite strong. While the volatility of an asset, at least in principle, can be
estimated instantaneously by observing the price fluctuations over an arbitrarily short time
period, the drift is notoriously difficult to estimate from historical data. In fact, to achieve
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a decent accuracy in the estimate for the drift, one typically needs observations of the process
from hundreds of years.

Instead, we allow for incomplete information by modelling the drift as a random var-
iable which is not directly observable for the agent. Initially, the agent’s beliefs about the drift
are summarised by a probability distribution. As time goes by, however, he observes the asset
price process, and based on these observations his beliefs may change. Naturally, if the asset
price rises quickly, then the agent will consider it more likely that the drift takes the larger
of the two values. Consequently, he would in this case postpone the liquidation. Similarly,
if the asset falls drastically, then it is likely that the true drift is small, and the agent would
be more inclined to liquidate his position early. We show below that this intuition is true;
that is, there exists a boundary between the continuation region and the stopping region such
that the optimal liquidation time coincides with the first time the asset price falls below this
boundary. We also derive monotonicity and continuity properties of the boundary, and we
show that it satisfies a nonlinear integral equation similar to the one which characterises the
optimal stopping boundary for the American put option.

Related problems of liquidating an indivisible asset have been studied in [1, 2]. These
papers study a risk-averse agent who wants to sell an indivisible asset with the possibility of
hedging some of the risk by investing in a correlated stock market. The paper [3], see also [4],
studies a problem of optimal selling of an asset, where optimality is measured by closeness
between the current asset price and its ultimate maximum over the whole time period. In all
the papers referred to above, the agent is assumed to have complete information about the
underlying price processes. The methods we use to treat the incomplete information in our
setting are standard and based on filtering theory see, for example, [5]. An early application
of these techniques is the sequential testing of two alternative hypotheses about the drift
of a Brownian motion; for further details and related references, see Chapter VI.21 in [6].
Similar techniques to tackle investment problems inmarkets with incomplete information are
also applied in [7, 8], where the problem of maximising expected utility of terminal wealth
by trading in different assets is studied. The papers [9, 10] study the optimal timing for an
investment under incomplete information. Mathematically, the investment problem in [9]
is equivalent to the pricing of an American call option written on an asset with unknown
drift. Using filtering techniques, the problem is reduced to an optimal stopping problemwith
complete information, but with two underlying spatial dimensions. A clever observation in
[10] reduces the two-dimensional problem into a one-dimensional optimal stopping problem,
but in general for a time-dependent payoff function (for one specific choice of parameters,
however, the time dependence disappears and the optimal stopping problem can be solved
explicitly). In the present paper, the optimal liquidation problem has a linear payoff, which
implies that the problem can be reduced to a one-dimensional optimal stopping problem for a
time homogeneous diffusion with an affine payoff regardless of what parameters are chosen.
Consequently, this reduced problem is straightforward to analyse using standard methods
from optimal stopping theory.

The present paper is organised as follows. In Section 2 we formulate the liquidation
problem with incomplete information, and we apply filtering techniques to write it as a two-
dimensional problem with complete information. Moreover, we apply a Girsanov transfor-
mation that reduces the problem to a one-dimensional optimal stopping problem for a time
homogeneous diffusion with an affine payoff function. We also provide the solution of the
optimal liquidation problem (in terms of the boundary of the auxiliary optimal stopping
problem); see Theorem 2.5. The auxiliary optimal stopping problem is treated in Section 3,
where we demonstrate the existence of a monotonically increasing and continuous optimal
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stopping boundary. We also show that the boundary together with the value function solves a
parabolic free boundary problem. In Section 4 we derive an integral equation for the optimal
stopping boundary. Finally, in Section 5 we study a related situation in which the agent seeks
an optimal time to close a short position in the asset.

2. The Optimal Liquidation Problem and Its Solution

To model the situation with incomplete information, we assume that the asset price process
X follows a geometric Brownian motion with unknown drift μ and constant volatility σ > 0.
More precisely,

dXt = μXtdt + σXtd˜Wt, t ≥ 0, (2.1)

where ˜W is a standard Brownian motion independent of μ on a probability space (Ω,F, P).
Here, for simplicity, we assume that the drift μ can only take two values μh and μl satisfying
μl < r < μh, where the interest rate r ≥ 0 is a constant, and the initial asset priceX0 is a positive
constant. We consider an agent who owns the asset and wants to liquidate his position before
a given future fixed time T > 0. At the initial time 0, the true value of the drift μ is not known,
but we assume that the agent has an initial guess for the probabilities of the events {μ = μl}
and {μ = μh}. More explicitly, we assume that the agent’s initial estimate of the probability
of the event {μ = μh} is a constant Π0 ∈ (0, 1). Accordingly, the estimate of the probability
of {μ = μl} is 1 − Π0. Furthermore, we assume that the agent can observe the value process
X, but neither the drift μ nor the Brownian motion ˜W . This is a natural assumption since, in
a real world situation, no underlying Brownian motion can be observed, and to estimate the
drift with a high precision is infeasible.

Example 2.1. Consider a Brownian motion Zt = at + bBt with drift a and volatility b (here
B is a standard Brownian motion). An estimate for the drift a based on observations over
the time period [0, t] would be â = Zt/t, and a 95% confidence interval is then given by
(â − 1.96b/

√
t, â + 1.96b/

√
t). Even if the volatility is small, say b = 0.1, in order for the

confidence interval to be reasonably tight, say (â − 0.02, â + 0.02), one needs approximately
100 years of observations! Moreover, the observation time that is needed grows (inverse)
quadratically in the length of the confidence interval.

The objective of this paper is to determine when to sell the stock in order to maximise
the expected wealth. More precisely, let {FX

t }t∈[0,T] be the completion of the filtration
generated by the process X. The agent then seeks an FX-stopping time τ with 0 ≤ τ ≤ T
for which the supremum

V = sup
0≤τ≤T

E
[

e−rτXτ

]

(2.2)

is attained, where the supremum is taken over FX-stopping times τ .

Remark 2.2. Note that in the omitted casesΠ0 = 0 andΠ0 = 1, the problem is simply a problem
with complete information, and the solution is trivial. Indeed, ifΠ0 = 1, then μ = μh and e−rtXt

is a submartingale, so optional sampling yields that V = X0e
(μh−r)T . Similarly, if Π0 = 0, then

e−rtXt is a supermartingale and V = X0. Also note that it is necessary to have T < ∞ in order
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to avoid a degenerate problem whenΠ0 > 0. In fact, plugging in the stopping time τ = n and
letting n tend to infinity shows that in the perpetual case we would have an infinite value V .

Remark 2.3. Inserting τ = 0 into (2.2) yields a lower bound V ≥ X0. Another lower bound
can be found by comparing with the corresponding “European value” X0(Π0e

(μh−r)T + (1 −
Π0)e(μl−r)T ) determined by inserting τ = T in (2.20). Moreover, an upper bound for V
can be found by observing that increasing ul to r simply gives a higher payoff. In that
case it is clear that e−rtXt is a submartingale, so the optional sampling theorem gives that
V ≤ X0(Π0e

(μh−r)T + 1 −Π0). Consequently,

max
{

X0, X0

(

Π0e
(μh−r)T + (1 −Π0)e(μl−r)T

)}

≤ V ≤ X0

(

Π0e
(μh−r)T + 1 −Π0

)

. (2.3)

Naturally, if Π0 is small, then the agent is rather confident that the true drift is ul,
and he would liquidate immediately and rather deposit the money in the bank. On the other
hand, if Π0 is close to one, then he considers it likely that the drift is uh, and he would prefer
to postpone the selling. By observing the process X, however, the agent’s estimates for the
probabilities of the events {μ = μh} and {μ = μl}may change. For t ≥ 0, let

Πt = P
[

μ = μh | FX
t

]

(2.4)

be the probability at time t that μ = μh conditional on the observations of X up to time t.
From Theorems 7.12 and 9.1 in Liptser and Shiryayev [5], the value process X and the belief
process Π satisfy

⎛

⎜

⎝

dXt

Xt

dΠt

⎞

⎟

⎠ =

(

μl + Πt

(

μh − μl

)

0

)

dt +

(

σ

ωΠt(1 −Πt)

)

dWt, (2.5)

where ω = (μh − μl)/σ and (W,FX) is a P -Brownian motion defined by

dWt = d˜Wt +
μ − (1 −Πt)μl −Πtμh

σ
dt. (2.6)

Note that the drift of X depends on Π, so the optimal stopping problem (2.2) has two
underlying spatial dimensions. However, since X and Π are both expressed in terms of the
same Brownian motion W , the number of spatial dimensions can be reduced. Indeed, in the
following we follow [10] and use a Girsanov transformation to reduce the problem to a one-
dimensional stopping problem.

To do this, define a new process W by

dWt = (ωΠt − σ)dt + dWt (2.7)
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and a new measure P ∗ by its Radon-Nikodym derivative

dP ∗

dP
= exp

{

−1
2

∫T

0
(σ −ωΠt)2dt +

∫T

0
(σ −ωΠt)dWt

}

= exp

{

1
2

∫T

0
(σ −ωΠt)2dt +

∫T

0
(σ −ωΠt)dWt

}

(2.8)

with respect to P . By Girsanov’s Theorem, W is a P ∗-Brownian motion. Next, define the
likelihood ratio Φ by Φt = Πt/(1 −Πt). A straightforward application of Ito’s formula gives

dΦt = ω2ΠtΦtdt +ωΦtdWt. (2.9)

Expressing the dynamics in terms of W gives

⎛

⎜

⎜

⎝

dXt

Xt

dΦt

Φt

⎞

⎟

⎟

⎠

=

(

μl + σ2

ωσ

)

dt +

(

σ

ω

)

dWt, (2.10)

so bothX andΦ are geometric Brownianmotions under P ∗. Moreover, the filtration generated
byW coincides with the one generated by X.

Define the likelihood process

ηt = exp

{

−1
2

∫ t

0
(σ −ωΠs)2ds +

∫ t

0
(ωΠs − σ)dWs

}

. (2.11)

Since (W,FX) is a P ∗-Brownian motion, the process η is an FX-martingale under P ∗. Let

Ft =
1 + Φt

1 + Φ0
. (2.12)

Then

dFt

Ft
=

dΦt

1 + Φt
= σωΠtdt +ωΠtdWt, (2.13)

so

Ft = exp

{

1
2

∫ t

0

(

2σωΠs −ω2Π2
s

)

ds +
∫ t

0
ωΠsdWs

}

. (2.14)

Consequently,

ηtXt = eμltFtX0. (2.15)
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Denote by E∗ the expectation operator with respect to the new measure P ∗, and let τ ≤ T be
an FX-stopping time. Then

E
[

e−rτXτ

]

= E∗[e−rτηTXτ

]

= E∗[e−rτητXτ

]

= X0E
∗
[

e(μl−r)τFτ

]

=
X0

1 + Φ0
E∗
[

e(μl−r)τ(1 + Φτ)
]

,
(2.16)

where the third equality follows by conditioning upon FX
τ together with the martingale

property of η.

Remark 2.4. Note that the measure change defined in (2.8) slightly differs from the one in
[9, 10], where the new measure instead is defined so that the Radon-Nikodym derivative
coincides with

exp

{

−1
2

∫T

0
ω2Π2

t dt −
∫T

0
ωΠtdWt

}

(2.17)

on FX
T . To reduce the number of spatial dimensions, Klein [10] then employs the equality

Xt = X0e
εt

(

Φt

Φ0

)β

, (2.18)

where

β =
σ

ω
=

σ2

μh − μl
, ε =

(

μh + μl − σ2)

2
. (2.19)

If ε = 0, then the obtained optimal stopping problem is time homogeneous, and an explicit
solution can be found. The measure change in (2.8) is tailormade for the situation of a linear
payoff structure considered in the current paper. Thanks to the linearity of the payoff, the
optimal stopping problem on the right-hand side of (2.16) is expressed in terms of a time
homogeneous diffusion Φ with an affine payoff function independent of time. Note that this
is the case not only for ε = 0 but also for all possible parameter values.

In view of (2.16), we introduce the auxiliary optimal stopping problem

Γ(t, z) = sup
0≤τ≤T−t

E∗
[

e(μl−r)τ(1 + Zτ)
]

, (2.20)

where

Zu := z exp

{(

σω − ω2

2

)

u +ωWu

}

, u ≥ 0, (2.21)
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and the supremum is taken over stopping times with respect to the filtration generated by
W . Note that

V =
X0Γ(0,Φ0)
1 + Φ0

. (2.22)

Moreover, an optimal stopping time for the problem (2.20) translates to an optimal stopping
time for the original problem (2.2).

In the next section we study the optimal stopping problem (2.20). In particular, we
prove the existence of a continuous andmonotonically increasing function b : [0, T] → [0,∞)
such that the stopping time

τ∗t,z := inf{u ∈ [0, T − t] : Zu ≤ b(t + u)} ∧ (T − t) (2.23)

is an optimal stopping time, that is, a stopping time for which the supremum in (2.20) is
attained. The following result is then a direct consequence of relation (2.18).

Theorem 2.5. Let b be the function described above, the existence of which is proved in
Proposition 3.2. Define the stopping time

τ∗ = inf

⎧

⎨

⎩

t : Xt ≤ X0

Φβ

0

eεtbβ(t)

⎫

⎬

⎭

∧ T. (2.24)

Then τ∗ attains the supremum in (2.2).

Remark 2.6. The optimal stopping boundary and the optimal stopping time τ∗ are illustrated
in Figure 1. Note that it also follows from the analysis of the auxiliary problem below
(in particular (3.25)) and relation (2.22) that V is the solution of a free boundary problem.
Indeed, straightforward calculations show that V = U(0,Φ0), where the function U(t, φ)
satisfies

Ut +
ω2φ2

2
Uφφ +

φ
(

1 + φ
)(

μh − μl

)

+ω2φ2

1 + φ
Uφ +

φ
(

μh − r
)

+ μl − r

1 + φ
U = 0 if φ > b(t),

U
(

t, φ
)

= X0 if φ ≤ b(t) or t = T,

Uφ

(

t, φ
)

= 0 if φ = b(t).
(2.25)

Remark 2.7. Note that the value V exhibits an easy monotone dependence on the model
parameters μl, μh, r, Π0, and T . The dependence on volatility is slightly more involved to
be analysed. However, it is a consequence of Corollary 2.7 in [11] that Γ is monotonically
increasing in the diffusion coefficient (i.e., in ω = (μh − μl)/σ), so V is decreasing in σ. The
intuition behind this is that, in the case of a small volatility, learning of the true value of the
drift is fast, which is beneficial for the agent.
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Figure 1: The optimal stopping boundary (X0/Φ
β

0)e
εtbβ(t), a simulated path of the asset price X, and the

optimal stopping time τ∗. We used the parameter values σ = 0.3, μh = 0.5, μl = −0.3, r = 0.1, T = 0.5,
X0 = 10, Π0 = 0.5.

3. The Auxiliary Optimal Stopping Problem

In this section we study the optimal stopping problem (2.20). This problem is similar to the
one arising in the valuation of American put options; compare [12] and Chapter 2.7 in [13].
We prove the existence of a monotone and continuous optimal stopping boundary, and we
show that the boundary and the value function Γ solves a related free boundary problem.

Recall that Z satisfies

dZu

Zu
= σωdu +ωdWu =

(

μh − μl

)

du +ωdWu, u ≥ 0. (3.1)

We will also use the representation Zu = zHu, where

Hu = exp

{(

σω − ω2

2

)

u +ωWu

}

. (3.2)

With this notation,

Γ(t, z) = sup
0≤τ≤T−t

E∗
[

e(μl−r)τ(1 + zHτ)
]

. (3.3)

Proposition 3.1. The function Γ : [0, T] × (0,∞) → (0,∞) is continuous.

Proof. Assume that z2 > z1 > 0, and let τ be an optimal stopping time for Γ(t, z2) in the sense
that

Γ(t, z2) = E∗
[

e(μl−r)τ(1 + z2Hτ)
]

(3.4)
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(such an optimal stopping time exists, see e.g., Theorem D.12 in [13]). Then we have

0 ≤ Γ(t, z2) − Γ(t, z1)

≤ E∗
[

e(μl−r)τ(1 + z2Hτ)
]

− E∗
[

e(μl−r)τ(1 + z1Hτ)
]

= (z2 − z1)E∗
[

e(μl−r)τHτ

]

.

(3.5)

Ito’s formula gives that the process Yt := e(μl−r)tHt satisfies

dYt =
(

μh − r
)

Ytdt +ωYtdWt. (3.6)

Since the drift (μh − r) is strictly positive, e(μl−r)tHt is a submartingale, so the Optional
Sampling Theorem gives that

0 ≤ Γ(t, z2) − Γ(t, z1) ≤ (z2 − z1)E∗
[

e(μl−r)(T−t)HT−t
]

= (z2 − z1)e(μh−r)(T−t), (3.7)

which shows that Γ is Lipschitz continuous in z.
Let 0 ≤ t1 < t2 < T and z ∈ (0,∞). Let τ1 denote an optimal stopping time for U(t1, z),

and set τ2 = τ1 ∧ (T − t2). Hence, 0 ≤ τ1 − τ2 ≤ t2 − t1. We then have

0 ≤ Γ(t1, z) − Γ(t2, z)

≤ E∗
[

e(μl−r)τ1(1 + zHτ1)
]

− E∗
[

e(μl−r)τ2(1 + zHτ2)
]

= E∗
[

e(μl−r)τ1 − e(μl−r)τ2
]

+ zE∗
[

e(μl−r)τ1Hτ1 − e(μl−r)τ2Hτ2

]

.

(3.8)

Now

E∗
[

e(μl−r)τ1Hτ1 − e(μl−r)τ2Hτ2

]

= E∗
[

e(μl−r)τ2Hτ2E
∗
[

e(μl−r)(τ1−τ2)Hτ1

Hτ2

− 1 | Fτ2

]]

≤ E∗
[

e(μl−r)τ2Hτ2

]

F(t2 − t1)

≤ e(μh−r)(T−t2)F(t2 − t1),

(3.9)

where

F(t) := E∗
[

sup
u∈[0,t]

e(μh−r−ω2/2)u+ωWu

]

− 1 (3.10)

and where we used the fact that e(μl−r)tHt is a submartingale. Note that F(t) → 0 as t → 0,
which implies that the second term on the right-hand side of (3.8) tends to zero as t2− t1 → 0.
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A similar argument applies to the first term in (3.8), thus showing that Γ is continuous as a
function of t. Since Γ is also uniformly continuous with respect to z, this finishes the proof.

Choosing the stopping time τ = 0 in (2.20), we find that Γ(t, z) ≥ G(z) := 1 + z. Define
the continuation region C by

C = {(t, z) ∈ [0, T) × (0,∞) : Γ(t, z) > G(z)} (3.11)

and the stopping region D by

D = {(t, z) ∈ [0, T] × (0,∞) : Γ(t, z) = G(z)}. (3.12)

According to general theory for optimal stopping problems, see, for example, [6], the
stopping time

τD = inf{0 ≤ s ≤ T − t : (t + s, Zs) ∈ D} (3.13)

is an optimal stopping time in (2.20). Therefore, to determine an optimal stopping time, it
suffices to determine the optimal stopping region D.

Define f(z) := LG(z) − (r − μl)G(z), where

LG(z) :=
ω2z2

2
Gzz(z) +

(

μh − μl

)

zGz(z) (3.14)

is the infinitesimal operator of Z. A simple calculation shows that

f(z) =
(

μh − r
)

z + μl − r

⎧

⎪

⎪

⎨

⎪

⎪

⎩

≥ 0 if z ≥ r − μl

μh − r
,

< 0 if z <
r − μl

μh − r
.

(3.15)

It therefore follows from Ito’s formula that e(μl−r)sG(Zs) is a submartingale for s ≤ inf{u : Zu <
(r−μl)/(μh−r)}. By the Optional Sampling Theorem, all points (z, t)with z > (r−μl)/(μh−r)
belong to the continuation region C.

A better bound for the stopping region D is easily derived by comparing Γ with the
corresponding “European value”. More precisely, we have that

Γ(z, t) = sup
0≤τ≤T−t

E∗
[

e(μl−r)τ(1 + Zτ)
]

≥ E∗
[

e(μl−r)(T−t)(1 + ZT−t)
]

= e(μl−r)(T−t) + ze(μh−r)(T−t).

(3.16)

Therefore, all points (z, t) such that z > (1 − e(μl−r)(T−t))/(e(μh−r)(T−t) − 1) satisfy Γ(z, t) >
1 + z; that is, they belong to the continuation region. Note that the function bE(t) := (1 −
e(μl−r)(T−t))/(e(μh−r)(T−t)−1) is increasing and satisfies bE(−∞) = 0 and bE(T) = (r−μl)/(μh−r).
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Proposition 3.2. There exists a nondecreasing and right continuous function b : [0, T) → [0, (r −
μl)/(μh − r)] such that

C = {(t, z) ∈ [0, T) × (0,∞) : z > b(t)}. (3.17)

Moreover, the supremum in (2.20) is attained for the stopping time

τD = inf{0 ≤ u ≤ T − t : Zu ≤ b(t + u)}. (3.18)

Proof. First note that

C = {(t, z) : Γ(t, z) > G(z)} = {(t, z) : Γ(t, z) > 1 + z}. (3.19)

For some fixed t ∈ [0, T) and z′ > z > 0, suppose that (t, z) is in C. Then there exists a stopping
time τ such that

E∗
[

e(μl−r)τ(1 + zHτ)
]

> 1 + z. (3.20)

Consequently,

Γ
(

t, z′
) ≥ E∗

[

e(μl−r)τ(1 + z′Hτ

)

]

= E∗
[

e(μl−r)τ(1 + zHτ)
]

+
(

z′ − z
)

E∗
[

e(μl−r)τHτ

]

> 1 + z +
(

z′ − z
)

E∗
[

e(μl−r)τHτ

]

.

(3.21)

Since the process Yt := e(μl−r)tHt is a submartingale, compare (3.6), the Optional Sampling
Theorem gives

Γ
(

t, z′
)

> 1 + z +
(

z′ − z
)

E∗
[

e(ε−r)τHτ

]

≥ 1 + z + z′ − z = 1 + z′.
(3.22)

Therefore, (t, z′) also belongs to the continuation region C, proving the existence of a function
b : [0, T) → [0,∞] such that

C = {(t, z) : t ∈ [0, T), z > b(t)}. (3.23)

The fact that b only takes values smaller than (r − μl)/(μh − r) follows from the discussion
before Proposition 3.2, and themonotonicity of b follows from themonotonicity of t �→ Γ(t, z).
Finally, the right continuity of b follows from the fact that the continuation region C is an open
set, and the optimality of τD is already established.
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Remark 3.3. In view of the discussion preceding Proposition 3.2, the optimal stopping
boundary b(t) satisfies

b(t) ≤ bE(t) =

(

1 − e(μl−r)(T−t))

(

e(μh−r)(T−t) − 1
) . (3.24)

A similar bound is then valid also for the optimal stopping boundary in Theorem 2.5.

Proposition 3.4. The value function Γ(t, z) satisfies the boundary value problem

Γt(t, z) +LΓ(t, z) +
(

μl − r
)

Γ(t, z) = 0 if z > b(t),

Γ(t, z) = G(z) = 1 + z if z ≤ b(t) or t = T,

Γz(t, z) = G′(z) = 1 if z = b(t).

(3.25)

Proof. Since Γ(t, z) > 1 + z for z > b(t) and Γ(t, b(t)) = 1 + b(t) for t ∈ [0, T], it follows that

lim inf
ρ↘0

Γ
(

t, b(t) + ρ
) − Γ(t, b(t))
ρ

≥ 1. (3.26)

Thus, it remains to show that

lim sup
ρ↘0

Γ
(

t, b(t) + ρ
) − Γ(t, b(t))
ρ

≤ 1. (3.27)

For any ρ > 0, denote by τρ := τ∗
t,b(t)+ρ the optimal stopping time for the starting point (t, b(t)+

ρ) as defined in (2.23). We have

Γ
(

t, b(t) + ρ
) − Γ(t, b(t)) ≤ E∗

[

e(μl−r)τρ
(

1 +
(

b(t) + ρ
)

Hτρ

)]

− E∗
[

e(μl−r)τρ
(

1 + b(t)Hτρ

)]

= ρE∗
[

e(μl−r)τρHτρ

]

.

(3.28)

We know that the optimal stopping boundary s �→ b(s) is increasing on [t, T] and s �→ (ω/2−
σ)s is a lower function of the Brownian motion W at zero. It follows that τρ → 0P ∗−a.s. as
ρ → 0, which tells us that

E∗
[

e(μl−r)τρHτρ

]

−→ 1 (3.29)

as ρ → 0 by the dominated convergence theorem. Hence, (3.27) holds, so z �→ Γ(t, z) is C1 at
z = b(t), and Γz = 1 = G′.

The proof that Γ satisfies the partial differential equation in (3.25) relies on the continu-
ity of Γ and follows along the same lines as, for example, in the case of the American put op-
tion, compare page 72 in [13]. We omit the details.
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Remark 3.5. Furthermore, it can be shown that the pair (Γ, b) is the unique solution to the free
boundary problem (3.25) (within some appropriate class of functions). We leave this and
instead refer to Chapter 2.7 in [13], where this is shown for the American put option.

Proposition 3.6. The boundary b(t) is continuous on [0, T) and b(T−) = (r − μl)/(μh − r).

Proof. It follows from Proposition 3.2 that b is right continuous on [0, T). To prove the left-
continuity, define b(T) = (r − μl)/(μh − r), and assume that the boundary b(t) has a jump at
t∗ ∈ (0, T], that is, b(t∗) > b(t∗−).

By (3.15) and a continuity argument, there exists a δ < 0 and a one-side open rectangle
R := [t′, t∗) × [c, d] ⊆ C with b(t∗−) ≤ c < d < b(t∗) such that

LG(z) − (r − μl

)

G(z) < δ < 0,

0 ≤ Γz(t, z) −Gz(t, z) <
−δ

(

μh − μl

)

b(t∗)

(3.30)

for all (t, z) ∈ R. Since R is contained in C, we also have

LΓ(t, z) − (r − μl

)

Γ(t, z) = −Γt(t, z) ≥ 0. (3.31)

Together with (3.30), this yields

(

μh − μl

)

z(Γz(t, z) −Gz(t, z)) +
1
2
ω2z2(Γzz −Gzz) = LΓ − LG ≥ (r − μl

)

(Γ −G) − δ. (3.32)

Using (15), it follows that

Γzz −Gzz ≥ 2ω−2z−2
(

r − μl

)

(Γ −G) ≥ 2ω−2b(t∗)−2
(

r − μl

)

(Γ −G) =: η > 0 (3.33)

in R. Therefore,

Γ(t, z) −G(z) =
∫z

b(t)

∫u

b(t)
(Γzz(t, v) −Gzz(v))dv du

≥ 1
2
η(z − b(t))2 ≥ 1

2
η(c − b(t∗−))2 > 0

(3.34)

for any (t, z) in the rectangle. Since both the value and the gain functions are continuous,
this leads to Γ(t∗, z) > G(z) for any z ∈ [c, d], which contradicts the fact that (t∗, z) is in the
stopping region. Therefore, b(t) is continuous on t ∈ [0, T) and b(T−) = (r − μl)/(μh − r).

4. An Integral Equation for the Optimal Stopping Boundary

In this section we derive an integral equation for the optimal stopping boundary. The deriva-
tion follows along similar lines as for the American put option; see [12].
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Theorem 4.1. The optimal stopping boundary b(t) satisfies the integral equation

1 + b(t) = e(μl−r)(T−t) + b(t)e(μh−r)(T−t)

−
∫T−t

0

(

μl − r
)

e(μl−r)uN

(

1
ω
√
u

[

ln
b(t + u)
b(t)

−ωσu +
ω2u

2

])

+ b(t)
(

μh − r
)

e(μh−r)uN

(

1
ω
√
u

[

ln
b(t + u)
b(t)

−ωσu − ω2u

2

])

du,

(4.1)

whereN(x) = (1/
√
2π)
∫x

−∞ e−y
2/2dy is the cumulative distribution function of the standard normal

distribution.

Proof. Fix a t ∈ [0, T] and Z0 = z ∈ (0,∞). Applying Ito’s formula to e(μl−r)sΓ(t + s, Zs) and
taking the expected value give

e(μl−r)(T−t)E∗[G(ZT−t)] = e(μl−r)(T−t)E∗[Γ(T,ZT−t)]

= Γ(t, z) +
∫T−t

0
e(μl−r)uE∗[F(Zu)I(Zu ≤ b(t + u))]du,

(4.2)

whereG(y) = 1+y and F = LG−(r−μl)G as before. (The use of Ito’s formula can bemotivated
by similar arguments as for the American put option; cf. [14].) Straightforward calculations
give

e(μl−r)(T−t)E∗[G(ZT−t)] = E∗
[

e(μl−r)(T−t)
]

+ E∗
[

e(μl−r)(T−t)ZT−t
]

= e(μl−r)(T−t) + ze(μh−r)(T−t).

(4.3)

The integrand of the right-hand side in (4.2) is

e(μl−r)uE∗[F(Zu)I(Zu ≤ b(t + u))] = e(μl−r)uz
(

μh − r
)

E∗[HuI(Zu ≤ b(t + u))]

+ e(μl−r)u(μl − r
)

E∗[I(Zu ≤ b(t + u))].
(4.4)

We have

E∗
t,z[HuI(Zu ≤ b(t + u))]

= E∗
t,z

[

exp

[(

σω − ω2

2

)

u +ωWu

]

I

(

Wu√
u

≤ ln(b(t + u)/z) +
(

ω2/2 − σω
)

u

ω
√
u

)]

= eσωuN(d1),

(4.5)

where

d1 =
1

ω
√
u

[

ln
b(t + u)

z
−ωσu − ω2u

2

]

. (4.6)
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Similarly

E∗
t,z[I(Zu ≤ b(t + u))] = N(d2), (4.7)

where d2 = d1 + ω
√
u. Using (4.2)–(4.7) and inserting z = b(t) yield the integral equation

(4.1).

Remark 4.2. Using local time-space calculus, it was proved in [14] that the optimal stopping
boundary of the American put option is the unique solution to the corresponding integral eq-
uation. Using similar techniques, uniqueness for (4.1) can be established. We omit the details.

5. Closing a Short Position

In this section we consider an agent with a short position in the asset and who seeks an opti-
mal time to close the position. To study this situation we formulate the optimal stopping
problem

v = inf
0≤τ≤T

E
[

e−rτXτ

]

, (5.1)

where the infimum is taken over FX-stopping times τ . All the assumptions about the model
are as described in Section 2.

By exactly the same arguments provided above, we find that

v =
X0

1 + Φ0
γ(0,Φ0), (5.2)

where γ is defined through the auxiliary optimal stopping problem

γ(t, z) = inf
0≤τ≤T−t

E∗
[

e(μl−r)τ(1 + Zτ)
]

, (5.3)

where

Zu := z exp

{(

σω − ω2

2

)

u +ωWu

}

, u ≥ 0, (5.4)

and the infimum is taken over stopping times with respect to the filtration generated by W .
Moreover, an optimal stopping time for the problem (5.3) translates to an optimal stopping
time for the original problem (5.1).

The following results parallel those for the optimal liquidation problem for a long
position, and the proofs are omitted.

Theorem 5.1. There exists a nonincreasing and continuous function b : [0, T) → [(r − μl)/(μh −
r),∞) with b(T−) = (r−μl)/(μh−r) such that the continuation region C = {(x, t) ∈ [0, T)×(0,∞) :
γ(t, z) < 1 + z} satisfies

C = {(t, z) ∈ [0, T) × (0,∞) : z < b(t)}. (5.5)



16 International Journal of Stochastic Analysis

Moreover, the infimum in (5.3) is attained for the stopping time

τD := inf{0 ≤ u ≤ T − t : Zu ≥ b(t + u)}. (5.6)

The function γ : [0, T] × (0,∞) → (0,∞) is continuous and satisfies the boundary value problem

γt(t, z) +Lγ(t, z) +
(

μl − r
)

γ(t, z) = 0 if z < b(t)

γ(t, z) = G(z) = 1 + z if z ≥ b(t) or t = T

γz(t, z) = G′(z) = 1 if z = b(t).

(5.7)

The optimal stopping boundary b(t) satisfies the integral equation

1 + b(t) = e(μl−r)(T−t) + b(t)e(μh−r)(T−t)

−
∫T−t

0

(

μl − r
)

e(μl−r)u
{

1 −N

(

1
ω
√
u

[

ln
b(t + u)
b(t)

−ωσu +
ω2u

2

])}

+ b(t)
(

μh − r
)

e(μh−r)u
{

1 −N

(

1
ω
√
u

[

ln
b(t + u)
b(t)

−ωσu − ω2u

2

])}

du.

(5.8)

Corollary 5.2. The infimum in (5.1) is attained for the stopping time

τ∗ := inf

⎧

⎨

⎩

t : Xt ≥ X0

Φβ

0

eεtbβ(t)

⎫

⎬

⎭

∧ T. (5.9)

Remark 5.3. Unlike the optimal liquidation problem for a long position, the problem of this
section also makes sense to study with an infinite horizon.
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