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The Self-Organizing Map (SOM) algorithm is widely used for building topographic maps of data represented in a vectorial space,
but it does not operate with dissimilarity data. Soft Topographic Map (STM) algorithm is an extension of SOM to arbitrary
distance measures, and it creates a map using a set of units, organized in a rectangular lattice, defining data neighbourhood
relationships. In the last years, a new standard for identifying bacteria using genotypic information began to be developed. In this
new approach, phylogenetic relationships of bacteria could be determined by comparing a stable part of the bacteria genetic code,
the so-called “housekeeping genes.” The goal of this work is to build a topographic representation of bacteria clusters, by means of
self-organizing maps, starting from genotypic features regarding housekeeping genes.

1. Introduction

Microbial identification is a fundamental topic for the study
of infectious diseases, and new approaches in the analysis of
bacterial isolates, for identification purposes, are currently
under development. The classical method to identify bac-
terial isolates is based on the comparison of morphologic
and phenotypic characteristics to those described as type
or typical strains. On the other hand, recent trends focus
on the analysis of bacteria genotype, taking into account
the “housekeeping” genes, representing a very stable part
of DNA. One of the most used genes, that in many studies
has proven to be especially suitable for taxonomic and
identification goals (see Section 2), is the 16S rRNA gene.
Employing genotypic features allows to obtain a classification
for rare or poorly described bacteria, to classify organisms
with an unusual phenotype in a well-defined taxon, and
to find misclassification that can lead to the discovery and
description of new pathogens.

In this work, we present a method to make a topographic
representation of bacteria clusters and to visualize the
relations among them. This topographic map is obtained
considering a single gene of bacteria genome, the 16S rRNA
gene. Since the definition of a vector space to represent

nucleotide sequences is not reliable and well structured, the
information provided by the gene sequences is in the form of
a pairwise dissimilarity matrix. We computed such a matrix
in terms of string distances by means of well understood and
theoretically sound techniques commonly used in genomics,
and, in order to produce the topographic representation,
we adopted a modified version of Self-Organizing Map that
is able to work with input dataset expressed in terms of
dissimilarity distances.

2. Background

The job of putting scientific names to microbial isolates,
namely the bacteria identification, is within the practice of
clinical microbiology. The aim is to give insight into the
etiological agent causing an infectious disease, in order to
find possible effective antimicrobial therapy. The traditional
method for performing this task is dependent on the
comparison of an accurate morphologic and phenotypic
description of type strains or typical strains with the accurate
morphologic and phenotypic description of the isolate to
be identified. Microbiologists used standard references such
as Bergey’s Manual of Systematic Bacteriology [1]. In the
1980s, a new standard for identifying bacteria began to be
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developed by Woese et al. [2]. It was shown that phylogenetic
relationships of bacteria could be determined considering
genotypic methods by comparing a stable part of the genetic
code. The identification of bacteria based on genotypic
methods is generally more accurate than the traditional
identification on the basis of phenotypic characteristics. The
preferred genetic technique that has emerged is based on the
comparison of the bacterial 16S rRNA gene sequence, and,
in recent years, several attempts to reorganize actual bacteria
taxonomy have been carried out by adopting 16S rRNA gene
sequences.

Authors in [1] focused on the study of bacteria belonging
to the prokaryotic phyla and adopted the Principal Com-
ponent Analysis method [3] on matrices of evolutionary
distances. Authors in [4–6] carried out an analysis of 16S
rRNA gene sequences to classify bacteria with atypical
phenotype: they proposed that two bacterial isolates would
belong to different species if the dissimilarity in the 16S
rRNA gene sequences between them was more than 1%
and less than 3%. Clustering approaches for DNA sequences
were carried out by [7, 8]: the authors considered human
endogenous retrovirus sequences and a distance matrix
based on the FASTA similarity scores [9]; then they adopted
Median SOM [10], an extension of the Self-Organizing Map
(SOM) [11], to nonvectorial data.

As the authors said, the Median SOM has a better
convergence if the patterns are roughly ordered. This is not
an issue for the Soft Topographic Map and the Deterministic
Annealing approach. The Median SOM was also used to
cluster protein sequences from SWISS-PROT database in
[12]. Authors in [13] proposed a protein sequence clustering
method based on the Optic algorithm [14]. In [15], a tech-
nique to find functional genomic clusters in RNA expression
data by computing the entropy of gene expression patterns
and the mutual information between RNA expression pat-
terns for each pair of genes is described. INPARANOID
[16] is another related approach that performs a clustering
based on BLAST [17] scores to find orthologs and in-
paralogs in two species. The use of maps for organization
of biological data was also used in [18], where a map of
gammaproteobacteria is reported; the obtained map is based
on a reorganization of the dissimilarity matrix, and some of
the results can be obtained with the approach proposed in
this work.

Topological representations are not restricted, however,
only to biological data, but they can be adopted, for instance,
with video and audio data [19], as well.

The proposed work represents an extended version of our
preliminary results presented in [20].

3. Methods

3.1. Sequence Alignment and Evolutionary Distance. Se-
quence alignment is a well-known bioinformatics technique
useful to compare genomic sequences, even of different
length, between two different species. In our system, we
used two of the most popular alignment algorithms:
ClustalW [21], implementing a multiple alignment among

all sequences at the same time; Needleman and Wunsch [22],
that provide a pairwise alignment, that is the best alignment
configuration between two sequences.

Once aligned, it is possible to compute a distance between
two homologous sequences. In bioinformatics domain, there
are many types of distances, usually called “evolutionary
distance”; these distances differ from each other on the basis
of their a priori assumptions.

The simplest kind of distance is the number of substitu-
tions per site, defined as

p = number of different nucleotides
total number of compared nucleotides

. (1)

The number of substitutions observed is often smaller than
the number of substitutions that have actually taken place.
This is due to many genetic phenomena such as multiple
substitutions on the same site (multiple hits), convergent
substitutions or retromutations. For these reasons, a series
of stochastic methods has been introduced in order to obtain
a better estimate of evolutionary distances. In our study, we
considered the method proposed by [23], whose a priori
assumptions are

(1) all sites evolve in an independent manner;

(2) all sites can change with the same probability;

(3) all kinds of substitution are equally probable;

(4) substitution speed is constant over time.

According to [23], the evolutionary distance d between two
nucleotide sequences is equal to

d = −3
4

ln
(

1− 4
3
p
)

, (2)

where p is the number of substitutions per site (1).

3.2. Soft Topographic Map Algorithm. A widely used algo-
rithm for topographic maps is the Kohonen’s Self-Organizing
Map (SOM) algorithm [11], but it does not operate with
dissimilarity data. The SOM network builds a projection
from an input space to a lattice (usually 2D) of neurons,
visualized as a 2D map. Each neuron is a pointer to a position
in the input space and is a tile on the map. The input patterns
are distributed on the map because they are associated to
the nearest neuron in the input space: that neuron is usually
referred to as the best-matching unit (bmu). SOM networks
are trained using the unsupervised learning paradigm: the
label of input patterns, if present, will not be considered
during training phase.

The SOM is widely used to project input data into a low-
dimensional space [24, 25].

Many studies on the SOM algorithm have been carried
after the original paper: according to Luttrell’s work [26],
the generation of topographic maps can be interpreted as an
optimization problem based on the minimization of a cost
function. This cost function represents an energy function,
and it takes its minimum when each data point is mapped to
the best matching neuron, thus providing the optimal set of
parameters for the map.
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An algorithm based on this formulation of the problem
was developed by Graepel et al. [27, 28] and provides
an extension of SOM to arbitrary distance measures. This
algorithm is called Soft Topographic Map (STM) and creates
a map using a set of units (neurons or models) organized
in a rectangular lattice that defines their neighborhood
relationships. STM is able to work with data whose features
are expressed in terms of dissimilarity measures among each
other. Algorithm full description, along with theoretical and
practical details, can be read in [27].

4. Implementation

The Soft Topographic Map algorithm described in this paper
needs some tuning; in this section, we give all the necessary
information for a fruitful use of the algorithm.

4.1. Dataset. The main purpose of our work is to demon-
strate that STM algorithm can be applied to a biological
dataset in order to obtain a topographic map useful to
visualize clusters of bacteria belonging to the same order,
according to actual taxonomy. Biological dataset is composed
of 16S rRNA gene sequences. Each sequence is a text string
containing only four types of characters: “A,” “C,” “G,” “T”
corresponding to the four DNA nucleotides. Information
content of the dataset is expressed in terms of a dissimilarity
measure, computed according to (2). According to the actual
taxonomy [1], we focused our attention on a class containing
some of the most common and dangerous bacteria related
to human pathologies: Gammaproteobacteria, belonging to
the Proteobacteria phylum. In Table 1, a brief description of
the experimental dataset is shown: the dataset is composed
of 147 type strains, and the resulting 16S gene sequences
were downloaded from NCBI public nucleotide database,
GenBank [29], in FASTA format [30].

4.2. Parameters Setup. A Soft Topographic Map is an array of
many neural units where patterns to classify are associated to
these units at the end of the training phase. In order to speed
up processing time, we applied a slightly tuned version of the
Soft Topographic Map algorithm: neighborhood functions
associated to each neuron have been set to zero if they
referred to neurons outside a previously chosen radius in
the grid. The radius has been put to 1/3 of the map
dimensions. As for the other parameters of the algorithm,
we put the annealing increasing factor η = 1.1 and threshold
convergence ε = 10−5, as suggested by [27]. After several tests
we chose, as a good compromise between processing time
and clustering quality, the final value of inverse temperature
equal to 10 times the initial value, leading as a consequence to
25 learning epochs; finally, we put the width of neighborhood
functions σ to 0.5.

The maps have been drawn using a gray-level scale to
represent the distances between the units: the color between
two near occupied cells, both horizontally and vertically, is
proportional to the average distance of the patterns being
in those neurons. To be more precise, empty cells are filled
with a gray level proportional to the mean distance among

the four closest occupied neurons, along the vertical and
horizontal axes referred to that empty cell. Gray scale is
calibrated so that bright values denote proximity and dark
values represent distance. Two sample maps and the distance
scale are shown in Figure 1.

4.3. Map Evaluation Criteria. In order to select the map
dimension, it is useful to evaluate the evolution of the
clustering process with regard to map size. To this end, it
is possible to compare the number of neural units and the
number of patterns defining the following ratio:

K = number of pattern to classify
number of neural units

. (3)

If K ≥ 1, then each neural unit can have many input
patterns so that each neural unit can be considered as a
cluster. In this case, the focus is on the use of all neural units,
and the ones that are not used are often referred to as “dead
units”.

If K < 1, then the single neural unit cannot be a cluster
center and the cluster is constituted by many neural units
separated by a set of dead units. The maps with K ≥ 1 are
sometimes called KNN-SOM, while the ones with K < 1 are
visualized with a technique called U-Matrix [31].

In our implementation, we started with a ratio K ≈ 2
(using a square 8 × 8 STM map) in order to understand if
it was possible to identify the neural units as clusters. It was
difficult to find this correspondence due to the high number
of units that were associated with sequences of different
order. This is highlighted in the center diagram in Figure 2,
that shows the number of mixed clusters (i.e., units that have
associated sequences of different orders).

Usually neural network results are determined by initial
weight values. A common procedure to filter this noise is
to train many networks with different initial set up. In our
experiments, we used 20 different network initializations for
each experiment.

For the evaluation of the quality of the mapping, several
methods are reported in literature, but these methods need
a metric space (a vector space) where the patterns and the
units of the map are represented as vectors. For a short
review on topology preservation, see [32]. In our problem,
we have not a feature space where the patterns are placed, and
we have only a dissimilarity matrix that reports the pattern
organization.

In order to establish an evaluation criteria for the
obtained maps, we noticed that the rows and the columns
of the map represent a linear ordering of the patterns,
order that should be present also in the dissimilarity matrix.
For example, selecting a row on the map, we have a
set of ordered patterns; the same patterns are used to
select the corresponding subset of rows and columns of
the dissimilarity matrix. These dissimilarity values can be
considered as distance values and allow to order the patterns
in a linear fashion. A pattern sequence can be easily obtained
using the Sammon mapping technique on a linear space
starting from the data of dissimilarity matrix. This sequence
should be identical to the one obtained from the map; the
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Table 1: Actual taxonomy of the bacteria dataset. We focused on Gammaproteobacteria class, which is divided into 14 orders. Each order
has one or more families. Inside each family, we considered only the type strains, that is, sample species.

Gammaproteobacteria Order name Number of families Number of type strains Code numbers

Chromatiales 3 families 25 type strains 1–25

Acidithiobacillales 2 families 2 type strains 26,27

Xanthomonodales 1 family 11 type strains 28–38

Cardiobacteriales 1 family 3 type strains 39, 40, 41

Thiotrichales 3 families 11 type strains 42–52

Legionellales 2 families 2 type strains 53, 54

Methylococcales 1 families 7 type strains 55–61

Oceanospirillales 4 families 11 type strains 62–72

Pseudomonadales 2 families 7 type strains 73–79

Alteromonadales 1 family 13 type strains 80–92

Vibrionales 1 family 3 type strains 93, 94, 95

Aeromonadales 2 families 7 type strains 96–102

Enterobacteriales 1 family 39 type strains 103–141

Pasteurellales 1 families 6 type strains 142–147

14 orders 25 families 147 type strains
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Figure 1: 12 × 12 (left) and 20 × 20 (right) topographic maps of bacteria dataset. In the legend under the figures, the dissimilarity values
corresponding to each gray level are shown. 0.33 is the max distance in our dataset, so this darkest gray level available.

two sequences can be compared using the Spearman’s rank
correlation coefficient [33] defined as

ρ = 1−
[

6
∑
d2

i

n(n2 − 1)

]
, (4)

where di is the difference between each rank of correspond-
ing values of the compared variables x and y; n is the number
of pairs of values. In the above equation, we consider only the
term in the square brackets because we discard the possible
inversion between the pattern sequence of the map and the
one of the dissimilarity matrix. Averaging all the Spearman
coefficients for each column and each row, we obtain a score
for a given map. All these scores, calculated for each map
geometry and for initialization, are reported in the upper
diagram of Figure 2 as a box plot.

Evaluating this coefficient, we can decide which geometry
can be used. Maps with few neural units are discarded,
because there are units with many patterns that create ties
in the ordering; in fact, patterns associated with the same
unit do not have any order, while very large maps present a
naturally decreasing value due to the fact that the patterns are
very sparse. This effect can be seen in Figure 2 on the right of
the thin vertical line.

5. Results

In this Section, we present the results we obtained applying
the techniques described in Section 3 to the bacteria dataset
described in Section 4.

Given the dataset described above, we carried out
several experiments. We obtained several maps of different
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Figure 2: In the upper graph is the box plot graph of the Spearman
coefficient. In the chart on the center, we can observe that the
number of bacteria belonging to mixed clusters, that is, cells in the
map labeled with bacteria of different orders, aims at decreasing as
the size of maps increases. In the lower graph is the processing time
in minutes (logarithmic scale).

dimensions, from 8 × 8 up to 45 × 45 neurons, and for
every configuration, we trained 20 maps in order to avoid
the dependence from the initial conditions.

Comparing the results provided from pairwise and
multiple alignment, we saw that there are not meaningful
differences in the corresponding maps, so we focused only
on the evolutionary distances computed from pairwise
alignment.

In Figure 1, we can see the evolution of clustering process
with regard to map size: first of all, we can notice how most
of the bacteria are classified according to their order in the
actual taxonomy; then, we can observe that the number of
bacteria belonging to mixed clusters, that is, cells in the map
labeled with bacteria of different orders, aims at decreasing
as the size of maps increases. We can state that small maps,
according to the chart until about 10 × 10, do not provide
useful results because there are too few available neurons and
consequently the maps are not able to correctly discriminate
among different patterns. If we look, in fact, at the charts
of Figure 2, there are too many mixed clusters and high
values of the Spearman coefficient. On the other side, we
noticed that in very large maps (not shown in this paper),
from 25 × 25 and so on, the topographic maps “lose” their

clustering properties because input patterns aim at spreading
all over the grid, filling all the available space. Considering
the definition of parameter K given in (3), maps with K < 1
and K � 1 are meaningless.

The map size and the optimal K parameter value are
also a function of the method used to produce the dissimi-
larity matrix. For example, using Normalized Compression
Distance (NCD) [34], the optimum size of the map can be
different, as stated in one of our previous work about this
topic [35].

One of the most interesting result is that there are some
anomalies that are constant for all the tests regardless the
dimension of the maps. For example, in small maps (not
shown here), the “Alterococcus agarolyticus” (number 103
in Figure 3) bacterium of the “Enterobacteriales” order is
incorrectly clustered together with bacteria of other orders,
whereas, in larger maps, it is isolated in an individual cluster,
usually at the border of the map and far from its homologous
strains (see Figure 3). Another interesting example is given by
“Legionella pneumophila” (number 54 in Figure 3) bacterium
of “Legionellales” order: in all maps, it is located in a corner
of the grid and surrounded by a dark gray area. This would
suggest that these two bacteria could form new orders, not
present in actual taxonomy, or at least new families. The same
anomalies are confirmed by the Multidimensional Scaling
and the evolutionary tree.

Since the maps provide a visualization of bacteria
datasets, if there are some “anomalies”, they are clearly
highlighted as isolated elements standing at the border or
in the corners of the map. These anomalies can suggest
biologists to do further experimental trials in order to
determine if, eventually, there are some misclassifications in
the taxonomy. That does not mean the proposed method
should mainly be used in order to perform identification
or annotation of unknown bacterial species, but that the
visualization is also able to detect anomalies and if there
are unknown elements, to project them in the map because
of unsupervised learning feature of STM algorithm (see
Section 3).

The bacteria organization in the map finds some other
confirmation in [18], for example, the neighborhood of
Xanthomonas (33 in Figure 3), Pseudomonas (73), and
Enterobacteriales (114); notice also that the position of
Buchnera (106) is not in the same compact group of the other
Enterobacteriales in the map center, although not so distant
as depicted in [18].

Considering the evaluation of the map, reported in
Figure 2, we choose in the set of the 14×14 maps the one that
presents the absolute minimum of the Spearman coefficient
before of its natural decreasing on the right side of the thin
vertical line. This choice also minimizes the number of mixed
clusters, as can be seen in the center diagram of Figure 2.

5.1. Comparison with Phylogenetic Tree. We compared the
chosen 14 × 14 map with the phylogenetic tree referred
to our dataset. In Figure 3, it is possible to notice that
there are four outliers bacteria: “Francisella tularensis” (45),
“Legionella pneumophila” (54), “Alterococcus agarolyticus”
(103), and “Buchnera aphidicola” (106). The first three
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Figure 3: Comparison between the phylogenetic tree and the selected 14×14 map. It is possible to notice that there are four outliers bacteria:
“Francisella tularensis,” “Alterococcus agarolyticus,” “Legionella pneumophila,” “Buchnera aphidicola.” The first three bacteria are clustered in
the border of the map and far from their homologous strains; the remaining one lies in a single cell surrounded by a dark gray area that
indicates its actual distance from its neighbors is bigger than the one shown in the map. There are other bacteria far from their homologous
strains: “Schineria larvae,” “Arhodomonas aquaeolei,” “Halothiobacillus neapolitanus,” “Nitrosococcus nitrosus.” “Enterobacteriales” and
“Pasteurellales” form compact group in both representations.

bacteria are positioned on the border of the map and far
from their homologous strains; the remaining one lies in a
single cell surrounded by a dark gray area that indicates its
actual distance from its neighbors is bigger than it appears.
Apart from these four elements, in the phylogenetic tree,
we found other bacteria far from their order, for instance,
“Schineria larvae” (34), “Halothiobacillus neapolitanus” (8),
“Nitrosococcus nitrosus” (12), and “Arhodomonas aquaeolei”
(3): once again these elements are at the border or in a
zone on the map surrounded by a dark gray level. Although
“Schineria larvae” (34) and “Halothiobacillus neapolitanus”
(8) are coupled in the dendrogram, we can see in the map
how they are actually far away: that happens because some
pairings in the tree are forced, and, in this case, do not give
useful information. “Schineria larvae” (34) and “Francisella
tularensis” (45), whose actual distance is 0.1339, are close in
the map, but their surrounding gray level explains their real
distance, as we can also see in the phylogenetic tree.

If we consider entire orders, for example, “Enterobacte-
riales” and “Pasteurellales”, they form compact groups both
in the tree and in the map. Moreover, the “Methylococcales”
order that in actual taxonomy has one family, in the map,
is divided in two clusters (56, 57 and 55, 58, 59, 60, 61) as
reported in the phylogenetic tree and in [18].

Our visualization method allows, then, not only to detect
some singular situations, but also to understand their relative
positions with regards to all the patterns in the dataset. At
a first look to the phylogenetic tree, in fact, it should be
possible to wrongly realize that the four outliers described
above are far from all the other bacteria, but near each other.
Using the map, instead, we can see how the four outliers are

completely isolated. At the same time our method provides a
very simple system to immediately visualize compact orders
and/or families, as previously explained.

This is clear looking at Figure 3 where the map and
the tree contain the same objects but the map is far more
readable.

5.2. Comparison with Multidimensional Scaling. Multidi-
mensional Scaling (MDS) is a widely used technique for
embedding a dataset, defined only in terms of pairwise
distances, in an euclidean space and plotting it in a 2D
(or 3D) plane [36]. For this reason, we compared our two-
dimensional topographic representation with a 2D plot,
obtained through MDS, of our bacteria dataset, presented in
Figure 4.

First of all, we can notice that the four outliers bacteria,
“Francisella tularensis,” “Buchnera aphidicola,” “Alterococcus
agarolyticus,” “Legionella pneumophila,” are separated from
all the other elements. Apart from this evident result, there
are not many other similarities with our map nor with
the phylogenetic tree. Bacteria belonging to “Pasteurellales”
order, for example, forming in the previous visualizations
a well-defined group, in MDS plot, stand in very distant
zones without any observable relationship. There are some
dislocated elements even inside “Enterobacteriales,” though
most of them still form a compact group in the center part
of the diagram. Moreover, it is difficult to give a clue on the
distance among the patterns.

In conclusion, the use of MDS plotting gives less
information with respect to the ones obtained by means
of topographic map and phylogenetic tree. Because of the
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aphidicolano. 106

Alterococcus
agarolyticus no. 103

Enterobacteriales
ouliers

Legionella
pneumophila no. 54

Francisella
tularensis no. 45

Enterobacteriales

Figure 4: 2D representation of bacteria dataset obtained through Multidimensional Scaling. Apart from the four outliers, “Legionella
pneumophila,” “Alterococcus agarolyticus,” “Francisella tularensis,” “Buchnera aphidicola,” that are separated from all the other elements,
the remaining bacteria do not show meaningful similarities with the visualizations obtained through topographic map and phylogenetic
tree.

distortion introduced by MDS, in fact, most of the patterns,
with the exception of the four outliers, have lost their
distinctive properties already discussed in the previous
paragraph.

6. Conclusion

In recent trends for the definition of bacteria taxonomy,
genotypical characteristics are considered very important
and type strains are compared on the basis of the stable
part of the genetic code. In this paper, the Soft Topographic
Map algorithm has been applied to the visualization and
clustering of bacteria according to their genotypic similarity.
In the similarity measure, we have adopted the 16S rRNA
gene sequence, as commonly used for taxonomic purposes.
A characteristic of the proposed approach is that the
topographic map is built from the genetic data, using the
Soft Topographic Map algorithm working on proximity
data, rather than using a vector space representation. The
generated maps show that the proposed approach provides a
clustering that generally reflects the current taxonomy with
some singular cases. Moreover, the results depend on the
size of the maps, since small and large maps, with regards
to the number of input patterns, do not give meaningful
information. The size of the maps should be chosen so that
the ratio between input elements and neurons is K ≈ 1, with
a corresponding value of Spearman coefficient representing
a local minimum.

The visualization of bacteria dataset through the map
also allows an easy identification of cases representing some

“anomalies” in input dataset. These anomalies should be
further investigated because they, eventually, could repre-
sent incorrect classification or incorrect registration in the
database. It also provides a compact representation, in one
image, useful to visualize bacteria clusters and their mutual
separation, although the evaluation of distance between
clusters is still inaccurate. Furthermore our system has
proved to be a valid alternative to the traditional visualizing
tool used in bioinformatics, like phylogenetic trees and 2D
plot obtained through MDS.

In future research activities, we intend to extend the
analysis to other “housekeeping” genes and to combine
different genotypical characteristics in order to obtain finer
clustering and classification. We would like also to use other
distance measures, eventually alignment-free, and different
clustering algorithm in order to improve execution time and
the quality of clustering.
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