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The antioxidant activity of Aspergillus fumigatus was assayed by different procedures and correlated with its extracellular total
phenolic contents. Different physio-chemical parameters were optimized to enhance the activity. The culture grown under
stationary conditions for 10 days at 25°C at pH 7 gave the best antioxidant activity. Statistical approaches demonstrated sucrose
and NaNOs to be the most suitable carbon and nitrogen sources, respectively. Response surface analysis showed 5% sucrose, 0.05%
NaNOj3, and incubation temperature of 35°C to be the optimal conditions for best expression of antioxidant activity. Under these
conditions, the antioxidant potential assayed through different procedures was 89.8%, 70.1%, and 70.2% scavenging effect for
DPPH radical, ferrous ion and nitric oxide ion, respectively. The reducing power showed an absorbance of 1.0 and FRAP assay
revealed the activity of 60.5%. Extracellular total phenolic content and antioxidant activity as assayed by different procedures

positively correlated.

1. Introduction

Lipid peroxidation is a complex process occurring in aerobic
cells and reflects the interaction between molecular oxygen
and polyunsaturated fatty acids. Free radicals are known to
take part in lipid peroxidation, which causes food deteriora-
tion, aging, and cancer promotion. Reactive oxygen species
are also reported to be involved in asthma, inflammation,
arthritis, neurodegeneration, Parkinson disease, vascular
cardiac diseases, and diabetes [1]. Antioxidants act as radical-
scavengers, and inhibit lipid peroxidation and other free
radical-mediated processes; therefore, these are able to
protect the human body from several diseases attributed to
the reactions of radicals. Use of synthetic antioxidants to
prevent free radical damage has been reported to involve
toxic side effects thus necessitating the search for natural
antioxidants and free radical scavengers [2].

In the past few years, natural antioxidants have generated
considerable interest in preventive medicine and in the
food industry. For the replacement of conventional synthetic
antioxidants in food by natural products, medicinal plant
extracts, spices, and mushrooms are considered to be a
promising source [3]. Within these compounds, flavonoids

and phenolic acids, phytochemicals with a large distribution
in nature have been the object of a great number of
studies of their antioxidative activity, which is mainly due
to their capacity to act as free radical scavengers and/or
as metal chelators [4]. In consequence, attention has been
focused on the characterization of the antioxidant properties
of products from several natural resources and isolation
and identification of the constituents responsible for such
activities.

Recently, fungi have emerged as the new sources of
antioxidants in the form of their secondary metabolites
[5, 6]. Fungi are remarkably a diverse group including
approximately 1.5 million species, which can potentially
provide a wide variety of metabolites such as alkaloids,
benzoquinones, flavanoids, phenols, steroids, terpenoids,
tetralones, and xanthones [7]. They demonstrate variety of
bioactivities along with antioxidant properties and function
as varied as their structure. They are exploited in medicine
and industry and considered to be potential sources of new
therapeutic agents.

Some fungi were isolated from soil and screened for
antioxidant activity [8] and one of the best soil iso-
lates (Aspergillus fumigatus) was selected for further study.



Numerous techniques are available to evaluate the antiox-
idant activities of a compound, and just one procedure
cannot identify all possible mechanisms characterizing an
antioxidant. The comprehensive evaluation using different
tests has been important in assessing the antioxidant activity.
Therefore, different complementary test systems such as
1,1-diphenyl-2-picryl hydrazyl free radical (DPPH) assay,
reducing power, ferrous ion and nitric oxide ion scavenging
activity, and ferric reducing antioxidant power (FRAP) assay
were used to assess the antioxidant potential of A. fumigatus.
Different statistical designs (one-factor-at-a-time classical
approach, Plackett-Burman design and response surface
methodology) were used to enhance its activity. An effort
has been made to work out the correlation (if any) between
antioxidant activity and extracellular total phenolic content.

2. Materials and Methods

2.1. Growth of Aspergillus fumigatus. Aspergillus fumigatus
was isolated from soil of Attari area, Amritsar, Punjab, India
(31° 37" 59” North, 74° 51’ 56"" East) and identified on the
basis of standard protocol and the identity was confirmed
by National Fungal Culture Collection of India, Agharkar
Research Institute, Pune, India. To study the antioxidant
potential, the fungus was grown on 50 mL Czapek dox’s
broth (sucrose 3%, NaNOj; 0.2%, K;HPO4 0.1%, MgSO4
0.05%, KCl 0.05%, FeSO,4 0.001%). The medium was inocu-
lated with two discs (8 mm) of fungal mycelia obtained from
6-7 days grown culture on yeast extract glucose agar plates.
The growth was carried out under stationary conditions at
25°C. After incubation of 10 days, the culture broth was
centrifuged at 10,000 RPM at 4°C for 10 minutes and filtered
through Whatman filter paper number 1 and the filtrate so
obtained was used for further analysis.

2.2. Assay Procedures for Antioxidant Activity

2.2.1. 1,1-Diphenyl-2-picryl hydrazyl (DPPH) Free Radicals
Scavenging Assay. The scavenging activity for DPPH free
radicals was measured according to Zhao et al. [9] with slight
modifications. To 2 mL of distilled water, 1 mL of 0.1 mM
DPPH solution in ethanol and 0.5mL of extract was added.
The mixture was shaken vigorously and allowed to reach a
steady state for 30 min at room temperature. Decolourization
of DPPH was determined by measuring the decrease in
absorbance at 517nm, and the DPPH radical scavenging
effect was calculated according to the following equation:

(Al — A2)

10 ]X 100, (1)

% scavenging rate = [1 -
where A0 represents the absorbance of the control (DPPH
without extract), Al represents the absorbance of the
reaction mixture, and A2 represents the absorbance without
DPPH (DPPH was replaced by the same volume of distilled
water).

2.2.2. Determination of Antioxidant Activity by Reducing
Power Measurement. The reducing power of the extract
was determined according to Chang et al. [10] with slight
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modifications. An aliquot of 0.5 mL extract was added to
0.1 mL of 1% potassium ferricyanide. After incubating the
mixture at 50°C for 30 min, during which ferricyanide
was reduced to ferrocyanide, it was supplemented with
0.1 mL of 1% trichloroacetic acid and 0.1% FeCl; and left
for 20 min. Absorbance was read at 700 nm to determine
the amount of ferric ferrocyanide (Prussian blue) formed.
Higher absorbance of the reaction mixture indicates higher
reducing power of the sample.

2.2.3. Determination of Antioxidant Activity by Ferric Reduc-
ing Antioxidant Power (FRAP) Assay. FRAP assay was carried
out according to Othman et al. [11] by monitoring the
reduction of Fe’*-tripyridyl triazine (TPTZ) to blue colored
Fe?*-TPTZ. The FRAP reagent was prepared by mixing
300 mM acetate buffer (pH 3.6), 10 mM TPTZ, and 20 mM
ferric chloride in a ratio of 10:1:1. The reaction mixture
containing 2mL of FRAP reagent, 0.5mL of extract, and
1 mL of distilled water was incubated for 10 min and the
absorbance measured at 593 nm. Antioxidant potential of
the sample was compared with the activity of 0.5mL stock
solution of 1 mg/mL FeSOj.

2.2.4. Determination of Ferrous Ion Scavenging (Metal Chelat-
ing) Activity. The chelating activity of the extract for ferrous
ions was measured according to Zhao et al. [9]. The
reaction mixture containing 0.5mL of extract, 1.6 mL of
deionized water, 0.05mL of FeCl, (2mM) and 0.1 mL of
ferrozine (5 mM) was incubated at 40°C for 10 min and the
absorbance measured at 562 nm. The chelating activity was
calculated as

(A1 — A2)

helati =[1-
Chelating rate [ 10

] x100,  (2)

where AQ represents the absorbance of the control (without
extract) Al represents the absorbance of reaction mixture,
and A2 represents the absorbance without FeCl,.

2.2.5. Determination of Nitric Oxide (NO) Scavenging Activ-
ity. Nitric oxide production from sodium nitroprusside was
measured according to Kang et al. [12]. An equal amount
(6 mL) of sodium nitroprusside (5 mM) solution was mixed
with 6 mL of extract and incubated at 25°C for 180 min.
After every 30 min, 0.5 mL of the reaction mixture was mixed
with an equal amount of Griess reagent (1% sulphanilamide,
2% phosphoric acid, and 0.1% napthylethylene diamine
dihydrochloride), and absorbance was taken at 546 nm
and compared with absorbance of 1mg/mL of standard
solution (sodium nitrite) treated in the same way with Griess
reagent.

2.2.6. Determination of Total Phenolic Contents (TPC). The
total phenolic contents were determined colorimetrically
using the Folin-Ciocalteau (FC) method according to Single-
ton et al. [13] with some modifications. Test sample (0.5 mL)
was mixed with 0.2 mL of FC reagent and allowed to stand for
10 min to which 0.6 mL of 20% sodium carbonate was added
and mixed completely. The reaction mixture was incubated
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at 40°C for 30 min. Absorbance of the reaction mixture was
measured at 765 nm. Gallic acid was taken as standard.

2.3. Optimization of Physiochemical and Nutritional Param-
eters. Different physiochemical and nutritional parameters
were optimized for Aspergillus fumigatus to enhance their
antioxidant potential. To see the effect of shaking on the
antioxidant activity, the fungi were grown on Czapek dox’s
broth at shaking conditions at different RPM 100, 150, 200,
and 250 at 25°C and compared with that of antioxidant
potential under static conditions. Then, to monitor the
antioxidant potential of fungi with respect to incubation
period, the activity was monitored every 5th day up to
30 days of growth under static conditions. Further, the
activity of Aspergillus fumigatus was checked in the culture
broth obtained from the organisms grown at different
temperatures (20°C, 25°C, 30°C, 35°C, 40°C, 45°C) and pH
values (2 to 11).

2.3.1. Medium Optimization Using One-Factor-at-a-Time
Classical Method

(1) Screening of Different Carbon and Nitrogen Sources. To
find out the best carbon source, sucrose in the Czapek
dox’s medium was replaced with the same concentration
of one of the sugars (glucose, maltose, lactose, starch, and
glycerol) and to work out the best nitrogen source, NaNOs
in Czapek dox’s medium was substituted with one or the
other inorganic nitrogen source (KNOs3, NH4NO3, NH4Cl,
(NH4),S04, (NH4)HSO4) or nitrogen rich organic sup-
plement (yeast extract, peptone, malt extract, urea, casein,
soyabean meal).

2.3.2. Statistical Optimization of the Medium

(1) Plackett-Burman Experimental Design. The Plackett-
Burman experimental design is a valuable tool for the rapid
evaluation of the effects of various medium components.
Because this design is a preliminary optimization technique,
which tests only two levels of each medium component,
it cannot provide the optimal quantity of each component
required in the medium. This technique, however, provides
indications of how each component tends to affect the activ-
ity. The screening of most significant parameters affecting
antioxidant potential was studied by the Plackett-Burman
design. The 5 factors, which are components of Czapek
dox’s medium (sucrose, NaNOs, K;HPO,, KCl, and MgSO4)
were examined. Total 14 tests were designed including
12 combinations and 2 repetitions at central point which
contain different concentration of each factor and the effect
of each factor was determined by the difference between the
average of the + and — responses. The significance level of
effect of each factor was determined by student’s ¢ test. The
most common mean of assessing significant value is the P
value which was also evaluated for each factor.

(2) Response Surface Methodology through Box-Behnken
Designs. On the basis of results from screening of different
carbon and nitrogen sources through one-factor-at-a-time

classical method and different components by Plackett-
Burman design, sucrose and NaNO; were found to be
the best for antioxidant activity. Sucrose as carbon source,
NaNOs as nitrogen source and temperature were taken
independent variables for the optimization by RSM using
Box-Behnken designs of experiments. Each variable was
studied at three levels (—1, 0, +1); for sucrose these were 5%,
3%, and 1%; NaNOs: 0.05%, 0.2%, and 0.35%; temperature:
15°C, 25°C and 35°C.

The experimental design included 17 flasks with five
replicates having all the three variables at their central
coded values. The DPPH assay, reducing power, ferrous
ion scavenging activity, FRAP assay and, nitric oxide ion
scavenging activity and their total phenolic contents was
taken as responses G(i_). The mathematical relationship of
response G (for each parameter) and independent variable
X (X1, Sucrose; X;, NaNOs; and X3, temperature) was
calculated by the following quadratic model equation:

Ga-e) = o+ 1 X1 + BaXa + B3 X5 + X} + B X3

3)
+ B33 X3 + fraXiXo + B3 Xa X5 + P23 X X,

where G is the predicted response; 3y, intercept; 31, 32, and
B3, linear coefficients; 511, B2z, and f33, squared coefficients
and B2, P13, and 3 interaction coefficients. MINITAB
version 11 statistical software was used to obtain optimal
working conditions and generate response surface graphs.
Statistical analysis of experimental data was also performed
using this software.

2.4. Thermostability of Antioxidant Bioactivity. To check the
temperature sensitivity of the culture broth for antioxidant
activity, it was subjected to 40°C, 60°C, 80°C, and 100°C for
one h and the heat treated broth was then assayed for the
residual antioxidant activity.

2.5. Extraction with Different Organic Solvents. To work out
the best organic solvent for extraction of bioactive compo-
nent, the culture broth was treated with different solvents
viz petroleum ether, chloroform, ethyl acetate, and butanol.
Solvent extracted components were then evaporated to
dryness in vaccuo and the resulting solids were reconstituted
in methanol to get five times concentrated stock preparations
which were then checked for their antioxidant potential by
various assays.

2.6. Toxicity Tests. The culture broth used to assess the
antioxidant activity was subject to Ames test by using
Salmonella reverse mutation based on histidine dependence
and mutations in S. typhimurium [14]. Cytotoxicity was
tested by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide (MTT) method. The fungal extracts
(100 uL) were incubated with 1 x 105 RBCs/well in 96-well
ELISA plates for 24 h. Then, 100 uL MTT solution (0.5%,
w/v) was added to each well and incubated further for 4 h.
After incubation, the supernatant was removed and 100 4L
DMSO was added to each well to dissolve the formazan
crystals. The absorbance was measured at 590 nm using an



automated microplate reader. The wells with untreated cells
served as control [15].

3. Results

3.1. Comparison of Antioxidant Potential By Different Quanti-
tative Methods. The different assay procedures demonstrated
Aspergillus fumigatus to possess potent antioxidant activity.
The fungus showed a good scavenging effect of 69% on
DPPH radicals. The reducing power (0.51) of culture broth
was demonstrated by the reduction of Fe’™ to Fe?'. It
also demonstrated effective ferric ion reduction based on
FRAP assay and gave reduction rate of 45.2%. In addition,
the chelation activity for ferrous ion was assayed and the
fungal extracts chelated 48.3% of ferrous ion. The percentage
rate of scavenging nitric oxide ion of fungal extracts was
50.2%.

3.2. Total Phenolic Contents. The TPC of Aspergillus fumi-
gatus extract have been expressed as gallic acid equivalent
(GAE), that is, mg gallic acid/mL culture. The Aspergillus
fumigatus possessed high TPC (5.68 mg/mL), which is
positively correlated with their antioxidant potential.

3.3. Antioxidant Activity under Different
Physiochemical Conditions

3.3.1. Effect of Shaking Conditions. The experiments carried
out to see the effect of shaking at different RPM demon-
strated static culture to give better antioxidant yield in
comparison to shake flask cultures, which resulted in steady
decline in the activity with increase in RPM. The scavenging
effect was 69% under static culture conditions while it was
62.3% on shake flask culture. Again, reducing potential was
0.51 under static conditions and 0.42 at shaking conditions.
Ferric ion reduction was also more in static (45.2%) than
in shake cultures (40.1%). Ferrous and nitric ion scavenging
activity decreased under shaking condition and it was 48.3%
and 50.2% under static conditions, respectively. TPC value
was also high in static culture (5.68 mg/mL) as compared to
shake culture (4.2 mg/mL). Thus, further optimization was
carried out under static conditions.

3.3.2. Effect of Growth Period. The antioxidant potential as
assayed by different procedures was best expressed on the
10th day with the scavenging effect of 68.8%, 48.3%, and
50.2% on DPPH, ferrous and NO ion, respectively, and
45.2% for ferric ion reduction. The antioxidant activity as
assayed by various procedures and TPC remained more or
less similar on 15th day and subsequently declined upto 30
days. The decline in the TPC correlated uniformly with the
decline in the activity.

3.3.3. Effect of Temperature and pH. The antioxidant poten-
tial was best observed at 25°C and in between pH 5-7
with the scavenging effect of 69%, 48.8%, and 50.7% on
DPPH, ferrous; NO ion, respectively, and 45.1% for ferric ion
reduction. There was no significant loss in the antioxidant
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activity or TPC up to 35°C while activity decreased at 40°C.
Neither any antioxidant activity nor TPC could be detected
at extreme pH values (2, 3, 10, 11, and 12) by any of the
methods as there was no fungal growth at these extreme
conditions.

3.3.4. Effect of Different Carbon and Nitrogen Sources on
Antioxidant Potential. Initially, to assess the antioxidant
potential by various assay procedures, all the experimenta-
tion was done by growing Aspergillus fumigatus on Czapek
dox’s broth medium. In order to find the optimal carbon
source, sucrose was replaced with different sugars. How-
ever, sucrose remained the best to support the maximum
antioxidant activity and the order followed was sucrose >
dextrose > maltose > starch > lactose > glycerol. Sucrose was
thus selected as carbon source for further experimentation
(Table 1).

Similarly, NaNOs turned out to be the best nitrogen
source to support maximum antioxidant potential. Peptone
and yeast extract were also good sources of nitrogen, while
urea gave the poorest activity (Table2). The antioxidant
profile of Aspergillus fumigatus for different nitrogen sources
remained the same irrespective of assay procedure adopted.
NO ion scavenging activity was monitored up to 180 min
which increased gradually with respect to time. However,
data pertaining to 180 min is only shown.

The highest TPC yield was 5.68 mg/mL in the presence
of sucrose and NaNOj3 in the medium. On the basis of the
above results, Czapek dox’s broth medium was chosen for the
remaining experiments.

3.4. Statistical Optimization of the Medium

3.4.1. Plackett-Burman Design for Selection of Significant
Components. A Plackett-Burman design experiment was
employed to evaluate the influence of five factors (sucrose,
NaNOs;, K;HPO,, KCI, and MgSOy) and their importance
in culture medium to obtain better antioxidant activity.
Antioxidant potential of Aspergillus fumigatus assayed by
different procedures and extracellularly produced total phe-
nolic content that varied significantly with the 14 run of
different combinations of the media components (Table 3).
The maximum antioxidant potential along with high TPC
was observed in run order 13 and run order 14 which
was followed by run order 5. The results were subjected to
regression analysis and the analysis of variance (ANOVA)
which revealed sucrose and NaNO; to have statistically
significant effect on antioxidant potential with P value
<.05 and <.5, respectively, thus showing that of the five
variables, only sucrose and NaNOj; played a critical role
for antioxidant activity. Based on these results, sucrose
and NaNO; were selected as two variables to optimize
the medium composition by RSM. To know the optimum
temperature and its interaction with other variables (sucrose
and NaNOs), it was chosen as a third variable as it is an
important physical parameter that affects the activity as well
as fungal growth.
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3.4.2. Box-Behnken Design

(1) Fitting the Model. The data obtained from quadratic
model equation was found to be significant. It was verified
by F value and the analysis of variance (ANOVA) by fitting
the data of all independent observations in response surface
quadratic model. The results for model F-value implies that
the model is significant which indicates it to be suitable
to represent adequately the real relationship among the
parameters used. R* value for all the responses ranged
between 82 to 87%, which showed suitable fitting of the
model in the designed experiments (Table4). The final
predictive equations for each response: DPPH assay (G),
reducing power (G,), ferrous ion scavenging activity (Gs),
FRAP assay (Gs), and nitric oxide ion scavenging activity
(Gs) and their total phenolic contents (Gg) obtained are as
follow:

G

= 12.19 + 22.55X; + 93.48X, + 0.37X; — 2.38X7 + 132.56X3
—0.0X3 - 51.08X, X, + 0.08X, X5 — 0.17X, X3,

G

= 0.647 + 0.104X; + 0.65X, — 0.033X;5 — 0.006X? + 2.78X?
—0.0006X3 — 0.66X, X, + 0.0033X, X3 + 0.005X, X3,

G@)

= 3.69 + 14.24X; + 78.73X, + 0.60X; — 1.22X7 + 185.67X3
—0.0X3 - 50.17X, X, + 0.13X, X5 — 0.42X,X3,

G

=5.02 + 14.48X; + 74.86X, + 0.32X; — 112X} + 222.4X3
+0.0X7 — 54.17X, X5 + 0.12X, X5 — 0.35X, X3,

Gs)

= 5.58 + 14.20X; + 75.93X, + 0.69X5 — 1.18X7} + 201.0X?
—0.0X2 — 51.17X, X5 + 0.13X, X3 — 0.50X, X3,

G

= —1.76 + 0.84X; + 17.38X;, + 0.23X; + 0.09X7? + 41.56X7

—0.0X? — 11.42X, X, + 0.04X; X3 — 0.05X,X.
(4)

The optimized values of factors were validated by repeating
the experiment in triplicate flasks.

(2) Effect of Different Variables on DPPH Assay. Sucrose
significantly affected the DPPH activity. The linear effect
(X1) and the squared effect (X}) were significant (P value
<.05), and the interactive effect (X;X,) was highly significant
(P value <.005). The response surface graphs showed the
highest activity at 3-5% sucrose but with the least amount

of NaNOs; while the activity decreased with the decrease
in sucrose concentration and with the increase in the
concentration of NaNOj3 at a constant temperature of 25°C.
Maximum DPPH scavenging effect (90%) was obtained at
5% sucrose, 0.05% NaNOs, and at 35°C (Figure 1(a)).

(3) Effect of Different Variables on Reducing Power. Linear
effects (X1,X3), squared effects (X3,X3), and interactive
effect between sucrose and temperature (X;X3) was signif-
icant with P value <.5. Interactive effect (X;X,) was most
significant at P value <.005. The response surface graphs
showed the highest reducing potential with an absorbance of
1.0 at 5% sucrose with 0.05% of NaNOjs and at a temperature
of 35°C (Figure 1(b)).

(4) Effect of Different Variables on FRAP Assay, Ferrous
Ion, and Nitric Oxide Ion Scavenging Activity. Effect of
variables was similar on FRAP assay, ferrous ion, and nitric
oxide ion scavenging activity. Interactive effect (X;X,) was
most significant with P value =<.005. While linear (X;),
squared effect (X7, X?) and interactive effect (X;X3) showed
significance at P < .5. At 35°C, with medium composition of
5% sucrose and 0.05% of NaNOs, ferric reducing antioxidant
power was highest (70%) as compared to other medium
conditions (Figure 1(c)). Similarly, the highest scavenging
effect of 75% for nitric oxide ion was observed at 35°C
with 5% and 0.05% of sucrose and NaNOs, respectively,
(Figure 1(d)). The chelating effect (70%) was highest at 35°C
in the medium containing 5% sucrose with 0.05% NaNO:s.
Antioxidant potential as assayed by different procedures
demonstrated decrease in activity with increase of NaNO;
concentration and decrease in the temperature and sucrose
concentration (Figure 1(e)).

(5) Effect of Different Variables on Total Phenolic Content.
The interactive effect (X;X;) was highly significant with
P value =<.005 while linear (X;) and squared effect of
sodium nitrate (X7), and interactive effect between sucrose-
temperature (X;X3) is significant with P value <.5. The
highest amount of TPC was obtained at 5% sucrose and
0.05% NaNOs concentration at 35°C (Figure 1(f)), and yield
decreased with the decrease in temperature and sucrose
concentration and with increase in NaNOj3 concentration.

(6) Validation of Results. Thus from the overall assessment,
5% sucrose, 0.05% NaNOs, and incubation temperature of
35°C and retaining other media components at standard
concentration in Czapek Dox’s medium may be regarded
as the optimized conditions for different assay procedures.
The F value and R? value showed that the model correlated
well with measured data and was statistically significant. To
confirm the adequacy of the model for predicting maximum
scavenging activity, the verification experiments using the
optimum medium composition, as described above, were
carried out in triplicates which showed 89.8%, 70.1%, and
74.2% scavenging effect for DPPH radical, ferrous ion
and nitric oxide ion, respectively. The yield for TPC was
12.3 mg/mL and reducing power showed 1.0 absorbance with
70.5% activity for FRAP assay. A good agreement between
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Ficure 1: Contour graph showing effect of different variables on antioxidant potential (% activity) as assayed by different procedures (a)
1,1-diphenyl-2-picryl hydrazyl free radical (DPPH) assay (hold value: 0.05% of sodium nitrate); (b) reducing power (in absorbance) (hold
value: 0.05% of sodium nitrate); (c) ferrous ion scavenging activity (hold value: 0.05% of sodium nitrate); (d) nitric oxide ion scavenging

activity (hold value: 0.05% of sodium nitrate); (e) FRAP assay (hold value: 0.05% of sodium nitrate); (f) total phenolic content (mg/mL)
(hold value: 0.05% of sodium nitrate).
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TaBLE 1: Effect of various carbon sources on antioxidant potential of Aspergillus fumigatus.
% activity Dextrose Maltose Lactose Starch Glycerol Sucrose
DPPH* assay 62.2 = 0.06 60.8 = 0.5 50.6 = 0.4 56.7 = 0.4 329=+0.2 68.96 + 0.47
Reducing power 0.42 = 0.03 0.40 = 0.02 0.3 +£0.02 0.4 0.7 0.16 = 0.4 0.510 = 00
Fe?* scavenging activity 453 +0.9 42.1 =0.08 353 +0.1 40.3 = 0.55 243 +0.5 48.3+0.3
FRAP** assay 40.7 £ 0.2 38.8 = 0.09 329=+0.2 354 +0.3 25.6 £ 0.5 452 0.2
NO*** scavenging activity
30 min 24.6 = 0.2 23.8 0.1 125+ 0.4 16.7 = 0.01 10.3 = 0.2 28.2+0.7
60 min 30.2 0.3 30.5+0.4 18.4 = 0.02 22.6 +0.3 18.4 = 0.5 35.2 = 0.02
90 min 38.3 £ 0.1 342 + 0.6 21.8 +0.2 26.8 +0.02 20.4 + 0.8 40.2 £ 0.8
120 min 40.3 0.1 38.6 = 0.1 26.3 +0.2 30.2 + 0.4 25.5+0.3 453 £ 0.11
180 min 45.3 +£0.02 40.8 = 0.02 30.8 0.5 35.2 +£0.88 28.9 £0.32 50.2 = 0.45
TPC**** (mg/mL) 4.2 +0.1 3.8 0.5 2.1 £0.07 32+04 1.0 = 0.7 5.68 = 0.03
Biomass (mg) 354 +0.2 30.4 = 0.04 20.6 = 0.06 26.7 = 0.3 12.6 = 0.02 40.8 = 0.3

“DPPH: 1.1-diphenyl-2-picryl hydrazyl; ** FRAP: ferric reducing antioxidant power; ***NO: nitric oxide; **** TPC: total phenolic content; values are means

of three replicates + S.D.

TaBLE 2: Effect of various nitrogen sources on antioxidant potential of Aspergillus fumigatus.

Antioxidant activity (%)

Nitrogen sources DPPH* assay R;i‘x;‘g Fe“:cct@i“‘:ietr;glng F}:il:;* NO**:C;cVai\t';ngmg (Trig/:; Bl(c;rlr;ss
Nitrogen rich organic

supplements

Yeast extract 65.8 = 0.6 0.48 £ 0.7 42.7£0.1 40.2£0.3 30.7 + 0.04 34803  38.8=0.04
Peptone 65.8 = 0.5 0.463 = 0.6 423 +0.2 40.1 £ 0.2 30.1 = 0.6 352 +0.2 37.6 = 0.06
Malt extract 58.3 0.5 0.35+0.3 37.8 £0.5 35.6 £ 0.01 25.7 £ 0.2 30.5+0.3 35.8 0.5
Casein 60.3 = 0.07 0.40 = 0.07 40.5 = 0.4 37.7 £ 0.6 22.8 = 0.4 319+ 0.5 35.7 0.2
Soyabean meal 523 +0.5 0.22 + 0.02 352 +0.5 32.7 £0.02 20.7 = 0.02 254+ 0.1 28.7 0.5
Urea 204 = 0.1 — — — — — 8.6 £ 0.04
Inorganic nitrogen

sources

KNOs3 452 +0.05 0.302 = 0.01 28.5 + 0.6 25.7 £ 0.03 15.8 = 0.05 17.8 £ 0.04  20.6 = 0.78
(NH4),SO4 46.7 = 0.03 0.320 = 0.5 28.9 £ 0.5 26.7 = 0.5 153 +0.1 28.9 = 0.1 20.7 = 0.6
(NH4)HSO, 40.3 = 0.06 0.206 = 0.1 25.3 = 0.03 22.8 £0.7 10.3 = 0.2 18.9 = 0.1 20.8 = 0.3
NH,NO; 36.2 = 0.01 0.18 +0.03 245+ 0.1 219 +0.8 10.8 + 0.5 12.8 +0.2 18.6 + 0.4
NaNOs3 68.9 = 0.4 0.510 = 00 483 +0.3 452 +0.22 282+ 0.7 35.2 +£0.02 40.2 £ 0.8
NH,Cl 50.3 = 0.7 0.26 = 0.5 30.2 £ 0.1 28.6 = 0.3 16.9 = 0.2 20.6 = 0.3 25.7 £ 0.1

“DPPH: 1.1-diphenyl: 2-picryl hydrazyl; ** FRAP: ferric reducing antioxidant power; ***NO: nitric oxide; ****TPC: total phenolic content; values are

means of three replicates = S.D.

the predicted and experimental results verified the validity
of the model and the improvement of antioxidant activity
indicated that RSM is a powerful tool for determining
the exact optimal values of the individual factors and the
maximum response value.

3.5. Thermostability of Antioxidant Activity. The culture
filtrate of Aspergillus fumigatus showing antioxidant activity
was found to be relatively thermostable as it suffered a
slight loss in its activity with increase in temperature. At
40°C, the activity decreased by only 7% in fungal extracts,
while at 100°C it suffered a maximum loss of 50% in its
activity.

3.6. Extraction of Bioactive Compound in Different Organic
Solvents. The extraction of culture broth with different
organic solvents revealed ethyl acetate to be the best to elute
the components responsible for antioxidant potential and it
was followed by chloroform and butanol. Petroleum ether
extracts did not show any activity. The ethyl acetate extract
showed 74.6%, 68.8%, and 70.5% scavenging activity for
DPPH, ferrous, and NO ion, respectively. Ferric reducing
antioxidant power and reducing potential was 65.6% and
1.1. The chloroform extract showed 0.78 reducing potential
with ferric ion reduction of 55.3% and 67.4%, 56.7%, and
56.9% of scavenging effect for DPPH, ferrous, and NO ion,
respectively. Butanol extract exhibited reducing potential of
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TasLE 3: Plackett-Burman design variables with antioxidant potential of Aspergillus fumigates.

Variables (%) Antioxidant activity (%)

. . NO***
Run Sucrose NaNO; K,HPO, MgSO, KCl D:;};S* R;‘ilx;?g Fe“:gtai\\flei:g’gmg Fl:iz;* scave.nging r{;g;;;
activity
1 5.0 0.000 0.18 0.000 0.000 58.1 0.48 44.3 45.7 48.30 4.80
2 5.0 0.350 0.00 0.090 0.000 65.4 0.72 48.1 50.3 52.30 5.80
3 0.0 0.350 0.18 0.000 0.090 253 0.20 20.3 25.6 28.20 1.80
4 5.0 0.000 0.18 0.090 0.000 50.3 0.40 40.9 42.1 45.30 4.80
5 5.0 0.350 0.00 0.090 0.090 72.1 0.63 54.2 56.3 60.20 6.20
6 5.0 0.350 0.18 0.000 0.090 65.4 0.55 48.3 50.6 55.60 5.30
7 0.0 0.350 0.18 0.090 0.000 23.4 0.19 18.6 20.3 25.40 1.40
8 0.0 0.000 0.18 0.090 0.090 48.2 0.36 37.3 40.1 45.20 4.00
9 0.0 0.000 0.00 0.090 0.090 20.8 0.11 15.2 17.2 20.20 1.01
10 5.0 0.000 0.00 0.000 0.090 60.3 0.50 46.2 45.3 48.30 5.00
11 0.0 0.350 0.00 0.000 0.000 54.3 0.45 42.1 40.2 45.03 4.50
12 0.0 0.000 0.00 0.000 0.000 0.0 0.00 0.0 0.0 0.00 0.00
13 2.5 0.175 0.09 0.045 0.045 69.2 0.58 49.0 47.2 52.20 6.00
14 2.5 0.175 0.09 0.045 0.045 68.4 0.57 48.2 47.1 52.10 6.10
“DPPH: 1.1-diphenyl -2-picryl hydrazyl; ** FRAP: Ferric reducing antioxidant power; ***NO: nitric oxide; **** TPC: total phenolic content.
TaBLE 4: Box-Behnken designs of different variables with antioxidant potential of Aspergillus fumigates.
Variables (%) Antioxidant activity (%)
Run Sucrose NaNO;  Temperature DPPH Assay R;ilx;?g Fe“:;;:;r;’gmg FRAP assay NO asstai:z/ei:tr;gmg ( mzl/)riL)
1 1 0.05 25 52.3 0.42 38.4 35.3 41.8 4.6
2 5 0.05 25 77.8 0.81 62.3 60.2 65.2 10.3
3 1 0.35 25 78.1 0.83 64.4 65.4 68.1 10.9
4 5 0.35 25 42.3 0.42 28.1 25.3 30.1 2.9
5 1 0.20 15 45.4 0.48 30.4 28.2 32.4 3.1
6 5 0.20 15 47.8 0.48 32.3 30.3 35.2 3.8
7 1 0.20 35 69.2 0.63 50.1 48.3 52.4 6.1
8 5 0.20 35 78.0 0.89 62.4 60.1 65.3 10.2
9 3 0.05 15 70.5 0.71 50.2 50.2 53.2 6.2
10 3 0.35 15 69.3 0.62 50.8 49.2 53.3 6.0
11 3 0.05 35 76.4 0.78 56.2 54.3 59.3 6.9
12 3 0.35 35 74.2 0.72 54.3 51.2 56.4 6.4
13 3 0.20 25 69.0 0.59 50.1 45.3 52.6 5.8
14 3 0.20 25 68.8 0.61 50.2 46.3 52.1 5.8
15 3 0.20 25 69.3 0.58 48.3 46.2 50.1 6.1
16 3 0.20 25 69.8 0.62 48.2 47.2 52.4 6.0
17 3 0.20 25 68.9 0.51 48.3 45.2 50.2 5.7

0.34 and 38.7% of ferric reducing antioxidant power with
scavenging effect of 50%, 35.5%, and 40.8% for DPPH,
ferrous and NO ion, respectively.

3.7. Toxicity Tests. The cell-free fungal extracts, when studied
for Ames test, showed no mutagenic activity as no bacterial
colony was observed on agar plates containing fungal
extracts, while more than 1000 colonies were observed on
positive control (sodium azide) containing plate. Similarly,

results obtained from MTT assay revealed that the cell-
free extracts were noncytotoxic and showed much higher
absorbance (0.775) as compared to positive control (0.107).

4. Discussion

A number of fungi, in particular mushrooms, have been
known to possess good antioxidant activity [16]. However,
much work still needs to be done to explore filamentous
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fungi for antioxidant activity, and the results shown by
Aspergillus fumigatus support this contention [17]. Antiox-
idant activity, as assayed by different methods, demonstrated
static culture of Aspergillus fumigatus to be more suitable as
compared to shake flask culture. This supports the earlier
observation of various researchers who have used static
conditions [18] or low RPM (between 100 to 150 RPM)
[17, 19, 20]. It might be attributed to a low amount of
phenolic compounds produced under shaking conditions,
which have been held responsible for antioxidant activity
of fungi. Ten days of incubation period was optimum for
antioxidant activity, and the subsequent decline in bioactivity
could be due to the exhaustion of nutrients available for the
fungi. This decline may also be attributed to the degradation
of secondary metabolites (phenolic compounds) already
produced by fungi as supported by decline in the phenolic
content.

The comparison of antioxidant activity of the cell-free
culture broth obtained from the fungus grown at different
temperatures revealed 25°C to be the optimum temperature,
which correlate positively with its phenolic content. No
activity was detected at pH extremes, which was optimally
best between the pH 5 and 7. The present results corroborate
the previous studies done by Miao et al. [21] on antibacterial
activity from fungal sources in which there was no bioactivity
at pH extremes. This may be due to delayed metabolite
production caused by delayed mycelial growth or due to
reduced production of bioactive metabolites under such
pH conditions. This shows that pH of the growth medium
can also significantly affect the production of secondary
metabolites. The pH is related to permeability characteristics
of the cell wall and membrane, thus affecting either ion
uptake or loss to the nutrient medium [22].

Sucrose and sodium nitrate were found to be the most
promising carbon and nitrogen sources for obtaining the
best antioxidant activity by Aspergillus fumigatus which is
in consonance with earlier studies carried out on Aspergillus
candidus [23]. However, it contravenes the general percep-
tion that glucose and starch are the best carbon source
for fungal growth. The results thus suggest that a fungal
species may have the ability to utilize a particular carbon
source for vegetative growth but may not be able to use
it for production of specialized metabolites. This signifies
that availability of easily utilizable carbon and nitrogen
sources (sucrose and NaNOj) may lead to the formation
of secondary metabolites. All carbon and nitrogen sources
are divided into quickly metabolizable sources and sustain-
able sources. Quickly metabolizable sources are beneficial
for faster growth of microorganisms and relieving their
need for long-term accumulation of products. Sucrose and
NaNOs are regarded as sustainable sources, which favors
the production of secondary metabolites as these are the
products of later growth [24]. The study thus demonstrated
the basic composition of Czapek Dox’s medium to be the
best for effective production of antioxidant activity. In fact,
culture media designing has a major impact on the growth
of microbes and the production of microbial products [21].

Further analysis of the effect of the medium constituents
through Plackett Burman design showed sucrose and NaNO3

to be significant but the significance of NaNO; was less
than 50%. The results got further support from the RSM
observations where low concentration of NaNOj in the
medium favors the antioxidant activity. This demonstrates
importance of nitrogen sources in regulating the production
of secondary metabolites [25]. Sucrose is beneficial for the
growth of fungi as well as for production of secondary
metabolites which are responsible for their antioxidant
activity.

Though KCl, MgSOs, and K;HPO, did not significantly
affect the antioxidant activity, still they are retained are
retained at standard concentration in Czapek Dox’s medium
because magnesium and potassium are required by all the
fungi for a variety of regulatory functions and control the
biosynthesis of various secondary metabolites. This shows
that the medium most suitable for growth may or may not be
equally effective for secondary metabolites and thus enhance-
ment of secondary metabolites can only be achieved through
systematic manipulation of different parameters [26].

Thermostability studies on cell-free extract demon-
strated that metabolites responsible for antioxidant activity
are quite stable at 40°C. Of the different organic solvents tried
for extraction, ethyl acetate showed the best activity followed
by chloroform and butanol extract. Our observations with
ethyl acetate extracts are in consonance with earlier studies
[23, 27]. Further, the results of ethyl acetate extracts were
quite comparable with the activity of ascorbic acid (96.7%),
BHA (95.1%), and alpha tocopherol (94.7%).

It is commonly known that the antioxidative effects are
mainly due to redox properties of phenolic compounds
which can play an important role in absorbing and neu-
tralizing the free radicals by acting as reducing agents and
hydrogen donor, quenching singlet and triplet oxygen or
decomposing peroxides [19]. The importance of phenolic
contents has been endorsed by their high content in
Aspergillus fumigatus and their antioxidant activity is quite
comparable to that of many mushrooms as well as medicinal
plants. Further, the better production of phenolics under
optimized conditions also enhanced the antioxidant activity.

The results obtained indicate Aspergillus fumigatus to be a
potent antioxidant producer having broad spectrum against
various free radicals. Previous studies have shown the linear
correlation between total phenolic content and antioxidant
activity; total phenolic content of Aspergillus fumigatus
correlated well with the antioxidant activity which is in con-
sonance with earlier studies [28]. The extract obtained from
Aspergillus fumigatus showed good activity against DPPH
radical by neutralizing the free radical character of purple
color DPPH, either by transfer of electron or hydrogen atom
to yellow-colored diamagnetic molecule revealing hydrogen
donating property of phenolic compounds present in the
extract which can be supported by the positive correlation
(r = 0.817) between the results of DPPH assay and TPC [29].
Similarly, positive correlation (r = 0.815) was found between
reducing power assay and TPC. Reducing power assay proves
the potential of the phenolic compounds in the extracts to
act as reductones that inhibit lipid peroxidation by donating
a hydrogen atom thereby terminating the free radical chain
reaction. Moreover, this reducing potential may be due to
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the di- or monohydroxy substitution in the aromatic rings
that possess potent hydrogen donating ability [9]. Results
of FRAP assay are also positively correlated (r = 0.856)
with TPC and good activity of the fungal extract for FRAP
assay denotes its reducing potential. Generally, the reducing
properties are associated to the breaking of free radical chain
by donating a hydrogen atom [11]. The extracts also showed
appreciable chelating activity of metals, as the transition
metals such as ferrous ion can stimulate lipid peroxidation
by generating hydroxyl radicals through Fenton reaction.
The chelating activity for ferrous ion was assayed by the
inhibition of formation of red-colored ferrozine and ferrous
complex. There was positive-correlation (r = 0.819) between
chelating activity and TPC [9]. As evident from studies, the
cell-free extracts are able to scavenge nitric oxide ion, and
correlation with TPC was found to be positive (r = 0.813).

Most of the literature is available on antioxidant activity
of plants and mushrooms, though some of the fungi are
known to produce antioxidant activity. To the best of our
knowledge, apparently this is the first systematic report on
antioxidant activity of Aspergillus fumigatus demonstrated by
different assay procedures and its optimization by statistical
methods. Under optimal condition, Aspergillus fumigatus
showed 89.8%, 70.1%, and 74.2% scavenging effect for
DPPH radical, ferrous ion and nitric oxide ion, respectively.
The yield for TPC was 12.3 mg/mL and reducing power
showed absorbance of 1.0 and 70.5% activity for FRAP
assay. The results showed the scavenging effect for DPPH
radical, ferrous ion, and nitric oxide ion was enhanced by 1.3,
1.4, and 1.4 folds, respectively, while reducing potential and
ferric reduction rate was enhanced by 2.0 and 1.3 folds. The
production of TPC was enhanced by 2.1 folds. These results
are also comparable with the antioxidant activity of various
other fungi, Aspergillus candidus, Chaetomium sp., Cla-
dosporium sp, Colletotrichum gloeosporioides [30] and many
mushrooms such as Lentinus edodes, Volvariella volvacea [16]
and many medicinal plants like Amaranthus paniculatus,
Aerva lanata, Coccinia indica, Coriandrum sativum [31]. To
further highlight the importance of the study, the results
of the cell-free extract also exhibited higher activity than
synthetic antioxidants (BHA and BHT).

5. Conclusions

Hence, the above study suggests that not only mushrooms
and plants but some other fungi may also be a good
source of antioxidant compounds and Aspergillus fumigatus
is one such potential candidate offering a better scope for
production and easier downstreaming of such bioactive
compounds as toxicity studies proved that extract is neither
cytotoxic nor mutagenic. These findings will facilitate the
further studies to gain better understanding of production of
bioactive metabolites in fungi, which will be helpful in their
biotechnological mass production in the near future.
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