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Let R be a commutative ring with identity admitting at least two nonzero zero-divisors. Let (Γ(R))c

denote the complement of the zero-divisor graph Γ(R) of R. It is shown that if (Γ(R))c is connected,
then its radius is equal to 2 and we also determine the center of (Γ(R))c. It is proved that if (Γ(R))c

is connected, then its girth is equal to 3, and we also discuss about its girth in the case when (Γ(R))c

is not connected. We discuss about the cliques in (Γ(R))c.

1. Introduction

All rings considered in this note are nonzero commutative rings with identity. Unless
otherwise specified, we consider rings R such that R admits at least two nonzero zero-
divisors.

LetR be a commutative ring with identity which is not an integral domain. Recall from
[1] that the zero-divisor graph of R, denoted by Γ(R), is the graph whose vertex set is the set
of all nonzero zero-divisors of R and distinct vertices x, y are joined by an edge in this graph
if and only if xy = 0. Several researchers studied the zero-divisor graphs of commutative
rings and proved several interesting and inspiring theorems in this area [1–14]. The research
paper of Beck [9], the research paper of Anderson and Naseer [2], and the research paper of
Anderson and Livingston [1] are first among several research papers that inspired a lot of
work in the area of zero-divisor graphs. We denote by Z(R) the set of all zero-divisors of R,
and by Z(R)∗ the set of all nonzero zero-divisors of R.

Before we describe the results that are proved in this note, it is useful to recall the
following definitions from [15]. Let G = (V, E) be a connected graph. For any vertices x, y
of G with x /=y, d(x, y) is the length of a shortest path in G from x to y and d(x, x) = 0 and
the diameter of G is defined as sup {d(x, y) | x and y are vertices of G} and it is denoted by
diam(G).
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For any v ∈ V , the eccentricity of v denoted by e(v) is defined as

e(v) = sup{d(v, u) | u ∈ V }. (1.1)

The set of vertices of Gwith minimal eccentricity is called the center of the graph, and
the minimum eccentric value is called the radius of G and is denoted by r(G).

It is known that for any commutative ring R with identity which is not an integral
domain, Γ(R) is connected and diam(Γ(R)) ≤ 3 [1, Theorem 2.3]. In [13, Theorem 2.3],
Redmond proved that for any Noetherian ring R with identity which is not an integral
domain, r(Γ(R)) ≤ 2. Moreover, in Section 3 of [13] Redmond determined the center of
Γ(R) for any Artinian ring R. It is known that there are rings R for which r(Γ(R)) = 3 [8,
Corollary 1.6]. In [14, Theorem 2.4], Karim Samei characterized vertices x of Γ(R) such that
e(x) = 1 where R is a reduced ring. Furthermore, in the same theorem under some additional
hypotheses on R, he described vertices x of Γ(R) such that e(x) = 2 or 3.

Let G = (V, E) be a simple graph. Recall from [15, Definition, 1.1.13] that the
complement of G denoted by Gc is defined by setting V (Gc) = V and two distinct u, v ∈ V
are joined by an edge in Gc if and only if there exists no edge in G joining u, v.

It is useful to recall the following definitions from commutative ring theory before we
proceed further. Let I be an ideal of a ringR, I /=R. A prime ideal P ofR is said to be amaximal
N-prime of I in R if P is maximal with respect to the property of being contained in ZR(R/I)
where ZR(R/I) = {x ∈ R | xy ∈ I for some x ∈ R \ I} [16]. It is well known that if {Pα}α∈Λ
is the set of all maximal N-primes of (0) in R, then

Z(R) =
⋃

α∈Λ
Pα. (1.2)

Let I be an ideal of a ring R. A prime ideal P of R is said to be an associated prime of
I in the sense of Bourbaki if P = (I :R x) for some x ∈ R [17]. In this case, we say that P is a
B-prime of I.

Let R be a commutative ring with identity admitting at least two nonzero zero-
divisors. In [18, Theorem 1.1], it was shown that (Γ(R))c is connected if and only if one of
the following conditions holds.

(a) R has exactly one maximal N-prime P of (0) such that P is not a B-prime of (0) in
R.

(b) R has exactly two maximal N-primes P1, P2 of (0) with P1 ∩ P2 /= (0).

(c) R has more than two maximal N-primes of (0).

Moreover, it was shown in [18] that if (Γ(R))c is connected, then diam((Γ(R))c) ≤
3. In fact, it was shown in [18] that if either the condition (a) or the condition (c) of [18,
Theorem 1.1] holds, then diam((Γ(R))c) = 2. When the condition (b) of [18, Theorem 1.1]
holds, then it was shown in [18, Proposition 1.7] that diam((Γ(R))c) = 2 if either P1 is not a
B-prime of (0) in R or P2 is not a B-prime of (0) in R and diam((Γ(R))c) = 3 if both P1 and P2

are B-primes of (0) in R.
For any setA, we denote by |A|, the cardinality ofA. Whenever a setA is a subset of a

set B and A/=B, we denote it symbolically by A ⊂ B. If X, Y are sets and if X is not a subset
of Y , we denote it symbolically X/⊂Y .
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Let R be a commutative ring with identity and let |Z(R)∗| ≥ 2. If (Γ(R))c is
connected, then we prove in Section 2 of this note that the radius of (Γ(R))c is equal to
2. Moreover, we observe that except in the case when condition (b) of [18, Theorem 1.1]
holds, diam((Γ(R))c) = r((Γ(R))c) = 2 and so every vertex of (Γ(R))c is in the center of
(Γ(R))c. Furthermore, if condition (b) of [18, Theorem 1.1] holds and if (i) R satisfies the
further condition that either P1 is not a B-prime of (0) in R or P2 is not a B-prime of (0) in
R, then it is noted that each vertex of (Γ(R))c is in the center of (Γ(R))c and if (ii) both P1

and P2 are B-primes of (0) in R, then it is verified that the center of (Γ(R))c = {x ∈ Z(R)∗ |
P1 /= ((0) :R x) and P2 /= ((0) :R x)}.

Let G = (V, E) be a graph. Recall from [15, Page 159] that the girth of G denoted by
gr(G) is defined as the length of a shortest cycle in G. If G does not contain any cycle, then
we set gr(G) = ∞ [5].

Let R be a commutative ring with identity which is not an integral domain. Several
results are known about the girth of Γ(R) [5, 7]. Indeed, it is known that for any commutative
ring with identity which is not an integral domain, gr(Γ(R)) ≤ 4 if Γ(R) contains a cycle [7,
Proposition 2.2] and [12, 1.4]. In [5], Anderson and Mulay characterized commutative rings
R such that gr(Γ(R)) = 4 [5, Theorem 2.2 and Theorem 2.3], and moreover, they characterized
commutative rings R such that gr(Γ(R)) = ∞ [5, Theorem 2.4 and Theorem 2.5].

In Section 3 of this paper we study about the girth of (Γ(R))c whereR is a commutative
ring with identity satisfying the further condition that |Z(R)∗| ≥ 2. If (Γ(R))c is connected,
then it is shown that gr((Γ(R))c) = 3.

Suppose that R has only one maximal N-prime of (0) and let it be P . If P 2 /= (0) and if
(Γ(R))c is not connected, then it is proved that (Γ(R))c contains a cycle if and only if |P | ≥ 5 if
and only if gr((Γ(R))c) = 3.

Suppose that R has exactly two maximalN-primes of (0) and let them be P1 and P2. If
(Γ(R))c is not connected, then it is shown that (Γ(R))c contains a cycle if and only if {P1 \P2 |≥
3 or |P2 \ P1| ≥ 3 if and only if gr((Γ(R))c) = 3.

Let G = (V, E) be a graph. Recall from [15, Definition 1.2.2] that a clique of G is a
complete subgraph of G. Moreover, it is useful to recall the definition of the clique number of
G. Let G = (V, E) be a simple graph. The clique number of G denoted by ω(G) is defined as
the largest integer n ≥ 1 such that G contains a clique on n vertices [15, Definition, Page 185].
We set ω(G) = ∞ if G contains a clique on n vertices for all n ≥ 1.

Let R be a commutative ring with identity which is not an integral domain. It is known
that (i) ω(Γ(R)) = ∞ if and only if Γ(R) contains an infinite clique, (ii) ω(Γ(R)) < ∞ if and
only if |nil(R)| < ∞ and nil(R) is a finite intersection of prime ideals of R (i.e., the set of all
minimal prime ideals of R is finite) [9, Theorem 3.9]where nil(R) is the nilradical of R. More
interesting theorems were proved on ω(Γ(R)) in [3, Section 3].

Let R be a commutative ring with identity and let |Z(R)∗| ≥ 2. In Section 4 of this paper
we observe that if R has at least two maximal N-primes of (0), then (Γ(R))c does not contain
any infinite clique if and only if R is finite if and only if ω((Γ(R))c) is finite. Let n ≥ 2 and
let K1, . . . , Kn be finite fields. Let R = K1 × · · · × Kn. We describe a method of determining
ω((Γ(R))c).

Let R be a ring admitting exactly one maximal N-prime of (0). Let P be the unique
maximalN-prime of (0) in R. Suppose that (Γ(R))c does not contain any infinite clique. Then
it is verified in Section 4 that P = nil(R). Moreover, if P 2 /= (0), then it is shown in Section 4
that P is a B-prime of (0) in R and furthermore, R/P is a finite field and R satisfies d. c. c. on
principal ideals. As a corollary, we deduce that if R is either a Noetherian ring or a chained
ring, then (Γ(R))c does not contain any infinite clique if and only if R is finite. Let R be a
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finite chained ring with P as its unique maximal N-prime of (0). If P 2 /= (0), then we provide
a formula for computing ω((Γ(R))c).

Let R be a ring with |Z(R)∗| ≥ 2. Suppose that R has only one maximalN-prime of (0)
and let it be P . If ω((Γ(R))c) is finite, then it is shown in Section 4 that P is nilpotent.

We end this note with an example of an infinite ring R such that R has exactly one
maximal N-prime of (0) with the property that ω((Γ(R))c) = 3.

2. The Radius of (Γ(R))c

Let R be a ring with |Z(R)∗| ≥ 2. We assume that (Γ(R))c is connected. The aim of this section
is to show that the radius of (Γ(R))c is equal to 2. We make use of the following lemmas for
proving the result that r((Γ(R))c) = 2.

Lemma 2.1. Let G = (V, E) be a simple and connected graph with |V | ≥ 2 satisfying the further
condition that Gc is also connected. If x is any element of V, then e(x) ≥ 2 in Gc.

Proof. Let x ∈ V . Since |V | ≥ 2 and G is connected, it follows that there exists y ∈ V such that
x is adjacent to y in G. Thus x is not adjacent to y in Gc. Hence d(x, y) ≥ 2 in Gc. This proves
that e(x) ≥ 2 in Gc.

The following lemma establishes some necessary conditions on R in order that there
exist x, y ∈ Z(R)∗ such that d(x, y) = 3 in (Γ(R))c.

Lemma 2.2. Let R be a ring with |Z(R)∗| ≥ 2. Suppose that (Γ(R))c is connected. If there exist
x, y ∈ Z(R)∗ with d(x, y) = 3 in (Γ(R))c, then R has exactly two maximal N-primes of (0) and
moreover, both of them are B-primes of (0) in R. Indeed, if P and Q are the maximal N-primes of (0)
in R, then {P, Q} = {(0) :R x), ((0) :R y)}.

Proof. Since d(x, y) = 3 in (Γ(R))c, it follows that xy = 0 and for any z ∈ Z(R)∗ with z /∈
{x, y}, either zx = 0 or zy = 0. Hence we obtain that z ∈ ((0) :R x)∪ ((0) :R y). Since xy = 0, it
is clear that {0, x, y} ⊆ ((0) :R x) ∪ ((0) :R y). Thus we have Z(R) = ((0) :R x) ∪ ((0) :R y). Let
{Pα}α∈Λ be the set of all maximalN-primes of (0) in R. It is well known that Z(R) =

⋃
α∈Λ Pα,

and hence we obtain that
⋃

α∈Λ Pα = ((0) : R x) ∪ ((0) : R y). Now ((0) : Rx) ∩ (R \ Z(R)) = ∅.
Hence by [19, Theorem 2.2, Page 378], we obtain that there exists a maximal N-prime P of
(0) in R such that ((0) :R x) ⊆ P . Since ((0) :R y) ∩ (R \ Z(R)) = ∅, it follows that there exists
a maximal N-prime Q of (0) in R such that ((0) :R y) ⊆ Q. Now we obtain that Z(R) =
((0) :R x) ∪ ((0) :R y) = P ∪ Q. If P = Q, then it follows that ((0) :R x) ∪ ((0) :R y) = P is
an ideal of R. Hence it follows that either ((0) :R x) ⊆ ((0) :R y)or ((0) :R y) ⊆ ((0) :R x), and
so we obtain that P is the only maximal N-prime of (0) in R and either P = ((0) :R x) or P =
((0) :R y). Now by hypothesis (Γ(R))c is connected. Hence it follows from [18, Theorem 1.1
(a)] that P is not a B-prime of (0) in R and so P /=Q. Now we obtain from Z(R) = ((0) :R x) ∪
((0) :R y) = P ∪ Q that P and Q are the only maximal N-primes of (0) in R, and moreover,
P = ((0) :R x) and Q = ((0) :R y).

The next lemma is [9, Lemma 3.6]. We make use of it in the proof of Lemma 2.4.

Lemma 2.3. Let R be a ring. Let P, Q be distinct B-prime ideals of (0) in R with P = ((0) :R x) and
Q = ((0) :R y) for some x, y ∈ R. Then xy = 0.
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Proof. For the sake of completeness, we give below an argument for the fact that xy = 0. Since
P /=Q. either P /⊂ Q or Q /⊂ P . Without loss of generality, we may assume that P /⊂ Q. Let w
∈ P \Q. Nowwx = 0 ∈ Q and asw /∈ Q, it follows that x ∈ Q = ((0) :R y). Hence xy = 0.

We provide in the next lemma some sufficient conditions on R in order that (Γ(R))c

admits vertices x such that e(x) = 3 in (Γ(R))c.

Lemma 2.4. Let R be a ring and let |Z(R)∗| ≥ 2. Suppose that R has exactly two maximal N-primes
of (0) and let them be P1 and P2. If (Γ(R))

c is connected and if P1 = ((0) :R u) and P2 = ((0) :R v)
for some u, v ∈ R, then d(u, v) = 3 in (Γ(R))c and so e(u) = e(v) = 3 in (Γ(R))c.

Proof. The proof of this lemma is contained in the proof of [18, Proposition 1.7], though it was
not stated there in the above form. For the sake of completeness, we include a proof of it here.

We know from Lemma 2.3 that uv = 0. Thus u, v ∈ Z(R)∗ and u and v are not adjacent
in (Γ(R))c. Since P1 and P2 are the only maximal N-primes of (0) in R, it follows that Z(R) =
P1 ∪ P2 = ((0) :R u)∪((0) :R v). Thus for anyw ∈ Z(R)∗, eitherwu = 0 or wv = 0. This shows
that d(u, v) ≥ 3 in (Γ(R))c. It is shown in the proof of [18, Proposition 1.7] that d(x, y) ≤
3 in (Γ(R))c for any x, y ∈ Z(R)∗. Hence we obtain that d(u, v) = 3 in (Γ(R))c and so it
follows that e(u) = e(v) = 3 in (Γ(R))c.

We next state and prove the main theorem of this section.

Theorem 2.5. Let R be a ring and let |Z(R)∗| ≥ 2. If (Γ(R))c is connected, then the radius of (Γ(R))c

is equal to 2.

Proof. It is well known that Γ(R) is connected [1, Theorem 2.3]. Hence it follows from
Lemma 2.1 that for any x ∈ Z(R)∗, e(x) ≥ 2 in (Γ(R))c.

If R has either exactly one maximal N-prime of (0) or more than two maximal N-
primes of (0), then it follows from Lemma 2.2. that for any x ∈ Z(R)∗, e(x) ≤ 2 in (Γ(R))c.
Thus we obtain that if R has either exactly one maximal N-prime of (0) or more than two
maximal N-primes of (0), then for any x ∈ Z(R)∗, e(x) = 2 in (Γ(R))c. Hence we obtain in
the cases mentioned above that diam((Γ(R))c) = r((Γ(R))c) = 2.

Assume that R has exactly two maximal N-primes of (0) and let them be
P1 and P 2. In such a case, it was shown in the proof of [18, Proposition 1.7(i)]
that there exist a ∈ P1 \ P2 and b ∈ P2 \ P1 such that ab /= 0. It follows
that P1 /= ((0) :R a), P1 /= ((0) :R b), and P2 /= ((0) :R a), P2 /= ((0) :R b). Now it follows from
Lemma 2.2 that d(a, y) ≤ 2 and d(b, y) ≤ 2 for any y ∈ Z(R)∗ in (Γ(R))c. Hence we obtain that
e(a) ≤ 2 and e(b) ≤ 2 in (Γ(R))c. Since e(c) ≥ 2 in (Γ(R))c for any c ∈ Z(R)∗, it follows that
e(a) = e(b) = 2 in (Γ(R))c. Thus in this case also, we arrive at the conclusion that the radius
of (Γ(R))c is equal to 2.

The following remark determines the center of (Γ(R))c.

Remark 2.6. Let R be a ring and let |Z(R)∗| ≥ 2. Assume that (Γ(R))c is connected. In this
remark, we determine the center of (Γ(R))c.

If R has either exactly one maximal N-prime of (0) or more than two maximal
N-primes of (0), then it was shown in the proof of Theorem 2.5 that diam((Γ(R))c) =
r((Γ(R))c) = 2. Hence the center of (Γ(R))c is the set of all vertices of (Γ(R))c. Moreover,
if R has exactly two maximal N-primes of (0) and if at least one of them is not a B-prime of
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(0) in R, then it follows from Lemma 2.2 that for any x ∈ Z(R)∗, e(x) ≤ 2 in (Γ(R))c. Thus
we obtain, in view of Lemma 2.1 that e(x) = 2 for any x ∈ Z(R)∗. Hence in this case also we
obtain that diam((Γ(R))c) = r((Γ(R))c) = 2 and so each vertex of (Γ(R))c is in the center of
(Γ(R))c.

Suppose that R has exactly two maximalN-primes of (0) and both are B-primes of (0)
in R. Let {P1, P2} be the set of all maximalN-primes of (0) in R. Then it follows from Lemmas
2.1, 2.2, and 2.4 that the center of (Γ(R))c = {x ∈ Z(R)∗ | P1 /= ((0) :R x) and P2 /= ((0) :R x)}.

We next present some examples to illustrate the results proved in this section.

Example 2.7. Let V be a rank 1 valuation domain which is not discrete. Let M denote the
unique maximal ideal of V . Let x ∈ M, x/= 0. Let R = V/xV . Observe that M/xV is the
only prime ideal of R and Z(R) = M/xV . Let us denote M/xV by P . We assert that P is
not a B-prime of (0) in R. Suppose that P is a B-prime of (0) in R. Then it can be easily
verified that M = (xV :V y) for some y ∈ V . Since M/=V , it follows that y /∈ xV . As V is
a valuation domain, we obtain that x ∈ yV . Thus x = yv for some v ∈ V . Hence we obtain
that M = (xV :V y) = (yvV :V y) = vV . This is impossible since M is not finitely generated.
Thus P is not a B-prime of (0) in R. Now it follows from [18, Theorem 1.1 (a)] that (Γ(R))c is
connected. We obtain from Theorem 2.5 that diam((Γ(R))c) = r((Γ(R))c) = 2 and each vertex
of (Γ(R))c is in the center of (Γ(R))c.

Example 2.8. (i) Let R be as in Example 2.7 and let T = R × Z (resp. T1 = R × R) be the
direct product of R and the ring of integers (resp. R and R). We know from Example 2.7 that
P is the unique maximal N-prime of (0) in R and P is not a B-prime of (0) in R. Note that
P1 = P ×Z and P2 = R×(0) (resp.Q1 = P ×R and Q2 = R×P) are the only maximalN-primes
of the zero-ideal of T (resp. of the zero-ideal of T1) and P1 ∩ P2 = P×(0) is not the zero-ideal of
T (resp.Q1∩Q2 = P ×P is not the zero-ideal of T1). Hence it follows from [18, Theorem 1.1(b)]
that (Γ(T))c (resp. (Γ(T1))

c) is connected. Since P1 is not a B-prime of (0) in T (resp.Q1 andQ2

are not B-primes of (0) in T1), it follows from Remark 2.6 that diam((Γ(T))c) = r((Γ(T))c) = 2
(resp. diam((Γ(T1))

c) = r((Γ(T1))
c) = 2) and each vertex of (Γ(T))c is in the center of (Γ(T))c

(resp. each vertex of (Γ(T1))c is in the center of (Γ(T1))c).
(ii) Let R = Z/12Z. Note that P1 = 2Z/12Z and P2 = 3Z/12Z are the only prime

ideals of the finite ring R = Z/12Z. Thus Z(R) = P1 ∪ P2. Observe that R has exactly two
maximalN-primes of (0) and P1 ∩ P2 = 6Z/12Z is not the zero-ideal of R. Hence it follows
from [18, Theorem 1.1(b)] that (Γ(R))c is connected. Moreover, observe that 2Z = (12Z :Z ±
6t) and {± 6t | t ∈ Z is odd and positive} is the set of all integers with the property that 2Z =
(12Z :Z ± 6t). Furthermore, note that {±4k | k ∈ Z is positive and k ≡ 1 or 2 (mod 3)}
is the set of all integers with the property that 3Z = (12Z :Z ± 4k). Hence it follows that
P1 = ((0 + 12 Z) :R 6 + 12Z), P2 = ((0 + 12Z) :R 4 + 12Z), and P2 = ((0 + 12Z) :R 8 + 12Z).
Thus P1 and P2 are B-primes of (0) in R. Now it follows from [18, Proposition 1.7(b)] that
diam((Γ(R))c) = 3, and we know from Theorem 2.5 that r((Γ(R))c) = 2. Moreover, we obtain
from Remark 2.6 and from the above discussion that the set of centers of (Γ(R))c = {2 +
12Z, 10 + 12Z, 3 + 12Z, 9 + 12Z}.

Example 2.9. Let n > 1 be such that n admits at least three distinct prime divisors. Let
{p1, p2, p3, . . . , pt}(t ≥ 3) be the set of all distinct prime divisors of n. Let R = Z/nZ. Note
that {p1Z/nZ, p2Z/nZ, . . . , ptZ/nZ} is the set of all maximal N-primes of the zero-ideal of
R. We know from [18, Theorem 1.1(c)] that (Γ(R))c is connected and moreover, it is known
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from Remark 2.6 that diam((Γ(R))c) = r((Γ(R))c) = 2 and each vertex of (Γ(R))c is in the
center of (Γ(R))c.

3. The Girth of (Γ(R))c

Let R be a commutative ring with identity and let |Z(R)∗| ≥ 2. The aim of this section is
to study about the girth of (Γ(R))c. If (Γ(R))c is connected, then we prove in this section that
gr((Γ(R))c) = 3. Moreover, we also discuss about the girth of (Γ(R))c in the case when (Γ(R))c

is not connected.
For the sake of convenience we split the results proved in this section into several

lemmas. We begin with the following lemma. We make use of this lemma in the proof of
Lemma 3.2.

Lemma 3.1. Let R be a ring and let |Z(R)∗| ≥ 2. Let P be a maximalN-prime of (0) in R. If P is not
a B-prime of (0) in R, then for any x, y ∈ Z(R)∗, P/⊂((0) :R x) ∪ Ry.

Proof. Suppose that for some x, y ∈ Z(R)∗, P ⊆ ((0) :R x) ∪ Ry. Then either P ⊆
((0) :R x) or P ⊆ Ry. Since x /= 0, ((0) :R x)∩(R\Z(R)) = ∅. As y ∈ Z(R), there exists z ∈ R\{0}
such that yz = 0. Hence we obtain that Ry ⊆ ((0) :R z). Note that ((0):R z) ∩ (R \ Z(R)) = ∅.
Now it follows from [19, Theorem 2.2, Page 378] that there exists a maximal N-prime Q of
(0) in R such that ((0) :R x) ⊆ Q and there exists a maximal N-prime W of (0) in R such that
((0) :R z) ⊆ W . If P ⊆ ((0) :R x), then we obtain that P ⊆ ((0) :R x) ⊆ Q and hence it follows
that P = Q = ((0) :R x). This contradicts the assumption that P is not a B-prime of (0) in R.
If P ⊆ Ry, then P ⊆ ((0) :R z) ⊆ W and so P = W = ((0) :R z). This is also impossible since
P is not a B-prime of (0) in R. This proves that if a maximal N-prime P of (0) in R is not a
B-prime of (0) in R, then for any x, y ∈ Z(R)∗, P /⊂ ((0) :R x) ∪ Ry.

In the following lemma, we determine the girth of (Γ(R))c under the assumptions that
R has exactly one maximal N-prime of (0) and (Γ(R))c is connected.

Lemma 3.2. Let R be a ring and let |Z(R)∗| ≥ 2. Suppose that R has only one maximal N-prime of
(0). If (Γ(R))c is connected, then gr((Γ(R))c) = 3.

Proof. Let P be the unique maximalN-prime of (0) in R. Since (Γ(R))c is connected, we obtain
from [18, Theorem 1.1(a)] that P is not a B-prime of (0) in R. Note that Z(R) = P . Let x ∈
P\{0}. By hypothesis, P is not a B-prime of (0) inR and so Lemma 3.1 implies that there exists
y ∈ P such that y /∈ Rx and yx /= 0. We assert that xy /∈ {x, y}. If xy = x, then x(1 − y) = 0.
As y ∈ P , 1 − y /∈ P = Z(R). Hence x(1 − y) = 0 implies that x = 0. This contradicts the fact
that x /= 0. Similarly, it follows that xy /=y. If both x2y and y2x are nonzero, then we obtain
that x—xy—y—x is a cycle of length 3 in (Γ(R))c. Suppose that either x2y = 0 or y2x = 0.
Without loss of generality, we may assume that x2y = 0. As P is not a B-prime of (0) in R,
Lemma 3.1 implies that there exists z ∈ P such that zxy /= 0 and z /∈ Ry. From zxy /= 0, it
follows that zx /= 0, and zy /= 0 and moreover, as x2y = 0, it follows that z/=x. Furthermore,
by the choice of z, it follows that z/=y. Now x—z—y—x is a cycle of length 3 in (Γ(R))c. This
shows that if R has only one maximal N-prime of (0) and if (Γ(R))c is connected, then there
exists a cycle of length 3 in (Γ(R))c and hence gr((Γ(R))c) = 3.

Though the following lemma is elementary, we include it for the sake of future
reference.
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Lemma 3.3. Let R be a commutative ring with identity. If there exist distinct elements a, b, c ∈
Z(R)∗ \ P for some prime ideal P of R, then gr((Γ(R))c) = 3.

Proof. As P is a prime ideal of R and a, b, c are elements of R which are not in P , we obtain
that ab, bc, ca ∈ R \ P and so ab, bc, ca ∈ R \ {0}. Hence it follows that a—b—c—a is a
cycle of length 3 in (Γ(R))c. This proves that gr((Γ(R))c) = 3.

The next lemma discusses the girth of (Γ(R))c where R is a ring with (0) of R admitting
exactly two maximal N-primes.

Lemma 3.4. Let R be a commutative ring with identity. Suppose that R has exactly two maximal
N-primes of (0) and let them be P1 and P2. Then the following hold:

(i) If P1 ∩ P2 = (0), then (Γ(R))c contains a cycle if and only if either |P1 \ P2 | ≥ 3 or
|P2 \ P1| ≥ 3 if and only if gr((Γ(R))c) = 3.

(ii) If P1∩P2 /= (0), then gr((Γ(R))c) = 3. Thus, if (Γ(R))c is connected, then gr((Γ(R))c) = 3.

Proof. By hypothesis, P1 and P2 are the only maximalN-primes of (0) in R. So, it follows that
Z(R) = P1 ∪ P2.

(i) Assume that (Γ(R))c contains a cycle. Let a1—a2—a3 — · · ·—an—a1 be a cycle
of length n in (Γ(R))c. Note that n ≥ 3 and {ai | i = 1, 2, 3, . . . , n} ⊆ Z(R)∗

with a1a2, a2a3, . . . , an−1an, ana1 ∈ R \ {0}. Since P1 ∩ P2 = (0), it follows that either
{a1, a2, a3, . . . , an} ⊆ P1\P2 or {a1, a2, a3, . . . , an} ⊆ P2\P1. Now it is clear that either |P1\P2| ≥ 3
or |P2 \ P1| ≥ 3.

Conversely, suppose that either |P1 \ P2| ≥ 3 or |P2 \ P1| ≥ 3. Since Z(R) = P1 ∪ P2 and
as P1 and P2 are prime ideals of R, it follows from Lemma 3.3 that gr((Γ(R))c) = 3.

If gr((Γ(R))c) = 3, then we obtain that (Γ(R))c contains a cycle of length 3.
(ii) Suppose that P1 ∩ P2 /= (0). We know from the proof of [18, Proposition 1.7(i)] that

there exist a ∈ P1 \ P2 and b ∈ P2 \ P1 such that ab /= 0. We consider two cases : Case(A):
P1 ∩ P2 /⊂((0) :R a) ∪ ((0) :R b). Then there exists c ∈ P1 ∩ P2 such that ac /= 0 and bc /= 0. Hence
we obtain a cycle a—b—c—a in (Γ(R))c and it is of length 3. Case(B): P1 ∩ P2 ⊆ ((0) : R a) ∪
((0) : R b). Then either P1 ∩ P2 ⊆ ((0) : Ra) or P1 ∩ P2 ⊆ ((0) : R b).

Without loss of generality, we may assume that P1 ∩ P2 ⊆ ((0) :Ra). Let x ∈ P1 ∩ P2 be
such that x /= 0. Since a + b /∈ Z(R), we obtain that (a + b) x /= 0. As ax = 0, it follows that
bx = (a + b) x /= 0. Moreover, observe that b + x ∈ P2 \ P1, b /= b + x, and a(b + x) = ab /= 0.
As b(b + x) ∈ P2 \ P1, it follows that b(b + x)/= 0. Note that a—b—b + x—a is a cycle of length
3 in (Γ(R))c.

Thus in both the cases, (Γ(R))c admits a cycle of length 3. Hence we obtain that
gr((Γ(R))c) = 3.

We know from [18, Theorem 1.1(b)] that (Γ(R))c is connected if and only if P1 ∩
P2 /= (0). Thus if R has exactly two maximal N-primes of (0) and if (Γ(R))c is connected,
then gr((Γ(R))c) = 3.

We show in the next lemma that if R has at least three maximal N-primes of (0), then
gr((Γ(R))c) = 3.

Lemma 3.5. Let R be a ring. Suppose that R admits more than two maximal N-primes of (0). Then
gr((Γ(R))c) = 3.
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Proof. Since by the assumption that R admits more than two maximal N-primes of (0), we
can find at least three maximal N-primes of (0) in R. Let {P, Q, W} be a subset of the set of
all maximalN-primes of (0) in R. It is clear that P/⊂ Q∪W ,Q /⊂ P∪W, andW/⊂ P ∪Q. Hence
there exist elements x ∈ P \ (Q ∪ W), y ∈ Q \ (P ∪ W), and z ∈ W \ (P ∪ Q). Note that
x, y, z are distinct elements of Z(R)∗ with xy, yz, zx ∈ R \ {0}. Hence x—y—z—x is a cycle
of length 3 in (Γ(R))c. This proves that gr((Γ(R))c) = 3.

With the help of the above lemmas, we obtain the main theorem of this section.

Theorem 3.6. Let R be a ring and let |Z(R)∗| ≥ 2. If (Γ(R))c is connected, then gr((Γ(R))c) = 3.

Proof. The proof of this theorem follows immediately from [18, Theorem 1.1] and Lemmas
3.2, 3.4(ii), and 3.5.

We next proceed to consider rings R such that (Γ(R))c is not connected and discuss
about the girth of (Γ(R))c. In this direction, we first have the following proposition.

Proposition 3.7. Let R be a ring and let |Z(R)∗| ≥ 2. Suppose that R has only one maximalN-prime
of (0) and let it be P . If P 2 /= (0) and if (Γ(R))c is not connected, then (Γ(R))c contains a cycle if and
only if |P | ≥ 5 if and only if gr((Γ(R))c) = 3.

Proof. Note that Z(R) = P . Assume that P 2 /= (0) and (Γ(R))c is not connected. From the
assumption that P 2 /= (0), it follows that there exist a, b ∈ P such that a/= b and ab /= 0.
Moreover, by [18, Theorem 1.1(a)], P = ((0) :Rc) for some c ∈ R. It is clear that c ∈ P \ {0}.
Furthermore, as ab /= 0, it follows that a/= c and b /= c.

Suppose that (Γ(R))c contains a cycle. Let a1—a2 —a3 — · · ·—an—a1 be a cycle of
length n in (Γ(R))c. Note that n ≥ 3 and {a1, a2, a3, . . . , an} ⊆ P \ {0}. As P = ((0) :Rc)
and since a1a2, a2a3, . . . , an−1an, and ana1 ∈ R \ {0}, it follows that c /∈ {a1, a2, a3, . . . , an}.
Thus {0, c, a1, a2, a3, . . . , an} ⊆ P and hence it follows that |P | ≥ 5.

We next show that gr((Γ(R))c) = 3 if |P | ≥ 5. Suppose that |P | ≥ 5. Observe that there
exists d ∈ P \ {0, a, b, c} where a, b, c are as in the first paragraph of this proof. We claim that
there exists a cycle of length 3 in (Γ(R))c. If ad /= 0 and bd /= 0, then a—d—b—a is a cycle of
length 3 in (Γ(R))c. Suppose that either ad = 0 or bd = 0.

Observe that if a2 = 0 and b2 = 0, then from (a + b)a = ab = (a + b)b = ab, and from
the fact that a+ b ∈ P \ {0, a, b}, it follows that a—a+ b—b—a is a cycle of length 3 in (Γ(R))c.
Now let us suppose without loss of generality that a2 /= 0. As c2 = 0 and a2 /= 0, it follows
that a + c /= 0. If a + c /= b, then a—a + c—b—a is a cycle of length 3 in (Γ(R))c. Suppose that
a + c = b. Then, as cd = 0, it follows from the assumption that either ad = 0 or bd = 0 that
ad = bd = 0. As c /=d and a + c = b, it follows that a + d /= b and it is clear that a(a + d) = a2 /=
0 and (a + d)b = ab /= 0. Hence a—a + d—b—a is a cycle of length 3 in (Γ(R))c.

Thus if |P | ≥ 5, then it is shown that there exists a cycle of length 3 in (Γ(R))c. Hence
gr((Γ(R))c) = 3.

If gr((Γ(R))c) = 3, then (Γ(R))c contains a cycle of length 3.

The following remark characterizes rings R satisfying the following conditions: (i) R
has exactly one maximal N-prime of (0), (ii) (Γ(R))c contains at least one edge, (iii) (Γ(R))c

is not connected, and (iv) (Γ(R))c does not contain any cycle.

Remark 3.8. Let R be a ring and let |Z(R)∗| ≥ 2. Suppose that P is the only maximal N-
prime of (0) in R. Assume that P 2 /= (0). Suppose that (Γ(R))c is not connected. Let a, b ∈ P
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be such that a/= b and ab /= 0. Let c ∈ P \ {0} be such that P = ((0) :R c). Assume that
gr((Γ(R))c)/= 3. Observe that by Proposition 3.7, gr((Γ(R))c) /= 3 if and only if (Γ(R))c does
not contain any cycle. Now it follows from Proposition 3.7 that |P | ≤ 4 and as {0, a, b, c} ⊆ P ,
it follows that P = {0, a, b, c}. Now ab ∈ P \ {0} = {a, b, c}. We assert that ab = c. If ab = a,
then a(1 − b) = 0. This is impossible since a/= 0 and 1 − b /∈ P = Z(R). Similarly, it follows that
ab /= b. Hence ab = c. Now Z(R) = P = {0, a, b, c = ab} is finite and hence we obtain from
[20, Theorem 1] that R is a finite ring. We verify in this remark that |R| = 8. Moreover, we
observe with the help of [3, Theorem 3.2] that R is isomorphic to exactly one of the rings from
the set {Z8, Z4[x]/(2xZ4[x] + (x2 − 2)Z4[x]), Z2[x]/x3Z2[x]} where Z4[x] (resp. Z2[x]) is
the polynomial ring in one variable over Z4 (resp. over Z2).

Since R is a finite ring, any prime ideal of R is a maximal ideal of R, and moreover,
if Q is any prime ideal of R, then Q ⊆ Z(R). Since Z(R) = P , it follows that P is the only
prime ideal of R. Now R is a local ring with unique maximal ideal P . Hence we obtain that
R \ P is the set of all units in R. Let u be a unit in R. Then uab ∈ P \ {0} = {a, b, c = ab}. We
claim that uab = ab. If uab = a, then a(1 − ub) = 0 and this is impossible. Similarly, we obtain
that uab /= b. Hence uab = ab. This implies that (u − 1)ab = 0. Since ab /= 0, it follows that
u − 1 ∈ Z(R) = P = {0, a, b, c = ab}. Hence we obtain that u ∈ {1, 1 + a, 1 + b, 1 + c = 1 + ab}.
Thus it is shown that R\P = {1, 1+a, 1+ b, 1+c}. Hence R = {0, a, b, c = ab, 1, 1+a, 1+b, 1+c}
is a ring containing exactly 8 elements. Note that ω(Γ(R)) = 2. Now [3, Theorem 3.2] implies
that R is isomorphic to exactly one of the rings from the set {Z8, Z4[x]/(2xZ4[x] + (x2 −
2)Z4[x]), Z2[x]/x3Z2[x]}. Observe that if R is a ring such that R ∈ {Z8, Z4[x]/(2xZ4[x] +
(x2 − 2)Z4[x]), Z2[x]/x3Z2[x]}, then R satisfies the following conditions: R has exactly one
maximal N-prime of (0), say P such that P 2 /= (0), (Γ(R))c is not connected, and (Γ(R))c does
not contain any cycle.

Let R be a ring such that R has only one maximalN-prime of (0), say P , and R satisfies
the further conditions that P 2 /= (0) and (Γ(R))c is not connected. The above discussion implies
that (Γ(R))c does not contain any cycle if and only ifR is isomorphic to exactly one of the rings
from the set {Z8, Z4[x]/(2xZ4[x] + (x2 − 2)Z4[x]), Z2[x]/x3Z2[x]}.

We determine in the following remark rings R satisfying the following conditions: (i)
R admits exactly two maximal N-primes of (0), (ii) (Γ(R))c contains at least one edge, (iii)
(Γ(R))c is not connected, and (iv) (Γ(R))c does not contain any cycle.

Remark 3.9. Let R be a ring admitting exactly two maximal N-primes of (0). Let them be P1

and P2. Suppose that P1 ∩ P2 = (0) (that is, equivalently (Γ(R))c is not connected). In such a
case, it is shown in Lemma 3.4(i) that (Γ(R))c contains a cycle if and only if either |P1\P2| ≥ 3,
or |P2 \ P1 | ≥ 3 if and only if gr((Γ(R))c) = 3. Suppose that |P1 \ P2| < 3, |P2 \ P1| < 3 and
that (Γ(R))c contains at least one edge. We verify in this remark that either |R| = 9 or |R| = 6.
Moreover, we verify that R is isomorphic to K1 ×K2 where K1 and K2 are fields with either
|K1| = |K2| = 3 or one of them contains exactly 3 elements and the other contains exactly 2
elements.

We are assuming that (Γ(R))c contains at least one edge. Since Z(R) = P1 ∪ P2 and
P1 ∩ P2 = (0), it follows that at least one between P1 and P2 contains exactly 3 elements. This
implies that either |P1| = |P2| = 3 or exactly one between P1 and P2 contains exactly 3 elements
and the other contains exactly 2 elements. Thus either |Z(R)| = 5 or |Z(R)| = 4. As Z(R) is a
finite set, it follows from [20, Theorem 1] thatR is a finite ring. Since any prime ideal of a finite
ring is a maximal ideal, it follows that P1 and P2 are maximal ideals of R. As P1 ∩ P2 = (0), it
follows from the Chinese Remainder Theorem [21, Proposition 1.10] that R ≈ (R/P1)×(R/P2)



ISRN Algebra 11

as rings. Thus we obtain from the above discussion that R is isomorphic to the direct product
of two fields K1 and K2 with either |K1| = |K2| = 3 or one between K1 and K2 contains
exactly 3 elements and the other contains exactly 2 elements. Hence we obtain that either
|R| = 9 or |R| = 6 and R is isomorphic to K1 × K2 where K1 and K2 are fields with either
|K1| = |K2| = 3 or one of them contains exactly 3 elements and the other contains exactly 2
elements. Conversely, if R is isomorphic to K1 × K2 where K1 and K2 are fields with either
|K1| = |K2| = 3 or one of them contains exactly 3 elements and the other contains exactly 2
elements, then it is clear that R has the following properties: R admits exactly two maximal
N-primes of (0), (Γ(R))c contains at least one edge, (Γ(R))c is not connected and it does not
contain any cycle.

We next have the following corollary, the proof of which is immediate from the results
proved in this section.

Corollary 3.10. (i) Let R be an infinite ring. If there exist x, y ∈ Z(R)∗ such that xy /= 0, then
gr((Γ(R))c) = 3.

(ii) LetR be any ring admitting elements a, b ∈ Z(R)∗ such that ab /= 0. Then gr((Γ(R[x]))c)
= gr((Γ(R[[x]]))c) = 3 where R[x] (resp. R[[x]]) is the polynomial (resp.the power series) ring in
one variable over R.

4. Cliques in (Γ(R))c

Let R be a commutative ring with identity which is not an integral domain. In this section, we
prove that if a ring R admits more than one maximalN-prime of (0), then the clique number
of (Γ(R))c is finite if and only if (Γ(R))c does not contain any infinite clique if and only if R
is finite. Moreover, if a ring R is such that R has only one maximal N-prime of (0), we obtain
some necessary conditions in order that the clique number of (Γ(R))c is finite. Furthermore, if
R is either a Noetherian ring or a chained ring and if (Γ(R))c admits at least one edge (that is,
there exist x, y ∈ Z(R)∗ with x /=y such that xy /= 0), then it is shown that the clique number
of (Γ(R))c is finite if and only if (Γ(R))c does not contain any infinite clique if and only if R is
finite.

We first prove some elementary lemmas which are of interest in their own right and
which are useful in proving the main results of this section. We begin with the following
lemma.

Lemma 4.1. Let R be a commutative ring with identity which is not an integral domain. Let P be any
prime ideal of R. Then the following hold.

(i) If (Γ(R))c does not contain any infinite clique, then Z(R) \ P is finite.

(ii) If ω((Γ(R))c) is finite, then Z(R) \ P is finite and indeed, |Z(R) \ P | ≤ ω((Γ(R))c).

Proof. (i) Suppose thatZ(R)\P is infinite. Then we can choose an infinite sequence of distinct
elements xi ∈ Z(R) \ P . Since P is a prime ideal of R and as xi /∈ P for i = 1, 2, 3, . . ., it
follows that xixj /= 0 for all i, j ∈ {1, 2, 3, . . .}. Observe that the subgraph of (Γ(R))c induced on
{xi | i = 1, 2, 3, . . .} is an infinite clique. This contradicts the assumption that (Γ(R))c does not
contain any infinite clique. Hence we obtain that Z(R) \ P is finite.

(ii) Let ω((Γ(R))c) = n. We assert that |Z(R) \ P | ≤ n. Suppose that {Z(R) \ P | ≥
n + 1. Let {x1, . . . , xn+1} ⊆ Z(R) \ P . Then it is clear that the subgraph of (Γ(R))c induced on
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{x1, . . . , xn+1} is a clique. This is impossible since ω((Γ(R))c) = n. This shows that |Z(R) \P | ≤
n = ω((Γ(R))c).

Using Lemma 4.1 and prime avoidance [21, Proposition 1.11(i)], we obtain the
following result.

Lemma 4.2. Let R be a commutative ring with identity which is not an integral domain. Let P be any
prime ideal of R. Let A = {Q | Q is a prime ideal of R such that Q ⊆ Z(R) but Q /⊂ P}. Then the
following hold.

(i) If (Γ(R))c does not contain any infinite clique, then A can admit only a finite number of
elements which are pairwise incomparable under inclusion.

(ii) If ω((Γ(R))c) is finite, then A can admit at most ω((Γ(R))c) elements which are pairwise
incomparable under inclusion.

Proof. (i) Suppose that (Γ(R))c does not contain any infinite clique. We want to verify that A
can admit only a finite number of elements which are pairwise incomparable under inclusion.
Suppose that there exist infinitely many elements in A which are pairwise incomparable
under inclusion. Hence there exist Qi ∈ A for each i = 1, 2, 3, . . . with Qi and Qj not being
comparable under inclusion for all i, j ∈ {1, 2, 3, . . .} with i /= j. Now Qi/⊂P for i = 1, 2, 3, . . ..
Hence it is possible to choose x1 ∈ Q1 \ P . Let i ≥ 2. Now it follows from prime avoidance
[21, Proposition 1.11(i)] that there exists xi ∈ Qi \ (P ∪ Q1 ∪ · · · ∪ Qi−1). Observe that
{xi | i = 1, 2, 3, . . .} ⊆ Z(R) \ P . Hence we obtain that Z(R) \ P is infinite. This contradicts
Lemma 4.1(i). This proves that if (Γ(R))c does not contain any infinite clique, then A can
admit only a finite number of elements which are pairwise incomparable under inclusion.

(ii) Let ω((Γ(R))c) = n. Suppose that A admits more than n elements which are
pairwise incomparable under inclusion. Let {Q1, . . . , Qn+1} ⊆ A be such that Qi and Qj are
not comparable for all i, j ∈ {1, 2, . . . , n+ 1}with i /= j. Let x1 ∈ Q1 \ P . Let i ∈ {2, . . . , n+ 1}. As
in (i), we can choose xi ∈ Qi \ (P ∪Q1 ∪ · · · ∪ Qi−1). Observe that {xi | i = 1, 2, . . . , n + 1} ⊆
Z(R) \ P . This implies that |Z(R) \ P | ≥ n + 1 > ω((Γ(R))c). This contradicts Lemma 4.1
(ii). Hence we obtain that A can admit at most n = ω((Γ(R))c) elements which are pairwise
incomparable under inclusion.

We next study in the following corollary to Lemma 4.2, the effect of the nature of the
cliques of (Γ(R))c on the set of maximalN-primes of (0), and the set of minimal prime ideals
of R.

Corollary 4.3. Let R be a commutative ring with identity which is not an integral domain. Then the
following hold.

(i) If (Γ(R))c does not contain any infinite clique then (a) the set of maximal N-primes of (0)
in R is finite (b) the set of minimal prime ideals of R is finite.

(ii) If ω((Γ(R))c) is finite, then (a)R can admit at most ω((Γ(R))c) + 1 maximal N-
primes of (0) and if R admits exactly k maximal N-primes of (0) with k ≥ 3, then
k ≤ ω((Γ(R))c) (b) R can admit at most ω((Γ(R))c) + 1 minimal prime ideals, and if
k is the number of minimal prime ideals of R with k ≥ 3, then k ≤ ω((Γ(R))c).

Proof. (i)(a) Let P be a maximal N-prime of (0) in R. Let A = {Q | Q is a maximal N-
prime of (0) in R and Q/=P}. Since any maximal N-prime of (0) in R is a subset of Z(R)
and as distinct maximal N-primes of (0) in R are not comparable under inclusion, it follows
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from Lemma 4.2(i) that A is finite. Observe that the set of all maximal N-primes of (0) in
R = A ∪ {P}. It is now clear that R can admit only a finite number of maximal N-primes of
(0).

(i)(b) If P is any minimal prime ideal of R, then P ⊆ Z(R) [22, Theorem 84]. Since
distinct minimal prime ideals of R are not comparable under inclusion, it follows using the
same arguments as in the proof of (i)(a) that R can admit only a finite number of minimal
prime ideals.

(ii)(a) Let P , A be as in the proof of (i)(a). Let ω((Γ(R))c) = n. Now using the same
arguments as in the proof of (i)(a), it follows from Lemma 4.2(ii) that |A| ≤ n. Since the set of
all maximalN-primes of (0) in R = A∪{P}, we obtain that R can admit at most n+1 maximal
N-primes of (0).

Suppose that R admits exactly k maximal N-primes of (0) with k ≥ 3. Let
{P1, P2, P3, . . . , Pk} be the set of all maximal N-primes of (0) in R. Note that Z(R) =
∪k
i=1 Pi. Since distinct maximal N-primes of (0) in R are not comparable under the inclusion

relation, it follows from [21, Proposition 1.11(i)] that for each i ∈ {1, 2, 3, . . . , k}, ∃xi ∈
Pi \ (

⋃
j∈{1,...,k}\{i} Pj). Then it is clear that for any distinct i, j ∈ {1, 2, 3, . . . , k}, xi and xj are

distinct nonzero zero-divisors of R, and as k ≥ 3, it follows that there exists at least one
t ∈ {1, 2, 3, . . . , k} such that both xi and xj are not in Pt and hence xixj /= 0. Thus we obtain that
the subgraph of (Γ(R))c induced on {x1, x2, x3, . . . , xk} is a clique and so k ≤ ω((Γ(R))c).

(ii)(b) This can be proved using similar arguments as in the proof of (ii)(a) and using
Lemma 4.2(ii).

The following proposition is one among the main results in this section. We show in
this proposition that if a ring R admits at least two maximalN-primes of (0), thenω((Γ(R))c)
is finite if and only if R is finite.

Proposition 4.4. Let R be a commutative ring with identity. Suppose that R has at least two maximal
N-primes of (0). Then the following conditions are equivalent:

(i) ω((Γ(R))c) is finite.
(ii) R is finite.
(iii) (Γ(R))c does not contain any infinite clique.

Proof. (i)⇒ (ii) Letω((Γ(R))c) = n. Now it follows from Corollary 4.3(ii)(a), that R can admit
at most n + 1 maximal N-primes of (0). Let m be the number of maximal N-primes of (0) in
R and let {P1, . . . , Pm} be the set of all maximalN-primes of (0) in R. Note thatm ≤ n + 1 and
by the hypothesis, m ≥ 2. Observe that

Z(R) = P1 ∪ P2 ∪ · · · ∪ Pm

= (P1 ∩ P2 ∩ · · · ∩ Pm) ∪ (Z(R) \ P1) ∪ (Z(R) \ P2) ∪ · · · ∪ (Z(R) \ Pm).
(4.1)

We know from Lemma 4.1(ii) that

|Z(R) \ Pi| ≤ n for i = 1, 2, . . . , m. (4.2)
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We now verify that |P1 ∩ P2 ∩ · · · ∩ Pm| ≤ n. Let x ∈ P1 \ P2. Note that {x + y | y ∈
P1 ∩ P2 ∩ · · · ∩ Pm} ⊆ Z(R) \ P2. Hence it follows that

|P1 ∩ P2 ∩ · · · ∩ Pm| ≤ n. (4.3)

Now it follows from (4.1), (4.2), and (4.3) that Z(R) is finite. Hence it follows from [20,
Theorem 1] that R is finite.

(ii)⇒ (iii) This is obvious.
(iii) ⇒ (i) We first show that R is finite. It follows from Corollary 4.3(i)(a) that R can

admit only a finite number of maximalN-primes of (0). Now one can proceed as in the proof
of (i) ⇒ (ii), and use Lemma 4.1(i) to obtain that R is finite. It is now clear that ω((Γ(R))c) is
finite.

Remark 4.5. Let R be an infinite ring and let R admit at least two maximal N-primes of (0).
It follows from Proposition 4.4 that ω((Γ(R))c) = ∞. Motivated by the interesting theorems
proved on cliques in Γ(R) in [3], and in particular, [3, Theorems 3.7 and 3.8], we attempt to
determine ω((Γ(R))c) for a finite commutative ring Rwith identity which admits at least two
maximal N-primes of (0). We are able to describe ω((Γ(R))c) in the case when R is a finite
reduced ring which is not an integral domain.

Let R be a finite commutative reduced ring with identity which is not an integral
domain. Since R is a finite ring, any prime ideal of R is maximal. Let {P1, . . . , Pn} be the
set of all prime ideals of R. Since R is reduced, (0) = nil(R) = P1 ∩ · · · ∩ Pn. As R is not
an integral domain, it follows that n ≥ 2. Moreover, by the Chinese Remainder Theorem
[21, Proposition 1.10], it follows that R is isomorphic to R/P1 × · · · × R/Pn. Thus R is
isomorphic to a finite direct product of finite fields. Let n ≥ 2 and let K1 . . . , Kn be finite
fields. Let R = K1 × · · · ×Kn. We now proceed to describe ω((Γ(R))c). We make use of some
of the techniques from [4].

We first recall the following facts from [4].

Fact 4.6. Let R be a commutative ring with identity which is not an integral domain. For any
a, b ∈ Z(R)∗, define a ∼ b if and only if ((0) :R a) = ((0) :R b). Then ∼ is an equivalence
relation on Z(R)∗.

Proof. This fact is easy to check. The relation ∼ can be defined on the whole of R. As our
interest is on Z(R)∗, we consider this relation defined on Z(R)∗.

For an element a ∈ Z(R)∗, we denote by [a], the equivalence class determined by ∼
containing “a”.

Recall from [23] that a commutative ring R with identity is said to be von Neumann
regular if for each a ∈ R there exists b ∈ R such that a = a2b.

The following fact is important, and we make use of it in the proof of Lemma 4.8.

Fact 4.7. Let R be a von Neumann regular ring which is not an integral domain (equivalently,
which is not a field). Let ∼ be the relation defined on Z(R)∗ as in Fact 4.6. Then for any
a ∈ Z(R)∗, there exists a unique idempotent element e ∈ Z(R)∗ such that [a] = [e].
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Proof. The Fact 4.7 can be proved easily with the help of the ideas contained in the proof of [4,
Lemma 3.1] and [10, Lemma 2.11]. In fact, [4, Lemma 3.1] and [10, Lemma 2.11] assert that
for any von Neumann regular ring R and for a, b ∈ Z(R)∗, [a] = [b] if and only if Ra = Rb.
Yet for the sake of completeness, we present a proof of Fact 4.7.

It is well known that any element of a von Neumann regular ring can be expressed
as the product of a unit and an idempotent [24, Lemma 2.5]. Let a ∈ Z(R)∗. Now there
exists a unit u in R and an idempotent element e in R such that a = ue. Then it is clear that
((0) :R a) = ((0) :R e). Since a ∈ Z(R)∗, it follows that e ∈ Z(R)∗. This proves that a ∼ e and
so [a] = [e].

Note that if e is any idempotent element in a ring R (R not necessarily von Neumann
regular), then ((0) :R e) = R(1− e). Moreover, it is easy to check that for idempotent elements
e1, e2 in a ring R, Re1 = Re2 if and only if e1 = e2 . If e, f are idempotent elements in a ring R

such that ((0) :R e) = ((0) :R f), then it follows that R(1 − e) = R(1 − f). Hence 1 − e = 1 − f

and so e = f .
Now it follows from the above two preceding paragraphs that given any a ∈ Z(R)∗

where R is a von Neumann regular ring, then there exists a unique idempotent e ∈ Z(R)∗

such that [a] = [e].

LetR be a von Neumann regular ring which is not an integral domain. In the following
lemma, we exhibit some cliques of (Γ(R))c.

Lemma 4.8. Let R be a von Neumann regular ring which is not an integral domain. Let
{e1, . . . , em} ⊆ R \ {0, 1} be a set of idempotents in R such that eiej /= 0 for all i, j ∈ {1, . . . , m}.
Let A = [e1] ∪ · · · ∪ [em]. Then the subgraph of (Γ(R))c induced on A is a clique.

Proof. Let i ∈ {1, . . . , m}. Let a, b ∈ [ei] with a/= b. Note that [a] = [b] = [ei]. Now it follows
from the proof of Fact 4.7 that there exist units u, v in R such that a = uei and b = vei. Hence
ab = uvei /= 0. This proves that any two distinct elements of [ei] are adjacent in (Γ(R))c for
each i ∈ {1, . . . , m}.

Let i, j ∈ {1, . . . , m} with i /= j. Let x ∈ [ei], y ∈ [ej]. Note that x = uei and y = vej for
some units u, v in R. Hence xy = uveiej /= 0, since eiej /= 0 by the hypothesis.

Indeed, it is true that if [a] and [b] are equivalence classes determined by ∼ defined on
Z(R)∗ where R is a commutative ring with identity which is not an integral domain (R need
not be von Neumann regular) and if ab /= 0, then we assert that for any x ∈ [a] and y ∈ [b],
xy /= 0. Note that if xy = 0, then y ∈ ((0) :R x) = ((0) :R a). Hence ay = 0. This implies that
a ∈ ((0) :R y) = ((0) :R b). Hence ab = 0 and this is a contradiction. Thus we obtain that
xy /= 0.

This proves that the subgraph of (Γ(R))c induced on A = [e1]∪· · ·∪[em] is a clique.

We include the following simple lemma for the sake of completeness.

Lemma 4.9. Let n ≥ 2. Let Ki be a field for i = 1, 2, . . . , n. Let R = K1 × · · · ×Kn be their direct
product. Then the number of idempotents in Z(R)∗ (that is, the number of nontrivial idempotents in
R) equals 2n−2 and the number of equivalence classes determined by the equivalence relation ∼ defined
on Z(R)∗ equals 2n − 2.

Proof. The only idempotent elements in a field are 1 and 0. Using this observation, it follows
thatR = K1×· · ·×Kn has exactly 2n idempotents. Among them except (0, . . . , 0) and (1, . . . , 1),
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the rest of them are in Z(R)∗. Thus we obtain that the number of idempotents in Z(R)∗ (that
is, the number of nontrivial idempotents in R) equals 2n − 2.

Let {ei | i = 1, 2, . . . , 2n − 2} be the set of all idempotent elements in Z(R)∗. Since
R = K1 × · · · × Kn is von Neumann regular, it follows from Fact 4.7 that the set of all
equivalence classes determined by ∼ is {[ei] | i = 1, 2, . . . , 2n − 2}.

Let n ≥ 2. Let R = K1 × · · · ×Kn where Ki is a field for i = 1, 2, . . . , n. The following
lemma describes the cliques of (Γ(R))c.

Lemma 4.10. Let n ≥ 2. LetKi be a field for i = 1, 2, . . . , n. Let R = K1 × · · · ×Kn. LetA ⊆ Z(R)∗

be such that the subgraph of (Γ(R))c induced onA is a clique. Let E = {ei | i = 1, 2, . . . , 2n − 2} be the
set of all idempotents in Z(R)∗. Then there exists a nonempty subset B of E such that b1b2 /= 0 for all
b1, b2 ∈ B and A ⊆ ⋃

b∈B[b].

Proof. We know from the proof of Lemma 4.9 that {[ei] | i = 1, 2, . . . , 2n − 2} is the set of all
equivalence classes determined by ∼. Thus we obtain that Z(R)∗ =

⋃
e∈E[e] . Now A being a

subset of Z(R)∗, it follows thatA =
⋃

e∈E(A∩ [e]). Let B ⊆ E be such thatA∩ [b] is non-empty
for each b ∈ B. Since A is non-empty, it follows that B is non-empty. We now verify that for
any b1, b2 ∈ B, b1b2 /= 0. This is clear if b1 = b2 since any element of B is a nonzero idempotent
in R. Suppose that b1 /= b2.

Let a1 ∈ A ∩ [b1] and a2 ∈ A ∩ [b2]. Since [b1] ∩ [b2] = ∅, it follows that a1 /=a2. As
the subgraph of (Γ(R))c induced on A is a clique, we obtain that a1a2 /= 0. Note that Rai =
Rbi for i = 1, 2. Hence we obtain that Rb1b2 = Ra1a2 /= (0) and so b1b2 /= 0. This proves that
there exists a non-empty subset B of E such that b1b2 /= 0 for all b1, b1 ∈ B and moreover,
A =

⋃
b∈B(A ∩ [b]) ⊆ ⋃

b∈B[b].

Let R be as in Lemma 4.10 with the further assumption that Ki is finite for i =
1, 2, . . . , n. We determine ω((Γ(R))c) in the following proposition.

Proposition 4.11. Let n ≥ 2 and letKi (i = 1, 2, . . . , n) be finite fields. Let R = K1×K2× · · · ×Kn.
Let E = {ei | i = 1, 2, . . . , 2n − 2} be the set of all idempotents in Z(R)∗. Then ω((Γ(R))c) =
max{(∑b∈B |[b]|) | B varies over all non-empty subsets of E satisfying the property that b1b2 /= 0 for
any b1, b2 ∈ B}.
Proof. Let X = {B | B is a non-empty subset of E satisfying the property that for any b1, b2 ∈
B, b1b2 /= 0}. Let B ∈ X. Let A =

⋃
b∈B[b]. Now it follows from Lemma 4.8 that the subgraph

of (Γ(R))c induced onA is a clique. Thusω((Γ(R))c) ≥ |A| =
∑

b∈B |[b]|. Hence we obtain that

ω
(
(Γ(R))c

) ≥ max

{(
∑

b∈B
|[b]|

)
| B ∈ X

}
. (4.4)

Let A ⊆ Z(R)∗ be such that the subgraph of (Γ(R))c induced on A is a clique. We
know from Lemma 4.10 that there exists B ∈ X such that A ⊆ ⋃

b∈B[b]. Hence we obtain that
|A| ≤ ∑

b∈B |[b]|. This implies that

ω
(
(Γ(R))c

) ≤ max

{(
∑

b∈B
|[b]|

)
| B ∈ X

}
. (4.5)

From (4.4) and (4.5), it follows that ω((Γ(R))c) = max{(∑b∈B |[b]|) | B ∈ X}.
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We make use of the following useful remark in Example 4.13(i) and (ii).

Remark 4.12. Let R be a von Neumann regular ring which is not a field. Let ∼ be the
equivalence relation which was considered in Fact 4.7. Observe that for any idempotent
element e ∈ Z(R)∗, [e] = {ue | u is a unit in R}.

Let n ≥ 2. Let K1, K2, . . . , Kn be finite fields and let R = K1 × K2 × · · · × Kn. Let
e ∈ Z(R)∗ be an idempotent. Let C = {i ∈ {1, 2, . . . , n} | the ith component of e is 1}. Observe
that |[e]| = ∏

i∈C(|Ki| − 1).

We next have the following example.

Example 4.13. (i) Let K1, K2 be finite fields. Let R = K1 × K2. Note that {e1 = (1, 0), e2 =
(0, 1)} is the set of all idempotents in Z(R)∗. Now it follows from Proposition 4.11 and
Remark 4.12 that ω((Γ(R))c) = max{|K1| − 1 , |K2| − 1}. Note that this fact can also be
verified directly.(ii) Let K1, K2, K3 be finite fields. Let R = K1 × K2 × K3. Note that {e1 =
(1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1), e4 = (1, 1, 0), e5 = (1, 0, 1), e6 = (0, 1, 1)} is
the set of all idempotents in Z(R)∗. Now it follows from Proposition 4.11 and Remark 4.12
that ω((Γ(R))c) = max{(|K1| − 1) + (|K1| − 1)(|K2| − 1) + (|K1| − 1)(|K3| − 1), (|K2| − 1) + (|K1| −
1)(|K2| − 1) + (|K2| − 1)(|K3| − 1), (|K3| − 1) + (|K1| − 1)(|K3| − 1) + (|K2| − 1)(|K3| − 1), (|K1| −
1)(|K2| − 1) + (|K2| − 1)(|K3| − 1) + (|K1| − 1)(|K3| − 1)}.

Let R be a ring with |Z(R)∗| ≥ 2. Suppose that R has only one maximalN-prime of (0).
We, in the following result, determine some necessary conditions on R in order that (Γ(R))c

does not contain any infinite clique.

Lemma 4.14. Let R be a commutative ring with identity and let |Z(R)∗| ≥ 2. Suppose that R has
exactly one maximal N-prime of (0) and let it be P . If (Γ(R))c does not contain any infinite clique,
then (i)P = the nilradical of R and if furthermore, P 2 /= (0), then (ii)R/P is finite, (iii)P is a B-prime
of (0) in R, and(iv)R satisfies descending chain condition (d. c. c.) on principal ideals.

Proof. (i) As any nilpotent element of R is a zero-divisor of R and since Z(R) = P , it follows
that nil(R) ⊆ Z(R) = P . Let x ∈ P . We assert that x is nilpotent. Suppose that x is not nilpotent.
Then for any i, j ∈ {1, 2, 3, . . .}, xixj /= 0, and moreover, for all distinct i, j ∈ {1, 2, 3, . . .}, xi /=xj .
Hence {xk | k = 1, 2, 3, . . .} ⊆ Z(R)∗ is such that the subgraph of (Γ(R))c induced on {xk |
k = 1, 2, 3, . . .} is an infinite clique. This is in contradiction to the assumption that (Γ(R))c

does not contain any infinite clique. Hence x is nilpotent. This shows that P ⊆ nil(R) and so
P = nil (R).

(ii) Suppose that R/P is infinite. We first assert that x2 = 0 for each x ∈ P . Suppose that
there exists x ∈ P such that x2 /= 0. Since we are assuming that R/P is infinite, it is possible
to find an infinite sequence of elements rk ∈ R \ P for k = 1, 2, 3, . . . such that ri − rj /∈ P

and ri + rj /∈ P for all distinct i, j ∈ {1, 2, 3, . . .}. Note that for all i, j ∈ {1, 2, 3, . . .}, rirj /∈ P =
Z(R), and as x2 /= 0, it follows that x2rirj /= 0. Moreover, as for all distinct i, j ∈ {1, 2, 3, . . .},
ri − rj /∈ P , it follows that xri /=xrj . Hence we obtain that the subgraph of (Γ(R))c induced
on {xrk | k = 1, 2, 3, . . .} is an infinite clique. This contradicts the assumption that (Γ(R))c

does not contain any infinite clique. Hence x2 = 0 for each x ∈ P . As P 2 /= (0), there exist
a, b ∈ P such that a/= b and ab /= 0. Note that we have a2 = b2 = 0. For any positive integer
k, let xk = a + brk. It is clear that for any positive integer k, xk ∈ P and axk = abrk /= 0, since



18 ISRN Algebra

ab /= 0 and rk /∈ P = Z(R). Moreover, for all distinct i, j ∈ {1, 2, 3, . . .}, xixj = ab(ri + rj)/= 0,
since ab /= 0 and ri + rj /∈ P = Z(R). Furthermore, as b /= 0 and ri − rj /∈ P , for all distinct
i, j ∈ {1, 2, 3, . . .}, it follows that xi /=xj for all distinct i, j ∈ {1, 2, 3, . . .}. Hence we obtain that
the subgraph of (Γ(R))c induced on {xk | k = 1, 2, 3, . . .} is an infinite clique. This contradicts
the assumption that (Γ(R))c does not contain any infinite clique. Hence it follows that R/P is
finite.

(iii) We now verify that P is a B-prime of (0) in R. We consider two cases. Case (A): P
is finitely generated.

By (i), we have P = nil(R) and hence we obtain that P is a nilpotent ideal of R. Let
m ≥ 2 be least with the property that Pm = (0). Now for any x ∈ Pm−1 \ {0}, P ⊆ ((0) :R x ) ⊆
Z(R) = P, and so P = ((0) :R x) is a B-prime of (0) in R. Case (B): P is not finitely generated.

We have P 2 /= (0), by assumption. Hence there exist a1, a2 ∈ P such that a1 /=a2

and a1a2 /= 0. Suppose that P is not a B-prime of (0) in R. Then, as ((0) :R a1a2) ⊆ Z(R) = P ,
it follows that P/⊂ ((0) :R a1a2). As Ra1 + Ra2 ⊆ P and since P is not finitely generated, it
follows that P/⊂Ra1 + Ra2. Hence P /⊂ (Ra1 + Ra2) ∪ ((0) :R a1a2). Hence there exists a3 ∈
P \ ((Ra1 + Ra2) ∪ ((0) :R a1a2)). Thus a1, a2, a3 ∈ P are distinct and a1a2a3 /= 0. Let k be any
positive integer with k ≥ 3. Assume that there exists a subset {a1, a2, a3, . . . , ak} of P with
a1a2a3 · · ·ak /= 0. Observe that P/⊂Ra1 +Ra2 +Ra3 + · · · + Rak and P/⊂((0):R a1a2a3 · · · ak).
Hence there exists ak+1 ∈ P \ ((Ra1 + · · · + Rak) ∪ ((0) :R a1a2a3 · · · ak)). This shows that
if P is not finitely generated and if P is not a B-prime of (0) in R, then there exists an infinite
subset {ai | i = 1, 2, 3, . . .} of P such that the product a1 · · ·ak /= 0 for k = 1, 2, 3, . . .. This implies
that the subgraph of (Γ(R))c induced on {ai | i = 1, 2, 3, . . .} is an infinite clique.

This contradicts the hypothesis that (Γ(R))c does not contain any infinite clique. Hence
P is a B-prime of (0) in R.

(iv) We obtain from (ii) that R/P is finite. Since any finite integral domain is a field,
it follows that P is a maximal ideal of R. By (i), P = nil(R). Hence we obtain that P is the
only prime ideal of R. We now verify that R satisfies d. c. c. on principal ideals. Suppose that
R does not satisfy d. c. c. on principal ideals. Then there exist nonzero elements xi ∈ P for
i = 1, 2, 3, . . . such that Rx1 ⊃ Rx2 ⊃ Rx3 ⊃ · · · . Note that there exist ai ∈ P for i = 1, 2, 3, . . .
such that xi+1 = aixi. Hence

xk+1 = (ak · · · a1)x1, ∀k ≥ 1. (I)

Since xk /= 0 for k = 1, 2, 3, . . ., it follows that the elements ak ∈ P (k = 1, 2, 3, . . .) satisfy
aiaj /= 0 for all distinct i, j ∈ {1, 2, 3, . . .}. As each element of P is nilpotent, it follows from (I)
and the fact that xk /= 0 for k = 1, 2, 3, . . . that there exist positive integers k1 < k2 < k3 < · · ·
such that for all distinct i, j ∈ {k1, k2, . . .}, ai /=aj . Let A = {ki | i = 1, 2, 3, . . .}. Observe that
the subgraph of (Γ(R))c induced on {ai | i ∈ A} is an infinite clique. This contradicts the
assumption that (Γ(R))c does not contain any infinite clique. Hence it follows that R satisfies
d. c. c. on principal ideals.

Let R and P be as in Lemma 4.14. Suppose that P 2 /= (0). I do not know any necessary
and sufficient condition in order that (Γ(R))c does not contain any infinite clique. However,
the following proposition shows that if the ringR is Noetherian, then (Γ(R))c does not contain
any infinite clique if and only if R is finite.
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Proposition 4.15. Let R be a Noetherian ring which is not an integral domain. Suppose that R
has only one maximal N-prime of (0) and let it be P . If P 2 /= (0), then the following conditions are
equivalent.

(i) ω((Γ(R))c) is finite.

(ii) (Γ(R))c does not contain any infinite clique.

(iii) R is finite.

Proof. (i)⇒ (ii) This is clear.
(ii) ⇒ (iii) We know from Lemma 4.14 that P = the nilradical of R and R/P is finite.

Now by hypothesis, R is a Noetherian ring. Hence P is finitely generated. Therefore, Pn = (0)
for some n ≥ 1. Since P 2 /= (0), it follows that n ≥ 3. Observe that for each integer k, 0 ≤ k ≤
n − 1, Pk/Pk+1 is a finite-dimensional vector space over the finite field R/P . Hence it follows
that Pk/Pk+1 is finite for k = 0, 1, 2, . . . , n − 1. Now Pn−1, Pn−2/Pn−1 are finite, and hence it
follows that Pn−2 is finite. Proceeding in this way, we obtain that P is finite. Thus P and R/P
are finite. Hence we obtain that R is finite.

(iii)⇒ (i) This is clear.

Recall that a commutative ring R with identity is said to be a chained ring if the
principal ideals of R are linearly ordered under inclusion (equivalently, the ideals of R are
linearly ordered under inclusion).

Let R be a chained ring which is not an integral domain. Then, it is clear that R must
have exactly one maximal N-prime of (0). If P is the only maximal N-prime of (0) and if
P 2 /= (0), then the following proposition characterizes when (Γ(R))c can admit infinite cliques.

Proposition 4.16. Let R be a commutative ring with identity which is not an integral domain.
Suppose that R is a chained ring and moreover, there exist x, y ∈ Z(R)∗ with x /=y such that xy /= 0.
Then the following conditions are equivalent.

(i) (Γ(R))c does not admit any infinite clique.

(ii) R is finite.

(iii) ω((Γ(R))c) is finite.

Proof. (i) ⇒ (ii) Since the ideals of R are linearly ordered under inclusion, it follows that R
admits exactly one maximal N-prime of (0). Let P be the unique maximal N-prime of (0)
in R. We are assuming that (Γ(R))c does not admit any infinite clique. So, we obtain from
Lemma 4.14(i) that P = the nilradical of R. Note that Z(R) = P . Let N(R) = {x ∈ P | x2 = 0}.
It is known that for any x, y ∈ P \ N(R), xy /= 0 [6, Lemma 4.2(3)]. Since (Γ(R))c does not
admit any infinite clique, it follows that P \ N(R) is finite. Now by the assumption that R
is a chained ring and there exist x, y ∈ Z(R)∗ with x /=y such that xy /= 0, it follows that
Z(R) \N(R) is non-empty. Let P \N(R) = {x1, . . . , xm}. Since each element of P is nilpotent,
it follows that there exist t > 2 such that pt = 0 for each p ∈ P . As R is a chained ring, we
obtain that Pt = (0). Moreover, it follows from Lemma 4.14(ii) that R/P is finite. Hence P is
a maximal ideal of R and since R is a chained ring, it follows that R is quasilocal with P as its
unique maximal ideal. As P is nilpotent and P /= (0), it follows that P /=P 2. Now R is a chained
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ring with P as its unique maximal ideal satisfying the further condition that P /=P 2. In such a
case it is well known that P = Rp for any p ∈ P \P 2. Using the same reasoning as in the proof
of (ii) ⇒ (iii) of Proposition 4.15, it now follows that R is finite.

(ii)⇒ (iii) and (iii) ⇒ (i) are clear.

The following remark determines ω((Γ(R))c) for any finite chained ring which is not
an integral domain.

Remark 4.17. Let R be a finite chained ring which is not an integral domain. Let P denote the
unique maximal ideal of R. Suppose that P 2 /= (0). Let n ≥ 3 be least with the property that
Pn = (0). Then the following hold.

(i) ω((Γ(R))c) = |P \ Pn/2| + 1 if n is even.

(ii) ω((Γ(R))c) = |P \ P (n+1)/2| if n is odd.

Proof. As is already observed in the proof of (i)⇒ (ii) of Proposition 4.16, P = Rp for any p ∈
P \ P 2.

(i) Suppose that n is even and let n = 2m. By the choice of n, pn−1 /= 0 . If a ∈ P\Pm, b ∈
P \Pm, then a = upt for some t, 1 ≤ t < m and a unit u inR and b = vps for some s, 1 ≤ s < m
and a unit v in R. Hence ab = uvpt+s /= 0, since t + s < 2m = n and pn−1 /= 0. Moreover, observe
that pmx /= 0 for any x ∈ P \ Pm . Hence the subgraph of (Γ(R))c induced on (P \ Pm) ∪ {pm}
is a clique. This implies that ω((Γ(R))c) ≥ |P \ Pm| + 1. Let A ⊆ Z(R)∗ = P \ {0} be such that
the subgraph of (Γ(R))c induced on A is a clique. Let |A| = t. Since R is a chained ring, it is
possible to find a ∈ A such that Ra ⊆ Rb for each b ∈ A. Hence Rab ⊆ Rb2. Since ab /= 0 for
each b ∈ A \ {a}, we obtain that b2 /= 0 for each b ∈ A \ {a}. As Pn = P 2m = (0), it follows that
A \ {a} ⊆ P \ Pm. Thus A = {a} ∪ (A \ {a}) ⊆ {a} ∪ (P \ Pm) and so |A| ≤ |P \ Pm| + 1. This
proves that ω((Γ(R))c) ≤ |P \ Pm| + 1. Hence ω((Γ(R))c) = |P\Pm| + 1.

(ii) Suppose that n is odd and let n = 2k + 1 for some k ≥ 1. In this case, we verify that
ω((Γ(R))c) = |P \ Pk+1| where k = (n − 1)/2. It is clear that for any x, y ∈ P\Pk+1, xy /= 0.
This shows that the subgraph of (Γ(R))c induced on P \ Pk +1 is a clique. Hence we obtain
that ω((Γ(R))c) ≥ |P \ Pk+1|. Let A ⊆ Z(R)∗ = P \ {0} be such that the subgraph of (Γ(R))c

induced on A is a clique. We assert that |A| ≤ |P \ Pk+1|. Let a ∈ A be such that Ra ⊆ Rb
for each b ∈ A. Now, it follows as in the proof of (i) that b2 /= 0 for each b ∈ A \ {a}. Since
P 2k+1 = (0), it follows that A \ {a} ⊆ P \ Pk+1. If there exists at least one b ∈ A \ {a} such
that b ∈ Pk, then, as ab /= 0, it follows that a /∈ Pk+1 and so we obtain that A ⊆ P \ Pk+1.
Hence it follows that |A| ≤ |P\Pk+1|. Otherwise, we obtain that A \ {a} ⊆ P \ Pk. Note that
A = {a} ∪ (A\{a}) ⊆ {a}∪(P\Pk) and so |A| ≤ 1 + |P\Pk| ≤ |Pk\Pk+1|+|P\Pk| = |P\Pk+1|.
This proves that ω((Γ(R))c) ≤ |P \ Pk+1|. Hence we obtain that

ω
(
(Γ(R))c

)
=
∣∣∣P \ Pk+1

∣∣∣ =
∣∣∣P\P (n+1)/2

∣∣∣. (4.6)

We next mention an example to illustrate that in Remark 4.17, one cannot drop the
assumption that R is a chained ring.

Example 4.18. Let F = Z/2Z be the field containing exactly two elements. It is convenient to
denote F simply by F = {0, 1}. Let p(x) = x2 + x + 1 ∈ F[x] where F[x] is the polynomial
ring in one variable over F. Note that p(x) is irreducible over F. Let K be the splitting field
of p(x) over F. Let α ∈ K be a root of p(x). It is clear that K = F(α) and [K : F] = 2. Indeed,
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{1, α} is a basis of K as a vector space over F. Moreover, K = {0, 1, α, α2 = − α − 1 = α + 1}.
Let T = K[[x]] be the power series ring in one variable over K. Note that T = K +M where
M = xK[[x]] = xT . Let S = F + M. Consider the ring R = S/x2S. Let us denote x2S by I.
Observe that R = {(a + (b + cα)x + (d + eα)x2) + I | a, b, c, d, e ∈ F}. Note that R is a finite
local ring with unique maximal idealN = M/I satisfyingN3 = the zero-ideal of R, butN2 is
nonzero. We have α2 = 1+α and thusN = {0+I, x+I, αx+I, α2x+I, αx2+I, (x+αx2)+I,
(αx + αx2) + I, (α2x + αx2) + I}. Observe that Z(R) = N. Now N \ N2 = {x + I, αx + I,
α2x + I, (x + αx2) + I, (αx + αx2) + I, (α2x + αx2) + I}. Thus |N \ N2| = 6. We assert that
ω((Γ(R))c) = 3. Since N3 = the zero-ideal of R, it follows that the vertex set of any clique in
(Γ(R))c must be a subset of

N \N2. (4.7)

As α /∈ F, αx2 /∈ I = x2S, and α2x2 = (1 + α)x2 /∈ I. Hence the subgraph of (Γ(R))c

induced on {x + I, αx + I, (αx + αx2) + I} is a clique. This shows that ω((Γ(R))c) ≥ 3. Observe
that

(x + I)
((

x + αx2
)
+ I

)
= x2 + I = 0 + I. (4.8)

We have α3 = αα2 = α(1 + α) = α + α2 = α + (1 + α) = 1. Note that

(αx + I)
(
α2x + I

)
= x2 + I = 0 + I. (4.9)

Moreover,

((
αx + αx2

)
+ I

)((
α2x + αx2

)
+ I

)
= x2 + I = 0 + I. (4.10)

It is clear from (4.7), (4.8), (4.9), and (4.10) that if A ⊆ Z(R)∗ is such that the subgraph of
(Γ(R))c induced on A is a clique, then A can contain at most 3 elements. Hence we obtain
that ω((Γ(R))c) ≤ 3. Thus ω((Γ(R))c) = 3 < |N \N2| = 6.

Let T and S be as above. Let R1 = S/x3S. Note that R1 is a finite local ring with N1 =
M/x3S as its unique maximal ideal. Thus Z(R1) = N1. Moreover, note that (N1)

4 is the zero-
ideal of R1 but (N1)

3 is nonzero. It is convenient to denote the ideal x3S of S by J . Note that
α2 = α + 1. We assert that ω((Γ(R1))

c) = |N1 \ (N1)
2|. Since (N1)

4 = (0), it follows that if A
is any subset of Z(R1)

∗ = N1 \ {0 + J} such that the subgraph of (Γ(R1))
c induced on A is a

clique, then A can admit at most one element of (N1)
2. We claim that |A| ≤ |N1 \ (N1)

2|. This
is clear if A does not contain any element of (N1)

2. Suppose that A has an element of (N1)
2.

In such a case, we verify that A cannot contain all the elements of N1 \ (N1)
2. Let a ∈ A be

such that a ∈ (N1)
2. Note that a = (βx2 + γx3) + J for some β, γ ∈ K. We consider two cases.

Case i. β = 0. In such a case, the element a = γx3 + J annihilates each element ofN1 and hence
it annihilates each element ofN1 \ (N1)

2.

Case ii. β /= 0. Observe that β = u + vα for some u, v ∈ F with at least one of u, v is different
from 0. Thus a ∈ {(x2+γx3)+J, (αx2+γx3)+J, (α2x2+γx3)+J}. Note that(x2+γx3)+J annihilates
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the element x + J ∈ N1 \ (N1)
2. The element (αx2 + γx3) + J annihilates α2x + J ∈ N1 \ (N1)

2

and the element (α2x2 + γx3) + J annihilates αx + J ∈ N1 \ (N1)
2.

This shows that ifA contains an element of (N1)
2, then that element annihilates at least

one element ofN1 \ (N1)
2. Since the subgraph of (Γ(R1))

c induced onA is a clique, it follows
that A cannot contain all the elements of N1 \ (N1)

2. This proves that |A| ≤ |N1 \ (N1)
2| and

hence we obtain that ω((Γ(R1))
c) ≤ |N1 \ (N1)

2|.
We next claim that the subgraph of (Γ(R1))

c induced on N1 \ (N1)
2 is a clique. Let a,

b ∈ N1 \ (N1)
2. Note that a = (β1x + β2x

2 + β3x
3) + J and b = (γ1x + γ2x

2 + γ3x
3) + J for

some βi, γi ∈ K (for i = 1, 2, 3) with β1, γ1 ∈ K \ {0}. Note that ab = β1γ1x
2 + w + J for some

w ∈ x3K[[x]]. Since, J = x3S ⊆ x3K[[x]] and as β1γ1x
2 /∈ x3K[[x]], it follows that ab is a

nonzero element of R1. This proves that the subgraph of (Γ(R1))
c induced on N1 \ (N1)

2 is a
clique. Hence we obtain that ω((Γ(R1))

c) ≥ |N1 \ (N1)
2| and so ω((Γ(R1))

c) = |N1 \ (N1)
2|.

Let R be a commutative ring with identity which is not an integral domain. Suppose
that R has exactly one maximal N-prime of (0) and let it be P . If (Γ(R))c does not admit
any infinite clique, then it was shown in Lemma 4.14 that each element of P is nilpotent. The
following lemma describes the elements of P under the hypothesis that ω((Γ(R))c) is finite.

Lemma 4.19. Let R be a commutative ring with identity which is not an integral domain. Suppose
that P is the only maximal N-prime of (0) in R. If ω((Γ(R))c) is finite, then for any x ∈ P, xm = 0
wherem = ω((Γ(R))c) + 1.

Proof. By hypothesis, ω((Γ(R))c) is finite. Let x ∈ P . We assert that xm = 0 where m =
ω((Γ(R))c) + 1. Suppose that xm /= 0. For each k ∈ {1, 2, . . . , m}, let yk = x + · · · + xk. Note
that Z(R) = P and r1 = 1 /∈ P = Z(R) and for 2 ≤ k ≤ m, rk = 1 + · · · + xk−1 /∈ P = Z(R)
and moreover, yk = xrk for k = 1, 2, . . . , m. Since x2 /= 0 and rirj /∈ Z(R), it follows that
yiyj /= 0 for all i, j ∈ {1, 2, . . . , m}. Let i, j ∈ {1, 2, . . . , m} with i /= j. We claim that yi /=yj .
Suppose that yi = yj . We may assume without loss of generality that i < j. Then yi = yj

implies that xi+1(1 + · · · + xj −(i + 1)) = 0. As 1 + · · · + xj−(i + 1) /∈ Z(R), it follows that
xi+1 = 0, and this is not possible since by assumption, xm /= 0. Hence yi /=yj for all distinct
i, j ∈ {1, 2, . . . , m} and moreover, yiyj /= 0. Hence we obtain that the subgraph of (Γ(R))c

induced on {yk | k = 1, 2, . . . , m} is a clique. This implies that ω((Γ(R))c) ≥ m. This is
impossible since m = ω((Γ(R))c) + 1. Hence we obtain that xm = 0 for any x ∈ P .

The next remark provides examples of rings R for which ω((Γ(R))c) = ∞.

Remark 4.20. We remark here that Lemma 4.19 is motivated by [3, Theorem 3.4]. Let R be
a commutative ring with identity which is not reduced. Let x ∈ nil(R). Recall that by the
index of nilpotence of x, we mean the least positive integer n such that xn = 0. Suppose
that x ∈ nil(R) with x /= 0. Let n be the index of nilpotence of x. Using the fact that the sum
of a nilpotent element and a unit in any ring is a unit, it can be shown as in the proof of
Lemma 4.19 that {yk = x+· · ·+xk | k = 1, . . . , n−1} is a clique in (Γ(R))c. Hence it follows that
ω((Γ(R))c) ≥ n − 1. Thus if a commutative ring Rwith identity is such that there is no bound
on the index of nilpotence of nilpotent elements of R, then it follows that ω((Γ(R))c) = ∞.

Let R and P be as in Lemma 4.19. If ω((Γ(R))c) is finite, then with the help of
Lemma 4.19, we prove in the following proposition that P is nilpotent.
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Proposition 4.21. Let R be a commutative ring with identity which is not an integral domain.
Suppose that R has only one maximal N-prime of (0) and let it be P . If ω((Γ(R))c) is finite, then
P is nilpotent.

Proof. Letm = ω((Γ(R))c)+1. We claim that Pn = (0)with n = (m − 1)2+1 = (ω((Γ(R))c))2+1.
Suppose that Pn /= (0). Then there exist xk ∈ P for k = 1, 2, . . . , n such that x1x2 · · · xn /= 0.
Let s be the number of distinct elements among x1, x2, . . . , xn. Note that we may assume
without loss of generality that x1, . . . , xs are the distinct elements among x1, x2, . . . , xn. Let
j ∈ {1, . . . , s}, and let Aj = {k ∈ {1, 2, . . . , n} | xk = xj}. Let |Aj | = nj for j = 1, . . . , s. Note
that {1, 2, . . . , n} =⋃s

j=1 Aj , and moreover,Ai ∩Aj = ∅ for all distinct i, j ∈ {1, . . . , s}. Hence we
obtain that n =

∑s
j=1 |Aj | = n1+ · · ·+ ns. Since x1x2 · · · xn /= 0, it follows that x1 · · ·xs /= 0, and

moreover, for each j = 1, . . . , s, the product of nj factors of xj is different from 0. We know
from Lemma 4.19 that xm = 0 for any x ∈ P . Hence it follows that nj ≤ m − 1 for j = 1, . . . , s.
Furthermore, observe that the subgraph of (Γ(R))c induced on {x1, . . . , xs} is a clique and
so s ≤ ω((Γ(R))c) = m − 1. Thus we obtain that (m − 1)2 + 1 = n =

∑s
j=1 nj ≤ s (m − 1) ≤

(m − 1)(m − 1). This is impossible. Hence it follows that Pn = (0) with n = (m − 1)2 + 1.

We conclude this note with the following example of an infinite ring R such that R
has exactly one maximal N-prime of (0) satisfying the property that ω((Γ(R))c) = 3, thereby
illustrating that Proposition 4.15 need not hold for non-Noetherian rings.

Example 4.22. Let T = Z2[x1, x2, x3, . . .] be the polynomial ring in an infinite number of
variables over Z2. Let I be the ideal of T generated by {x2

k
| k = 1, 2, 3, . . .} ∪ {x1xk | k =

3, 4, 5, . . .} ∪ {xixj | i, j ∈ N, 2 ≤ i < j}. Let R = T/I. Let M be the ideal of T generated by
{xk | k = 1, 2, 3, . . .}. Observe that P = M/I is the only prime ideal of R. Thus Z(R) = P . It
is clear that R is infinite. Note that x1 + I—(x1 + x2) + I—x2 + I—x1 + I is a cycle of length 3
in (Γ(R))c and hence we obtain that ω((Γ(R))c) ≥ 3. We next verify that ω((Γ(R))c) ≤ 3. Let
A ⊆ Z(R)∗ be such that the subgraph of (Γ(R))c induced on A is a clique. We assert that A
can contain at most 3 elements. Suppose that A contains more than 3 elements. Note that for
any z,w ∈ A with z/=w, zw/= 0 + I.

Let z,w ∈ Z(R)∗. Observe that z = f1(x1, x2, . . . , xm) + I, w = f2(x1, x2, . . . , xm) + I, for
somem ≥ 2 and for some f1(x1, . . . , xm), f2(x1, . . . , xm) ∈ Z2x1 +Z2x2 + · · ·+ Z2xm +Z2x1x2.
It is clear that zw = 0 + I if the coefficient of x2 is 0 in

fi(x1, . . . , xm) for i = 1, 2. (4.11)

We are assuming that A contains at least 4 elements. Let {z1, z2, z3, z4} ⊆ A. Let zk =
gk(x1, x2, . . . , xm) + I, for some m ≥ 2 and for some gk(x1, x2, . . . , xm) ∈ Z2x1 + Z2x2 + · ·
· + Z2xm + Z2x1x2 for k = 1, 2, 3, 4. Since zizj /= 0 + I for all distinct i, j ∈ {1, 2, 3, 4}, it follows
from (4.11) that the coefficient of x2 must be 1 for all gk(x1, x2, . . . , xm) (k = 1, 2, 3, 4) except
possibly one value of k. We may assume without loss of generality that gk(x1, x2, . . . , xm) =
ak1x1 + x2 + · · · + akmxm + ak12x1x2 for k = 1, 2, 3 where ak1, ak3, . . . , akm, ak12 ∈ Z2. Since
z1z2 /= 0+ I, it follows that exactly one among a11, a21 must be 1. We may assume without loss
of generality that a11 = 1 and a21 = 0. Now either a31 = 0 or a31 = 1. If a31 = 0, then we arrive
at z2z3 = 0+ I, which is impossible. If a31 = 1, then we obtain that z1z3 = 0+ I, and this is also
impossible.
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This proves that if A ⊆ Z(R)∗ is such that the subgraph of (Γ(R))c induced on A is a
clique, then |A| ≤ 3. Hence we obtain that ω((Γ(R))c) ≤ 3. This proves that ω((Γ(R))c) = 3.
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