
International Scholarly Research Network
ISRN Communications and Networking
Volume 2011, Article ID 546205, 6 pages
doi:10.5402/2011/546205

Research Article

Rapidly-Converging Series Representations of
a Mutual-Information Integral

Don Torrieri1 and Matthew Valenti2

1 Computational and Information Sciences Directorate, U.S. Army Research Laboratory, Adelphi,
MD 20783-1197, USA

2 Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown,
WV 26506, USA

Correspondence should be addressed to Matthew Valenti, matthew.valenti@mail.wvu.edu

Received 23 November 2010; Accepted 13 December 2010

Academic Editors: C. Carbonelli and K. Teh

Copyright © 2011 D. Torrieri and M. Valenti. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper evaluates a mutual-information integral that appears in EXIT-chart analysis and the capacity equation for the binary-
input AWGN channel. Rapidly-converging series representations are derived and shown to be computationally efficient. Over a
wide range of channel signal-to-noise ratios, the series are more accurate than the Gauss-Hermite quadrature and comparable to
Monte Carlo integration with a very large number of trials.

1. Introduction

The mutual-information between a binary-valued random
variable and a consistent, conditionally Gaussian random
variable with variance σ2 is

J(σ) = 1−
∫∞
−∞

exp
[
−(1/2σ2

)(
y − σ2/2

)2
]

√
2πσ

log2(1 + e−y)dy.

(1)

This function and its inverse play a central role in EXIT-
chart analysis, which may be used to design and predict the
performance of turbo codes [1], low-density parity-check
codes [2], and bit-interleaved coded modulation with iter-
ative decoding (BICM-ID) [3]. A change of variable yields

J(σ) = 1−
∫∞
−∞

exp
(−y2/2

)
√

2π
log2

(
1 + e−σ y−σ

2/2
)
dy (2)

which has the same form as the equation for the capacity
of a binary-input AWGN channel [4]. Despite its origins
in the early years of information theory, the integral in (2)
has not been expressed in closed form or represented as a
rapidly-converging infinite series. Consequently, (2) has been
evaluated by numerical integration, Monte Carlo simulation,
or approximation [2].

As will be shown subsequently, a rapidly-converging
series representation for (1) and (2) is

J(σ) = 1− 1
ln 2

{
σ exp

(−σ2/8
)

√
2π

−
(
σ2

2
− 1

)
Q
(
σ

2

)

−
∞∑

m=1

(−1)m

m(m + 1)
exp

[
σ2

2

(
m + m2)

]

×Q
(
mσ +

σ
2

)}
,

(3)

where

Q(x) = 1
2

erfc
(

x√
2

)
=
∫∞
x

1√
2π

exp

(
− y2

2

)
dy. (4)

Numerical evaluation of (3) requires truncation to
a finite number of terms. Since an alternating series satisfying
the Leibniz convergence criterion [5] appears in (3), simple
upper and lower bounds are easily obtained by series trun-
cation, and the maximum error is easily computed from the
first omitted term. Only six terms in the summation over m
in (3) are needed to compute J(σ) with an error less than
0.01.
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Define JM(σ) to be (3) with the upper limit on the
summation over m replaced with M. Let E(M, σ) be the
magnitude of the error when the series that is truncated
after M terms, i.e. E(M, σ) = |J(σ) − JM(σ)|. Since Q(x) ≤
exp(−x2/2)/2, x ≥ 0, the error magnitude E(M, σ) satisfies

E(M, σ) ≤ exp
(−σ2/8

)
2(M + 1)(M + 2)

(5)

which indicates a rapid convergence of (3).
Because of the dependence on σ in the bound given by

(5), the number of terms required to achieve a very small
error may become large for low σ . This motivates the use of
an alternative series expression for (1) and (2) that is suitable
for small σ . A rapidly-converging series representation for
0 < σ ≤ 0.25 is

J(σ) = 1
ln 2

{
−σ exp

(−b2/2
)

√
2π

+

(
σ2

2
+ ln 2

)
Q(b)

+
∞∑

m=1

(−1)m

m
exp

[
σ2

2

(
m + m2)

]
Q(mσ + b)

+
∞∑
n=1

1
n2n

n∑
k=0

(−1)k
⎛
⎝n
k

⎞
⎠

× exp

[
σ2

2

(
k2 − k

)]
Q(kσ − b)

}
,

(6)

where

b = σ

2
+

ln 3
σ

. (7)

Note that (6) is valid for σ = 0 if we use Q(−∞) = 1 and
Q(∞) = 0.

Both series entail the computation of the Q function,
which is itself an integral. However, the central importance
of the Q function has led to the development of very efficient
approximations to compute it, for instance, by using the erfc
function found in MATLAB or the approximation proposed
in [6].

In EXIT-chart analysis [1], the inverse of J(σ) is required.
The truncated series can be easily inverted by using numer-
ical algorithms such as the MATLAB function fzero, which
uses a combination of bisection and inverse quadratic
interpolation.

The remainder of this paper is organized as follows.
The series are derived in Section 2. Computational aspects
of (3) and (6) are discussed in Section 3. The series are
compared against Gauss-Hermite quadrature in Section 4,
and the paper concludes in Section 5.

2. Derivation of Series

To derive the desired representations, we first derive a family
of series representations of a more general integral. Consider
the following integral:

I(a, σ) =
∫∞
−∞

G(x) ln(1 + ae−σx)dx, a ≥ 0, σ ≥ 0, (8)

where

G(x) = 1√
2π

exp

(
−x2

2

)
. (9)

Since I(0, σ) = 0 and I(a, 0) = ln(1 + a), a > 0 and σ > 0 are
assumed henceforth. For any β ≥ 0, define

b = 1
σ

ln

(
1 + 2β

a

)
. (10)

Dividing the integral in (8) into two integrals, changing vari-
ables in the second one, and using the fact that G(x) is an
even function, we obtain I(a, σ) = I1(a, σ) + I2(a, σ), where

I1(a, σ) =
∫∞
−b

G(x) ln(1 + ae−σx)dx, (11)

I2(a, σ) =
∫∞
b
G(x) ln(1 + aeσx)dx. (12)

A uniformly convergent Taylor series expansion of the loga-
rithm over the interval [0, 1 + 2β] is

ln
(
1 + y

) = ln
(
1 + β

)
+

∞∑
m=1

(−1)m+1

m

(
1 + β

)−m(
y − β

)m,

(13)

where 0 ≤ y ≤ 1 + 2β. The uniform convergence can be
proved by application of the Leibniz criterion for alternating
series [5].

Since a exp(−σx) ≤ 1 + 2β for x ≥ −b, (13) indicates
that ln(1 + ae−σx) in (11) may be expressed as a uniformly
convergent series of continuous functions in the interval of
integration. Since

∫∞
−b G(x)dx is bounded, the infinite sum-

mation and the integration may be interchanged and

I1(a, σ) = ln
(
1 + β

)
Q(−b)

+
∞∑

m=1

(−1)m+1

m

(
1 + β

)−m ∫∞
−b

G(x)
(
ae−σx − β

)m
dx,

(14)

where

Q(x) = 1
2

erfc
(

x√
2

)
=
∫∞
x
G
(
y
)
dy. (15)

Substituting the binomial expansion, interchanging the finite
summation and integration, completing the square of the
argument of the exponential in the integrand, changing
variables, and then evaluating the integral, we obtain

I1(a, σ) = ln
(
1 + β

)
Q(−b) −

∞∑
m=1

1
m
(
1 + β

)m
m∑
k=0

(−1)k

×
⎛
⎝m
k

⎞
⎠βm−kak−k2

Q(kσ − b).

(16)
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Since ln(1 + aeσx) = ln[aeσx(1 + a−1e−σx)] = σx + ln a +
ln(1 + a−1e−σx), a /= 0, (12) may be expressed as

I2(a, σ) =
∫∞
b
G(x)(σx + ln a)dx

+
∫∞
b
G(x) ln

(
1 + a−1e−σx

)
dx.

(17)

Since a−1e−σx ≤ (1 + 2β)−1 ≤ 1 + 2β for x ≥ b, the substitu-
tion of (13) into (17), calculations similar to previous ones,
and the evaluation of the first integral yield

I2(a, σ) = σ exp
(−b2/2

)
√

2π
+ (ln a)Q(b)

−
∞∑

m=1

(−1)m

m
a−m−m

2
Q(mσ + b).

(18)

The addition of (16) and (18) gives the general family of
series representations for I(a, σ) when a > 0, σ > 0, b is
defined by (10), and β ≥ 0:

I(a, σ) = σ exp
[−b2/2

]
√

2π
+ (ln a)Q(b) + ln

(
1 + β

)
Q(−b)

−
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m=1

1
m
(
1 + β

)m
m∑
k=0

(−1)k
⎛
⎝m
k

⎞
⎠βm−kak−k2

×Q(kσ − b)−
∞∑

m=1

(−1)m

m
a−m−m

2
Q(mσ + b).

(19)

If a = exp(−σ2/2) and β = 0 in (19), then, for σ ≥ 0, an
algebraic simplification yields

I
(
e−σ

2/2, σ
)
= σ exp

(−σ2/8
)

√
2π

−
(
σ2

2
− 1

)
Q
(
σ

2

)

−
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m=1

(−1)m

m(m + 1)
exp

[
σ2

2

(
m + m2)

]

×Q
(
mσ +

σ

2

)
,

(20)

where the validity of this equation when σ = 0 can be
separately verified. The substitution of (8), (20), and ln x =
log2x/ ln 2 into (2) proves the series representation of (3).
Similarly, if a = exp(−σ2/2) and β = 1 in (19), then, for
σ ≥ 0, an algebraic simplification yields

I
(
e−σ

2/2, σ
)

= σ exp
(−b2/2

)
√

2π
− σ2

2
Q(b) + ln(2)Q(−b)

−
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m=1

(−1)m

m
exp

[
σ2

2

(
m + m2)

]
Q(mσ + b)

−
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n=1

1
n2n

n∑
k=0

(−1)k
⎛
⎝n
k

⎞
⎠ exp

[
σ2

2

(
k2 − k

)]
Q(kσ − b),

(21)
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Figure 1: Truncated large-σ series JM(σ) for σ = 0.25 and a bound
on the error.

where

b = σ
2

+
ln 3
σ

, (22)

and we use Q(−∞) = 1 and Q(∞) = 0 when σ = 0. The
substitution of (8), (21), Q(−b) = 1 − Q(b), and lnx =
log2x/ ln 2 into (2) proves the series representation of (6).

3. Evaluation of Series

To numerically evaluate (3) and (6), the summations must
be evaluated with a finite number of terms. Let the large-
σ series be JM(σ), that is, (3) with the upper limit on the
summation overm replaced withM. Similarly, define JM,N(σ)
to be the small-σ series given by (6) with the upper limits
of the summations over m and n replaced with M and N ,
respectively.

The rapid convergence of the large-σ series is illustrated
in Figure 1, which shows the value of the truncated series
JM(σ) as a function of M for σ = 0.25. The error bounds
determined by (5), which are also shown, are observed to be
pessimistic.

Figure 2 shows the number of terms required for the
large-σ series to converge to attain various error magnitudes
as a function of σ . Figure 2 shows that (3) is not efficiently
computed for small values of σ and error magnitude, which
motivates the use of (6) for small σ .

Evaluation of (6) is complicated by the presence of
two infinite summations. For the range of σ of interest,
the summation over n is the dominant of the two infinite
summations. This behavior is illustrated in Figure 3, which
shows the values of the summations over m and n for σ =
0.25 as a function of the number of terms. When computed
to 10 terms, the value of the summation over n is 7.8× 10−3,
while the value of the summation over m is only−8.5×10−7.
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Figure 2: Minimum number of terms required to attain various
error magnitudes E(M, σ).

For lower values of σ , the magnitude of the summation over
m is even smaller and becomes negligible as σ approaches
zero. For this reason, we evaluate the summation over m first
and select the upper limit on the summation M such that

M = min
m

:

{
1
m

exp

[
σ2

2

(
m + m2)

]
Q(mσ + b) < ζ

}
,

(23)

where ζ is a small threshold value. If the numerical accuracy
requirements are modest, the summation over m can be
omitted.

After computing the summation over m to M terms, (6)
is evaluated with the number of terms N in the summation
over n chosen to satisfy

N = min
n

:

{∣∣∣∣∣1− JM,n(σ)
JM,n−1(σ)

∣∣∣∣∣ < ε
}
. (24)

After each term is added to the summation over n in (6), the
absolute value in (24) is evaluated, and the process halts once
the threshold ε is reached.

The number of terms M and N to achieve convergence
criterion (23) with ζ = 10−4 and (24) with ε = 10−2 is shown
in Figure 4 for σ ≤ 0.5. For higher values of σ , evaluation
of (6) becomes unstable because the large upper limit on
the summation over n results in large binomial coefficients
that cause numerical overflow in typical implementations.
Also shown in Figure 4 is the number of terms M required
to compute the truncated large-σ series (3) with convergence
threshold ε = 10−2, where M is related to ε by

M = min
m

:
{∣∣∣∣1− Jm(σ)

Jm−1(σ)

∣∣∣∣ < ε
}
. (25)

From Figure 4, it might appear that the small-σ series
(6) is less complex to evaluate than the large-σ series (3)
for all σ ≤ 0.5. However, due to the presence of the double
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Figure 3: Evaluation of the two summations in (6) for σ = 0.25.
(a) Value of the summation over m as a function of the number of
terms M; (b) Value of the summation over n as a function of the
number of terms N .
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Figure 4: The number of terms M and N required to evaluate the
small-σ series (6) with ζ = 10−4 and ε = 10−2. Also shown is the
number of terms M required to evaluate the large-σ series (3) with
ε = 10−2.

summation in (6), this is not necessarily true. To determine
a threshold below which the small-σ series is preferable
computationally, one should consider the total number of
terms containing an exponential and/or Q-function. To
evaluate the truncated large-σ series (3), a total of M + 2
terms involving exp and/or Q must be computed. On the
other hand, to evaluate the truncated small-σ series (6), a
total of M+2+N(N+1)/2 terms involving exp and/orQ must
be computed. Figure 5 compares the total number of terms
involving exp and/or Q that must be computed for each
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integration.

of the two series representations as a function of σ . From this
figure, it is seen that for σ ≤ 0.26, fewer terms are required
for the small-σ series. For all values of σ , the number of terms
is fewer than 28, and for most σ it is significantly smaller.

Figure 6 compares the series representations against the
value of (1) found using Monte Carlo integration with one
million trials per value of σ . The small-σ series is used for
σ ≤ 0.25, and the large-σ series is used for σ > 0.25. As
before, ε = 10−2 for both series, and ζ = 10−4 for the
small-σ series. There is no discernible difference between the
series representations and the Monte Carlo integration, and
any small differences can be attributed mainly to the finite
number of Monte Carlo trials.

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

σ

J m
(σ

)

m = 0
m = 1
m =M

Figure 7: The truncated large-σ series Jm(σ) with m = 0, m = 1,
and m = M required to satisfy the convergence criterion with ε =
10−4.

Given the rapid rate of convergence of (3), it is interesting
to see the value of the large-σ series when only one term
is maintained in the summation or if the summation is
dropped completely. Figure 7 compares the value of the
truncated large-σ series for M = {0, 1} and theM required to
satisfy the convergence criterion with ε = 10−4. Using M = 0
provides an upper bound that is tight only for large values of
σ , such as σ > 2, whereas using M = 1 provides a tight lower
bound even for relatively small values of σ . Using M = 4 gives
two decimal places of accuracy for all σ ≥ 0.1.

4. Comparison with Gauss-Hermite
Quadrature

The integral given by (1) and (2) may also be solved using
a form of numerical integration known as Gauss-Hermite
quadrature [7]. After a change of variables (z = y/

√
2), the

integral may be written as

J(σ) = 1− 1√
π

∫∞
−∞

e−z
2
f (z)dz, (26)

where

f (z) = log2

(
1 + exp

{
−√2σz − σ2

2

})
. (27)

With the Gauss-Hermite quadrature, the integral in (26)
is evaluated using

∫∞
−∞

e−z
2
f (z)dz ≈

n∑
i=1

wi f (zi), (28)
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where f (z) is given by (27), zi are the roots of the nth-degree
Hermite polynomial

Hn(z) = (−1)nez
2 dn

dzn
e−z

2
, (29)

and wi are the associated weights

wi = 2n−1n!
√
π

n2[Hn−1(zi)]2 . (30)

The roots {z1, . . . , zn} of Hn(z) may be found using Newton’s
method [7].

We compare five realizations of the J(σ) function as
follows:

(1) the “infinite” large-σ series representation, computed
with very large M (i.e., M = 750);

(2) the truncated large-σ series representation (3), trun-
cated to M terms;

(3) the truncated small-σ series representation (6), with
the first summation truncated to M = 1 terms
and the second (double) summation truncated to an
upper limit on the outer summation of N ;

(4) the Gauss-Hermite quadrature with n = M terms,
that is, the same number of terms as the truncated
series representation;

(5) Monte Carlo integration with 1 million trials.

For each realization, we determine the error to be the mag-
nitude of the difference between the calculated value and the
value computed by the “infinite” series.

Figure 8 shows the errors of the two truncated series and
the Gauss-Hermite quadrature. The Gauss-Hermite quadra-
ture is evaluated with M = 6 terms, and the large-σ series

is truncated to M = 6 terms. In order to have a comparable
number of terms in the summations in (6), M = 1 and N = 2
are used for the small-σ series. The error of the Monte Carlo
approach is also shown (dotted line).

When σ > 1.6, the truncated large-σ series usually pro-
vides smaller error than Gauss-Hermite quadrature (except
at σ = 2.5 and σ = 3.9, where the Gauss-Hermite quadrature
briefly has a smaller error). Since the amount of computation
required per term of the series is roughly the same, the large-
σ series is preferable to the Gauss-Hermite quadrature. For
σ < 1.6, the error of the Gauss-Hermite quadrature is smaller
than that of the large-σ series. In this region, the small-σ
series could be used, since it provides a smaller error than
the large-σ series below σ = 0.38.

5. Conclusions

Series representations have been derived for a mutual-
information function that is used in EXIT-chart analysis
and the evaluation of the capacity of a binary-input AWGN
channel. Truncated versions of the series are computationally
competitive with the Gauss-Hermite quadrature and do not
require finding roots of Hermite polynomials. The series are
useful for computation and to provide simple lower and
upper bounds.
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